Skip to main content

Advancements in Microbial Polysaccharide Research for Frozen Foods and Microencapsulation of Probiotics

  • Chapter
  • First Online:
Advances in Food Process Engineering Research and Applications

Part of the book series: Food Engineering Series ((FSES))

  • 4201 Accesses

Abstract

Conventionally used in the food industry as stabilizing, thickening, gelling, and suspending or dispersing agents, microbial polysaccharides such as xanthan gum are known to improve the texture of certain frozen products. The interactions of xanthan with other biopolymers have also received significant attention in recent years. In the wake of growing interest in finding ideal encapsulating agents for probiotics, microbial polysaccharides have been investigated. Scattered research can be found on the effect of each individual polysaccharide; however, there remains a void in the literature to closely compare the characteristics of microbial polysaccharides for these applications, especially when more than one biopolymer is employed. A good understanding of tools capable of elucidating the underlying mechanisms involved is essential in promoting further development of their applications. Therefore, it is this review’s intention to focus on the selection criteria of microbial polysaccharides based on their rheological properties, resistance to harsh conditions, and ability to improve sensory quality. A variety of critical tools is also carefully examined with respect to the attainable information crucial to frozen food and microencapsulation applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhikari K, Mustapha A, Grun IU, Fernando A (2000) Viability of microencapsulated bifidobacteria in set yogrut during refrigerated storage. J Dairy Sci 83:1946–1951

    CAS  Google Scholar 

  • Agullo E, Rodriguez MS, Ramos V, Albertengo L (2003) Present and future role of chitin and chitosan in food. Macromol Biosci 3:521–530

    CAS  Google Scholar 

  • Anal AK, Stevens WF (2005) Chitosan-alginate multilayer beads for controlled release of ampicillin. Int J Pharm 290:45–54

    CAS  Google Scholar 

  • Annable P, Williams PA, Nishinari K (1994) Interaction in xanthan-glucomannan mixtures and the influence of electrolyte. Macromolecules 27:4204–4211

    CAS  Google Scholar 

  • Audet P, Paquin C, Lacroix C (1991) Effect of medium and temperature of storage on viability of lactic acid bacteria immobilized in k-carrageenan-locust bean gim gel beads. Biotechnol Tech 5(4):307–312

    Google Scholar 

  • Chaisawang M, Suphantharika M (2006) Pasting and rheological properties of native and anionic tapioca starches as modified by guar gum and xanthan gum. Food Hydrocoll 20:641–649

    CAS  Google Scholar 

  • Coviello T, Burchard W (1992) Criteria for the point of gelation in reversibly gelling systems according to dynamic light-scattering and oscillatory rheology. Macromolecules 25:1011–1012

    CAS  Google Scholar 

  • Dave RI, Shah NP (1997) Viability of yoghurt and probiotic bacteria in yoghurts made from commercial starter cultures. Int Dairy J 7:31–41

    Google Scholar 

  • Dea ICM, Morris ER, Rees DA, Welsh EJ, Barnes HA, Price J (1977) Associations of like and unlike polysaccharides: mechanism and specificity in galactomannans, interacting bacterial polysaccharides, and related systems. Carbohydr Res 57:249–272

    CAS  Google Scholar 

  • Dickenson E (2008) Hydrocolloids as emulsifiers and emulsion stabilizers. Food Hydrocoll 23:1473–1482

    Google Scholar 

  • Ding WK, Shah NP (2008) An improved method of microencapsulation of probiotic bacteria for their stability in acidic and bile conditions during storage. J Food Sci 74(2):M53–M61

    Google Scholar 

  • Ding WK, Shah NP (2009) Effect of various encapsulating materials on the stability of probiotic bacteria. J Food Sci 74(2):M100–M107

    CAS  Google Scholar 

  • Doleyres Y, Fliss I, Lacroix C (2004) Increased stress tolerance of Bifidobacterium longum and lactococcus lactis produced during continuous mixed strain immobilized cell fermentation. J Appl Microbiol 97:527–539

    CAS  Google Scholar 

  • Downey G (2002) Quality changes in frozen and thawed, cooked pureed vegetables containing hydrocolloids, gums and dairy powders. Int J Food Sci Technol 37:869–877

