Skip to main content

Gene Expression Profiling and Pathway Analysis for Identification of Molecular Targets in MS

  • Chapter
  • First Online:
Multiple Sclerosis Immunology
  • 1587 Accesses

Abstract

Multiple sclerosis (MS) is an inflammatory demyelinating disease affecting exclusively the central nervous system (CNS) white matter, mediated by an autoimmune process triggered by a complex interplay between genetic and environmental factors. MS is a kind of neurological syndrome presenting with a great range of phenotypic variability, caused by different immunological mechanisms, leading to the final common pathway that triggers inflammatory demyelination. The identification of biomarkers responsible for the complex phenotype of MS enables us to establish the molecular mechanism-based personalized therapy of MS. Recently, the global analysis of the genome, transcriptome, proteome, and metabolome promotes us to investigate the genome-wide molecular mechanisms of MS. However, omics studies produce high-throughput experimental data, and it is often difficult to find out the most important biological implications from huge data sets. Recent advances in bioinformatics and systems biology have made major breakthroughs by illustrating the cell-wide map of complex molecular interactions with the aid of the literature-based knowledgebase of molecular pathways. Therefore, the integration of omics data derived from the disease-affected cells and tissues with underlying molecular networks helps us to identify novel MS-relevant pathways and network-based effective drug targets for personalized therapy of MS. Here, this study would introduce our approach to establish the logical hypothesis of molecular mechanisms underlying MS, and to identify molecular targets and biomarkers from publicly accessible omics data of MS by effectively combining gene expression profiling and molecular network analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albert R, Jeong H, Barabasi AL (2000) Error and attack tolerance of complex networks. Nature 406:378–382

    Article  PubMed  CAS  Google Scholar 

  • Baranzini SE, Mudge J, van Velkinburgh JC et al (2010) Genome, epigenome and RNA sequences of monozygotic twins discordant for multiple sclerosis. Nature 464:1351–1356

    Article  PubMed  CAS  Google Scholar 

  • Bomprezzi R, Ringnér M, Kim S et al (2003) Gene expression profile in multiple sclerosis patients and healthy controls: identifying pathways relevant to disease. Hum Mol Genet 12:2191–2199

    Article  PubMed  CAS  Google Scholar 

  • Comabella M, Lünemann JD, Rào J et al (2009) A type I interferon signature in monocytes is associated with poor response to interferon-β in multiple sclerosis. Brain 132:3353–3365

    Article  PubMed  CAS  Google Scholar 

  • Consortium MAQC, Shi L, Reid LH et al (2006) The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat Biotechnol 24:1151–1161

    Article  Google Scholar 

  • Cox MB, Cairns MJ, Gandhi KS et al (2010) MicroRNAs miR-17 and miR-20a inhibit T cell activation genes and are under-expressed in MS whole blood. PLoS One 5:e12132

    Article  PubMed  Google Scholar 

  • Dhaunchak AS, Huang JK, De FJuniorOetal (2010) A proteome map of axoglial specializations isolated and purified from human central nervous system. Glia 58:1949–1960

    Article  PubMed  Google Scholar 

  • Du C, Liu C, Kang J et al (2009) MicroRNA miR-326 regulates TH-17 differentiation and is associated with the pathogenesis of multiple sclerosis. Nat Immunol 10:1252–1259

    Article  PubMed  CAS  Google Scholar 

  • Fineberg SK, Kosik KS, Davidson BL (2009) MicroRNAs potentiate neural development. Neuron 64:303–309

    Article  PubMed  CAS  Google Scholar 

  • Friedman RC, Farh KK, Burge CB et al (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105

    Article  PubMed  CAS  Google Scholar 

  • Han MH, Hwang SI, Roy DB et al (2008) Proteomic analysis of active multiple sclerosis lesions reveals therapeutic targets. Nature 451:1076–1081