    CAS  Google Scholar 

  • Draget KI (2000) In: Phillips GO, Williams PA (eds) Handbook of hydrocolloids. CRC Press LLC, Boca Raton, pp 379–397

    Google Scholar 

  • Dumitriu S, Chornet E (1997) Immobilization of xylanase in chitosan-xanthan hydrogels. Biotechnol Prog 13:539–545

    CAS  Google Scholar 

  • Dunstan DE, Chen Y, Liao M-L, Salvatore R, Boger DV, Prica M (2001) Structure Rheology of the ĸ-carrageenan/locust bean gum gels. Food Hydrocoll 15:475–484

    CAS  Google Scholar 

  • Elcin YM (1995) Encapsulation of urease enzyme in xanthan-alginate spheres. Biomater 16:1157–1161

    CAS  Google Scholar 

  • FAO/WHO Experts Report (2001) Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. United Nations

    Google Scholar 

  • FDA (1996) 21 CFR 172: food additives permitted for direct addition to food for human consumption: Curdlan. Fed Regul 61:65941–65942

    Google Scholar 

  • Fernández PP, Martino MN, Zaritzky NE, Guignon B, Sanz PD (2007) Effects of locust bean, xanthan and guar gums on the ice crystals of sucrose solution frozen at high pressure. Food Hydrocoll 21:507–515

    Google Scholar 

  • Fox JE (1997) In: Imeson A (ed) Thickening and gelling agents for foods. Chapman & Hall, New York, pp 262–283

    Google Scholar 

  • Freeland M (2002) Formulation tips on Hydrocolloids. Prepared Foods 171:69

    Google Scholar 

  • Funami MF, Yada H, Nakao Y (1999) Rheological and thermal studies on gelling characteristics of curdlan. Food Hydrocoll 13:317–324

    CAS  Google Scholar 

  • Gagnon MA, Lafleur M (2007) From curdlan powder to the triple helix gel structure: an attenuated total reflection-infrared study of the gelation process. Appl Spectrosc 61:374–378

    CAS  Google Scholar 

  • Garti N, Leser NM (2001) Emulsification properties of hydrocolloids. Polym Adv Technol 12:123–135

    CAS  Google Scholar 

  • Ghaouth EA, Arul J, Asselin A, Benhamou N (1992) Antifungal activity of chitosan on post harvest pathogens: induction of morphological and cytological alterations an Rhizopus Stolonifer. Mycol Res 96:769–779

    Google Scholar 

  • Giannouli P, Morris ER (2003) Cryogelation of xanthan. Food Hydrocoll 17:495–501

    CAS  Google Scholar 

  • Gibbs BF, Kermasha S, Alli I, Mulligan CN (1999) Encapsulation in the food industry: a review. Int J Food Sci Nutr 50:213–224

    CAS  Google Scholar 

  • Glicksman M (1986) Food Hydrocolloids, vol 3. CRC Press, Inc., Boca Raton

    Google Scholar 

  • Gliko-Kabir I, Yagen B, Baluom M, Rubinstein A (2000) Phosphated crosslinked guar for colon-specific drug delivery II. In vitro and in vivo evaluation in the rat. J Controll Release 63:129–134

    CAS  Google Scholar 

  • Goff HD (2006) In: Williams PA, Phillips GO (eds) Gums and stabilisers for the food industry 13. Royal Society of Chemistry, Cambridge, pp 403–412

    Google Scholar 

  • Goud K, Desai H, Park HJ (2005) Recent developments in microencapsulation of food ingredients. Drying Technol 23:1361–1394

    Google Scholar 

  • Gouin S (2004) Microencapsulation: industrial appraisal of existing technologies and trends. Trends Food Sci Technol 15:330–347

    CAS  Google Scholar 

  • Goycoolea FM, Morris ER, Gidley M (1995) Viscosity of galactomannans at alkaline and neutral pH: evidence of ‘hyperentanglement’ in solution. Carbohydr Polym 27:69–71

    CAS  Google Scholar 

  • Granz AJ (1977) Cellulose hydrocolloids. In: Graham H (ed) Food colloids. The AVI Publishing Company, Inc., Westport, pp 382–417

    Google Scholar 

  • Han C, Zhao Y, Leonard SW (2004) Traber. Edible coatings to improved storability and enhance nutritional value of fresh and frozen strawberries (Fragaria x ananassa) and raspberries (Rubus ideaus). Postharvest Biol Technol 33:67–78

    CAS  Google Scholar 

  • Hansen LT, Allan-Wojtas PM, Jin YL, Paulson AT (2002) Survival of Ca-alginate microencapsulated bifidobacterium spp. in milk and simulated gastrointestinal conditions. Food Microbiol 19:35–45

    CAS  Google Scholar 

  • Harada T, Harada A (1996) In: Dumitriu S (ed) Polysaccharides in medical applications. CRC Press, Boca Raton, pp 21–58

    Google Scholar 

  • Harada T, Masada M, Fujimari K, Maeda I (1966) Production of a firm, resilient gel-forming polysaccharide by a mutant of Alcaligenes faecalis var. myxogenes 10C3. Agric Biol Chem 30:196–198

    Google Scholar 

  • Harada T, Okuyama K, Konno A, Koreeda A, Harada A (1994) Effect of heating on formation of curdlan gels. Carbohydr Polym 24:101–106

    CAS  Google Scholar 

  • Hatakeyama T, Hatakeyama H (1992) In: Glasser WG, Hatakeyama H (eds) Viscoelasticity and biomaterials. ACS symposium, p 329

    Google Scholar 

  • Hatakeyama T, Ueda C, Hatakeyama H (2006) Structural change of water by gelation of curdlan suspension. J Therm Anal Calorim 85:661–668

    CAS  Google Scholar 

  • Higiro J, Herald TJ, Alavi S (2006) Rheological study of xanthan and locust bean gum interaction in dilute solution. Food Res Int 39:165–175

    CAS  Google Scholar 

  • Hirashima M, Takaya T, Nishinari K (1997) DSC and rheological studies on aqueous dispersions of curdlan. Thermochim Acta 306:109–114

    CAS  Google Scholar 

  • Hoefler AC (2004) Hydrocolloids. Eagan Press, St. Paul, pp 7–25

    Google Scholar 

  • Hofmann K, Hatakeyama H (1994) H-1-NMR relaxation studies and lineshape analysis of aqueous sodium carboxymethylcellulose. Polymers 35:2749–2758

    CAS  Google Scholar 

  • Hsu SY, Chung HY (2000) Interactions of konjac, agar, curdlan gum, κ-carrageenan and reheating treatment in emulsified meatballs. J Food Eng 44:199–204

    Google Scholar 

  • Iijima H, Takeo K (2000) In: Phillips GO, Williams PA (eds) Handbook of hydrocolloids. CRC Press LLC, Boca Raton, pp 331–346

    Google Scholar 

  • Ikeda S, Nitta Y, Kim BS, Temsiripong T, Pongsawatmanit R, Nishinari K (2004) Single-phase mixed gels of xyloglucan and gellan. Food Hydrocoll 18:669–675

    CAS  Google Scholar 

  • Imeson AP, Humphreys W (1997) In: Imeson AP (ed) Thickening and gelling agents for food. St Edmunsbury Press, Suffolk, pp 180–197

    Google Scholar 

  • Imeson AP (2000) In: Phillips GO, Williams PA (eds) Handbook of hydrocolloids. CRC Press LLC, Boca Raton, pp 87–102

    Google Scholar 

  • Jeuniaux C (1986) In: Muzzarelli RAA, Jeuniaux C, Gooday GW (eds) Chitin in nature and technology. Plenum Press, New York, pp 551–570

    Google Scholar 

  • Jezequal V (1998) Curdlan: a new functional beta-glucan. Cereal Food World 43:361–364

    Google Scholar 

  • Jin Y, Zhang HB, Yin YM, Nishinari K (2006) Comparison of curdlan and its carboxymethylated derivative by means of Rheology, DSC, and AFM. Carbohydr Res 341:90–99

    CAS  Google Scholar 

  • Kanzawa Y, Harada T, Koreeda A, Harada A (1987) Curdlan gel formed by neutralizing its alkaline solution. Agric Biol Chem 51:1839–1843