    Article  PubMed  CAS  Google Scholar 

  • Hesse D, Krakauer M, Lund H et al (2010) Breakthrough disease during interferon-β therapy in MS: No signs of impaired biologic response. Neurology 74:1455–1462

    Article  PubMed  CAS  Google Scholar 

  • Hirotani M, Maita C, Niino M et al (2008) Correlation between DJ-1 levels in the cerebrospinal fluid and the progression of disabilities in multiple sclerosis patients. Mult Scler 14:1056–1060

    Article  PubMed  CAS  Google Scholar 

  • Hsu SD, Lin FM, Wu WY et al (2011) miRTarBase: a database curates experimentally validated microRNA-target interactions. Nucleic Acids Res 39:D163–D169

    Article  PubMed  CAS  Google Scholar 

  • Huang da W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57

    Article  CAS  Google Scholar 

  • International Multiple Sclerosis Genetics Consortium, Hafler DA, Compston A et al (2007) Risk alleles for multiple sclerosis identified by a genomewide study. N Engl J Med 357:851–862

    Article  PubMed  CAS  Google Scholar 

  • International Multiple Sclerosis Genetics Consortium, Wellcome Trust Case Control Consortium 2, Sawcer S et al (2011) Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476:214–219

    Article  PubMed  CAS  Google Scholar 

  • Jeon GS, Shin DH, Cho SS (2004) Induction of transcription factor c-myb expression in reactive astrocytes following intracerebroventricular kainic acid injection in mouse hippocampus. Neurosci Lett 360:13–16

    Article  PubMed  CAS  Google Scholar 

  • Junker A, Hohlfeld R, Meinl E (2011) The emerging role of microRNAs in multiple sclerosis. Nat Rev Neurol 7:56–59

    Article  PubMed  CAS  Google Scholar 

  • Junker A, Krumbholz M, Eisele S et al (2009) MicroRNA profiling of multiple sclerosis lesions identifies modulators of the regulatory protein CD47. Brain 132:3342–3352

    Article  PubMed  Google Scholar 

  • Kanehisa M, Goto S, Sato Y et al (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40:D109–114

    Google Scholar 

  • Kitano H (2007) A robustness-based approach to systems-oriented drug design. Nat Rev Drug Discov 6:202–210

    Article  PubMed  CAS  Google Scholar 

  • Lalive PH, Menge T, Delarasse C et al (2006) Antibodies to native myelin oligodendrocyte glycoprotein are serologic markers of early inflammation in multiple sclerosis. Proc Natl Acad Sci USA 103:2280–2285

    Article  PubMed  CAS  Google Scholar 

  • Lamers KJ, Reus HP de, Jongen PJ (1998) Myelin basic protein in CSF as indicator of disease activity in multiple sclerosis. Mult Scler 4:124–126

    PubMed  CAS  Google Scholar 

  • Lock C, Hermans G, Pedotti R et al (2002) Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nature Med 8:500–508

    Article  PubMed  CAS  Google Scholar 

  • Lucchinetti C, Brück W, Parisi J et al (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 47:707–717

    Article  PubMed  CAS  Google Scholar 

  • Malaterre J, Mantamadiotis T, Dworkin S et al (2008) c-Myb is required for neural progenitor cell proliferation and maintenance of the neural stem cell niche in adult brain. Stem Cells 26:173–181

    Article  PubMed  CAS  Google Scholar 

  • Mi H, Dong Q, Muruganujan A et al (2010) PANTHER version 7: improved phylogenetic trees, orthologs and collaboration with the Gene Ontology Consortium. Nucleic Acids Res 38:D204–D210

    Google Scholar 

  • Pluchino S, Gritti A, Blezer E et al (2009) Human neural stem cells ameliorate autoimmune encephalomyelitis in non-human primates. Ann Neurol 66:343–354

    Article  PubMed  CAS  Google Scholar 

  • Rudick RA, Lee JC, Simon J et al (2004) Defining interferon β response status in multiple sclerosis patients. Ann Neurol 56:548–555