    CAS  Google Scholar 

  • Kanzawa Y, Koreeda A, Harada A, Harada T (1989) Electron microscopy of the gel-forming ability of polysaccharide food additives. Agric Biol Chem 53:979–986

    CAS  Google Scholar 

  • Kim B, Takemasa M, Nishinari K (2006) Synergistic interaction of xyloglucan and xanthan investigated by rheology, differential scanning calorimetry, and NMR. Biomacromolecules 7:1223–1230

    CAS  Google Scholar 

  • Krishnaiah YSR, Karthikeyan RS, Sankar VG, Satyanarayana V (2002) Three-layer guar gum matrix tablet formulations for oral controlled delivery of highly soluble trimetazidine dihydrochloride. J Control Release 81:45–56

    CAS  Google Scholar 

  • Krishnaiah YSR, Raju PV, Kumar BD, Bhaskar P, Satyanarayana V (2001) Development of colon targeted drug delivery systems for mebendazole. J Control Release 77:87–95

    CAS  Google Scholar 

  • Kumar RMNV, Muzzarelli RAA, Muzzarelli C, Sashiwa H, Domb AJ (2004) 200Chitosan chemistry and pharmaceutical perspectives. Chem Rev 104:6017–6084

    Google Scholar 

  • Lee JS, Cha DS, Park HJ (2004) Survival of freeze dried Lactobacillus bulgaricus KFRI 673 in chitosan coated calcium alginate microparticles. J Agric Food Chem 52:7300–7305

    CAS  Google Scholar 

  • Lee MH, Baek MH, Cha DS, Park HJ, Lim ST (2002) Freeze-thaw stabilization of sweet potato starch gel by polysaccharide gums. Food Hydrocoll 16:345–352

    CAS  Google Scholar 

  • Lo CT, Ramsden L (2000) Effects of xanthan and galactomannan on the freeze/thaw properties of starch gels. Nahrung 44:211–214

    CAS  Google Scholar 

  • Lo YM, Robbins KL, Argin-Soysal S, Sadar LN (2003) Viscoelastic effects on the diffusion properties of curdlan gels. J Food Sci 68:2057–2063

    CAS  Google Scholar 

  • Lopes Da Silva JA, Rao MA, Fu JT (1998) In: Rao MA, Hartel RW (eds) Phase/State transitions in foods. Marcel Dekker, Inc., New York, pp 111–157

    Google Scholar 

  • Lozinsky VI, Damshkaln LG, Brown R, Norton IT (2000) Study of cryostructuring of polymer systems. XIX. On the nature of intermolecular links in the cryogels of locust bean gum. Polym Int 49:1434–1443

    CAS  Google Scholar 

  • Lozinsky VI, Plieva FM, Galaev IY, Mattiasson B (2001) The potential of polymeric cryogels in bioseparation. Bioseperation 10:163–188

    CAS  Google Scholar 

  • MacArtain P, Jacquier JC, Dawson KA (2003) Physical characteristics of calcium induced kappa- carrageenan networks. Carbohydr Polym 53:395–400

    CAS  Google Scholar 

  • Mandala IG, Sawas TP, Kostaropoulos AE (2004) Xanthan and locust bean gum influence on the rheology and structure of a white model-sauce. J Food Eng 64:335–342

    Google Scholar 

  • Mandala IG (2005) Physical properties of fresh and frozen stored, microwaved-reheated breads, containing hydrocolloids. J Food Eng 66:291–300

    Google Scholar 

  • Mandala I, Kapetanakou A, Kostaropoulos A (2008) Physical properties of breads containing hydrocolloids stored at low temperature: II–Effect of freezing. Food Hydrocoll 22:1443–1451

    CAS  Google Scholar 

  • Marchessault RH, Deslandes Y (1978) Fine structure of (1 → 3)-β-D-glucans: curdlan and paramylon. Carbohydr Res 75:231–242

    Google Scholar 

  • Marshall RT, Goff HD, Hartel RW (2003) Ice cream, 6th edn. Kluwer Academic/Plenum Publishers, New York