    Article  PubMed  CAS  Google Scholar 

  • Satoh J (2010) Bioinformatics approach to identifying molecular biomarkers and networks in multiple sclerosis. Clin Exp Neuroimmunol 1:127–140

    Article  CAS  Google Scholar 

  • Satoh J, Illes Z, Peterfalvi A et al (2007) Aberrant transcriptional regulatory network in T cells of multiple sclerosis. Neurosci Lett 422:30–33

    Article  PubMed  CAS  Google Scholar 

  • Satoh J, Misawa T, Tabunoki H et al (2008) Molecular network analysis of T-cell transcriptome suggests aberrant regulation of gene expression by NF-κB as a biomarker for relapse of multiple sclerosis. Dis Markers 25:27–35

    Article  PubMed  CAS  Google Scholar 

  • Satoh J, Nakanishi M, Koike F et al (2005) Microarray analysis identifies an aberrant expression of apoptosis and DNA damage-regulatory genes in multiple sclerosis. Neurobiol Dis 18:537–550

    Article  PubMed  CAS  Google Scholar 

  • Satoh J, Nakanishi M, Koike F et al (2006a) T cell gene expression profiling identifies distinct subgroups of Japanese multiple sclerosis patients. J Neuroimmunol 174:108–118

    Article  CAS  Google Scholar 

  • Satoh J, Nanri Y, Tabunoki H et al (2006b) Microarray analysis identifies a set of CXCR3 and CCR2 ligand chemokines as early IFNβ-responsive genes in peripheral blood lymphocytes in vitro: an implication for IFNβ-related adverse effects in multiple sclerosis. BMC Neurol 6:18

    Article  Google Scholar 

  • Satoh J, Tabunoki H (2011) Comprehensive analysis of human microRNA target networks. BioData Min 4:17

    Article  PubMed  Google Scholar 

  • Satoh J, Tabunoki H, Arima K (2009a) Molecular network analysis suggests aberrant CREB-mediated gene regulation in the Alzheimer disease hippocampus. Dis Markers 27:239–252

    Article  CAS  Google Scholar 

  • Satoh J, Yukitake M, Kurohara K et al (2003) Detection of the 14–3-3 protein in the cerebrospinal fluid of Japanese multiple sclerosis patients presenting with severe myelitis. J Neurol Sci 212:11–20

    Article  PubMed  CAS  Google Scholar 

  • Satoh JI, Tabunoki H, Yamamura T (2009b) Molecular network of the comprehensive multiple sclerosis brain-lesion proteome. Mult Scler 15:531–541

    Article  CAS  Google Scholar 

  • Selbach M, Schwanhäusser B, Thierfelder N et al (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455:58–63

    Article  PubMed  CAS  Google Scholar 

  • Sellebjerg F, Krakauer M, Hesse D et al (2009) Identification of new sensitive biomarkers for the in vivo response to interferon-β treatment in multiple sclerosis using DNA-array evaluation. Eur J Neurol 16:1291–1298

    Article  PubMed  CAS  Google Scholar 

  • Sospedra M, Martin R (2005) Immunology of multiple sclerosis. Annu Rev Immunol 23:683–747

    Article  PubMed  CAS  Google Scholar 

  • Steinman L (2007) A brief history of TH17, the first major revision in the TH1/TH2 hypothesis of T cell-mediated tissue damage. Nat Med 13:139–145

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Research on Intractable Diseases (H21-Nanchi-Ippan-201; H22-Nanchi-Ippan-136), the Ministry of Health, Labour and Welfare (MHLW), Japan and the High-Tech Research Center Project (S0801043) and the Grant-in-Aid (C22500322, C25430054), the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-ichi Satoh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Satoh, Ji. (2013). Gene Expression Profiling and Pathway Analysis for Identification of Molecular Targets in MS. In: Yamamura, T., Gran, B. (eds) Multiple Sclerosis Immunology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7953-6_11

Download citation

Publish with us

Policies and ethics