    Google Scholar 

  • Martin DR, Ablett S, Darke A, Sutton RL, Sahagian M (1999) Diffusion of aqueous sugar solutions as affected by locust bean gum studied by NMR. J Food Sci 64:46–49

    CAS  Google Scholar 

  • Matuda TG, Chevallier S, Filho PAP, LeBail A, Tadini CC (2008) Impact of guar and xanthan gums on proofing and calorimetric parameters of frozen bread dough. J Cereal Sci 48:741–746

    CAS  Google Scholar 

  • McIntosh M, Stone BA, Stanisich VA (2005) Curdlan and other bacterial (1 → 3)-β-D-glucans. Appl Microbiol Biotechnol 68:163–173

    CAS  Google Scholar 

  • Medina-Torres L, Brito-De La Fuente E, Gómez-Aldapa CA, Aragon-Piña A, Toro-Vazquez JF (2006) Structural characteristics of gels formed by mixtures of carrageenan and mucilage gum from Opuntia ficus indica. Carbohydr Polym 63:299–309

    CAS  Google Scholar 

  • Mikkonen KS, Tenkanen M, Cooke P, Xu C, Rita H, Willfo S, Holmbom B, Hicks KB, Yadav MP (2009) Mannans as stabilizers of oil-in-water beverage emulsions. LWT- Food Sci Technol 42:849–855

    CAS  Google Scholar 

  • Murray JCF (2000) In: Phillips GO, Williams PA (eds) Handbook of hydrocolloids. CRC Press LLC, Boca Raton, pp 219–229

    Google Scholar 

  • Na K, Park KH, Kim SW, Bae YH (2000) Self-assembled hydrogel nanoparticles from curdlan derivatives: characterization, anti-cancer drug release and interaction with a hepatoma cell line (HepG2). J Control Release 69:225–236

    CAS  Google Scholar 

  • Nakao Y, Konno A, Taguchi T, Tawada T, Kasai H, Toda J, Terasaki M (1991) Curdlan: properties and application to foods. J Food Sci 56:769–772

    CAS  Google Scholar 

  • Nakao Y (1997) Properties and food applications of curdlan. Agro-Food-Industry Hi-Tech, Tekno Scienze Publisher, Italy, pp 12–15

    Google Scholar 

  • Nishinari HZ (2000) In: Phillips GO, Williams PA (eds) Handbook of hydrocolloids. CRC Press LLC, Boca Raton, pp 269–286

    Google Scholar 

  • Onsoyen E (1997) In: Imeson A (ed) Thickening and gelling agents for food, 2nd edn. Chapman & Hall, New York, pp 22–44

    Google Scholar 

  • Pai V, Srinivasarao M, Khan SA (2002) Evolution of microstructure and rheology in mixed polysaccharide systems. Macromolecules 35:1699–1707

    CAS  Google Scholar 

  • Paradossi G, Chiessi E, Barbiroli A, Fessas D (2002) Xanthan and glucomannan mixtures: synergistic interactions and gelation. Biomacromolecules 3:498–504

    CAS  Google Scholar 

  • Pederson J (1979) In: Blanshard JMV, Mitchell JR (ed) Polysaccharides in food. Butterworths, London, pp 219–227

    Google Scholar 

  • Pinotti A, Garcia MA, Martino MN, Zaritzky NE (2007) Study on microstructure and physical properties of composite films based on chitosan and methylcellulose. Food Hydrocoll 21:66–72

    CAS  Google Scholar 

  • Ramakrishnan S, Gerardin C, Prud’homme RK (2004) Syneresis of carrageenan gels: NMR and rheology. Soft Mater 2:145–153

    CAS  Google Scholar 

  • Rao VSR, Qasba PK, Balaji PV, Chandrasekaran R (1998) Conformation of carbohydrates. Overseas Publishers Association, Amsterdam, p 29

    Google Scholar 

  • Ribotta PD, Pérez GT, León AE, Añón MC (2004) Effect of emulsifier and guar gum on micro structural, rheological and baking performance of frozen bread dough. Food Hydrocoll 18:305–313

    CAS  Google Scholar 

  • Richter S, Boyko V, Matzker R, Schröter K (2004) A thermoreversible gelling system: mixtures of xanthan gum and locust-bean gum. Macromol Rapid Commun 25:1504–1509

    CAS  Google Scholar 

  • Richter S, Brand T, Berger S (2005) Comparative monitoring of the gelation process of a thermoreversible gelling system made of xanthan gum and locust bean gum by dynamic light scattering and 1H NMR Spectroscopy. Macromol Rapid Commun 26:548–553

    CAS  Google Scholar 

  • Rocks JK (1971) Xanthan gum. Food Technol 25:476–483

    CAS  Google Scholar 

  • Rodd AB, Dunstan DE, Boger DV, Schmidt J, Burchard W (2001) Heterodyne and nonergodic approach to dynamic light scattering of polymer gels: aqueous xanthan in the presence of metal ions (aluminum (III)). Macromolecules 34:3339–3352

    CAS  Google Scholar 

  • Ross GM, Gusils C, Gonzalez SN (2008) Microencapsulation of probiotic strains for swine feeding. Biol Pharm Bull 31(11):2121–2125

    CAS  Google Scholar 

  • Sadar LN (2004) Rheological and textural characteristics of copolymerized hydrocolloidal solutions containing curdlan gum. Thesis for the Masters Degree, University of Maryland, College Park

    Google Scholar 

  • Saito H, Miyata E, Sasaki Y (1978) A 13C nuclear magnetic resonance study of gel-forming (1 → 3)-β-Dglucans: molecular-weight dependence of helical conformation and of the presence of junction zones for association of primary molecules. Macromolecules 11:1244–1251

    CAS  Google Scholar 

  • Sanchez C, Zuniga-Lopez R, Schmitt C, Despond S, Hardy J (2000) Microstructure of acid-induced skim milk-locust bean gum-xanthan gels. Int Dairy J 10:199–212

    CAS  Google Scholar 

  • Sanderson GR (1996) Gums and their use in food systems. Food Technol 50:81–84

    Google Scholar 

  • Sandolo C, Matricardi P, Alhaique F, Coviello T (2008) Effect of temperature and cross-linking density on rheology of chemical cross-linked guar gum at the gel point. Food Hydrocoll 23:210–220

    Google Scholar 

  • Sathivel S, Liu Q, Huang J, Prinyawiwatkul W (2007) The influence of chitosan glazing on quality of skinless pink salmon (Oncorhynchus gorbuscha) fillets during frozen storage. J Food Eng 83:366–373

    CAS  Google Scholar 

  • Schrooyen PMM, Meer VDR, Kruif CGD (2001) Microencapsulation: its application in nutrition. Proc Nutr Soc, Cambridge University Press 60:475–479

    CAS  Google Scholar 

  • Shahidi F, Abuzaytoun A (2005) Applications of chitin and chitosan and their oligomers: Taylor, S. L. Adv Food Nutr Res 49:114–128

    Google Scholar 

  • Shahidi F, Arachchi JKV, Jeon YJ (1999) Food applications of chitin and chitosan. Trends Food Sci Technol 10:37–51

    CAS  Google Scholar 

  • Sharadanant R, Khan K (2003a) Effect of hydrophilic gums on frozen dough. I. Dough quality. Cereal Chem 80:764–772

    CAS  Google Scholar 

  • Sharadanant R, Khan K (2003b) Effect of hydrophilic gums on frozen dough. II. Bread characteristics. Cereal Chem 80:773–780

    CAS  Google Scholar 

  • Shon J, Yun Y, Shin M, Chin KB, Eun JB (2009) Effects of milk protiens and gums on quality of bread made from frozen dough. J Sci Food Agric 89:1407–1415

    CAS  Google Scholar 

  • Sikor M, Badrie N, Deisingh AK, Kowalski S (2008) Sauces and dressings: a review of properties and applications. Crit Rev Food Sci Nutr 48:50–77

    Google Scholar 

  • Soma PK, Lo YM (2009) Characterization of the diffusional properties of polyelectrolyte complex gel formed by xanthan and chitosan. Institute of Food Technologists, Chicago, IL, Annual Meeting and Food Expo, Food Engineering Division

    Google Scholar 

  • Sworn G (2000) In: Phillips GO, Williams PA (eds) Handbook of hydrocolloids. CRC Press LLC, Boca Raton, pp 103–115

    Google Scholar 

  • Tada T, Matsumoto T, Masuda T (1999) Dynamic viscoelasticity and small-angle X-ray scattering studies on the gelation mechanism and network structure of curdlan gels. Carbohydr Polym 39:53–59

    CAS  Google Scholar 

  • Takigami S, Shimada M, Williams PA, Phillips GO (1993) E.s.r. study of the conformation transition of spin-labeled xanthan gum in aqueous solution. Int J Biol Macromol 15:367–371

    CAS  Google Scholar 

  • Tanaka R, Hatakeyama T, Hatakeyama H (1998) Formation of locust bean gum hydrogel by freezeing-thawing. Polym Int 45:118–126

    CAS  Google Scholar 

  • Towle GA (1996) In: Phillips GO, Williams PA, Wedlock DJ (eds) Gums and stabilisers for the food industry 8. Oxford University Press, Inc., New York, pp 79–87

    Google Scholar 

  • Tsen ZH, Lin YP, Haung HY, King VAE (2008) Studies on the fermentation of tomato juice by using k-carrageenan immobilized Lactobacillus acidophilus. J Food Process Preserv 32:178–189

    CAS  Google Scholar 

  • Vittadini E, Dickinson LC, Chinachoti P (2002) NMR water mobility in xanthan and locust bean gum mixtures: possible explanation of microbial response. Carbohydr Polym 49:261–269

    CAS  Google Scholar 

  • Wang F, Wang Y-J, Sun Z (2002a) Conformational role of xanthan in its interaction with locust bean gum. J Food Sci 67:2609–2614

    CAS  Google Scholar 

  • Wang F, Wang Y-J, Sun Z (2002b) Conformational role of xanthan in its interaction with guar gum. J Food Sci 67:3289–3294

    CAS  Google Scholar 

  • Wenrong S, Griffiths MW (2000) Survival of bifidobacteria in yogurt and simulated gastric juice following immobilization in gellan-xanthan beads. Int J Food Microbiol 61:17–25

    Google Scholar 

  • Whitcomb PJ, Macosko CW (1978) Rheology of xanthan gum. J Rheol 22:493–505

    CAS  Google Scholar 

  • Wielinga WC, Maehall AG (2000) In: Phillips GO, Williams PA (eds) Handbook of hydrocolloids. CRC Press LLC, Boca Raton, pp 137–154

    Google Scholar 

  • Williams PA, Langdon MJ (1996) The influence of locust bean gum and dextran on the gelation of kappa-carrageenan. Biopolymers 38:655–664

    CAS  Google Scholar 

  • Williams PA, Phillips GO (2000) Handbook of hydrocolloids. CRC Press LLC, Boca Raton, pp 1–19

    Google Scholar 

  • Williams PD, Sadar LN, Lo YM (2009) Texture stability of hydrogel complex containing curdlan gum over multiple freeze-thaw cycles. J Food Process Preserv 33:126–139

    CAS  Google Scholar 

  • Wong D, Larrabee S, Clifford K, Tremblay J, Friend DR (1997) USP dissolution apparatus III(Reciprocating Cylinder) for screening of guar-based colonic delivery formulations. J Control Release 47:173–179

    CAS  Google Scholar 

  • Yaşar F, Toğrul H, Arslan N (2007) Flow properties of cellulose and carboxymethyl cellulose from orange peel. J Food Eng 81:187–199

    Google Scholar 

  • Zeira A, Nussinovitch A (2004) Mechanical properties of weak locust bean gum (LBG) gels under controlled rapid freeze-thawing. J Texture Stud 34:561–573

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Martin Lo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Soma, P.K., Williams, P.D., Moon, B., Lo, Y.M. (2013). Advancements in Microbial Polysaccharide Research for Frozen Foods and Microencapsulation of Probiotics. In: Yanniotis, S., Taoukis, P., Stoforos, N., Karathanos, V. (eds) Advances in Food Process Engineering Research and Applications. Food Engineering Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-7906-2_15

Download citation

Publish with us

Policies and ethics