Skip to main content

Tumor Vasculature, EPR Effect, and Anticancer Nanomedicine: Connecting the Dots

  • Chapter
  • First Online:
Cancer Targeted Drug Delivery

Abstract

The progression of a tumor cell mass beyond 2 mm is critically dependent on neoangiogenesis. Angiogenic factors secreted by tumor cells, infiltrating macrophages, and stromal cells aggressively promote proliferation and migration of endothelial cells. The nascent primitive vasculatures are usually morphologically and functionally abnormal due to several features such as the lack of a vascular smooth muscle cell layer, abrupt change of the blood vessel diameter, tortuosity, and leakiness. Those characteristics which alter the blood flow and the transport of molecules in tumors led to the discovery of the enhanced permeability and retention (EPR) of nanosize molecules in tumor tissues. Following its discovery, various anticancer nanoconstructs have been developed with the EPR effect as a central mechanism for tumor targeting. However, the development of these nanodrugs has been hampered by a slow progress towards the clinic. Only nine nanomedicines have been approved for anticancer treatment for the last 26 years. In this chapter, we discuss various aspects that may explain the limited transition for an efficient anticancer nanomedicine. The specificity of the tumor vasculature, the discrepancy in tumor biology, the role of animal tumor models, and the physicochemical characteristics of nanoconstructs are closely examined. This chapter provides new considerations for successful development of EPR-based anticancer nanomedicine.

Sebastien Taurin and Hayley Nehoff contributed equally to the work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

EPR:

Enhanced permeability and retention

VEGF:

Vascular endothelial growth factor

VEGFR:

Vascular endothelial growth factor receptor

bFGF:

Basic fibroblast growth factor

TGF:

Tumor growth factor

MMP:

Matrix metalloproteinases

NO:

Nitric oxide

EBD:

Evans blue dye

SMANCS:

Styrene co-maleic acid conjugated neocarzinostatin

TDT:

Tumor doubling time

HPMA:

N-(2-hydroxypropyl)methacrylamide

RES:

Reticuloendothelial system

References

  1. Risau W (1997) Mechanisms of angiogenesis. Nature 386(6626):671–674. doi:10.1038/386671a0

    CAS  PubMed  Google Scholar 

  2. Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1(1):27–31

    CAS  PubMed  Google Scholar 

  3. Heidenreich R, Rocken M, Ghoreschi K (2009) Angiogenesis drives psoriasis pathogenesis. Int J Exp Pathol 90(3):232–248. doi:10.1111/j.1365-2613.2009.00669.x

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Veritti D, Sarao V, Lanzetta P (2012) Neovascular age-related macular degeneration. Ophthalmologica 227(Suppl 1):11–20. doi:10.1159/000337154

    CAS  PubMed  Google Scholar 

  5. Hahn WC, Weinberg RA (2002) Rules for making human tumor cells. N Engl J Med 347(20):1593–1603. doi:10.1056/NEJMra021902

    CAS  PubMed  Google Scholar 

  6. Paget S (1889) The distribution of secondary growths in cancer of the breast. Lancet 133(3421):571–573. doi:10.1016/s0140-6736(00)49915-0

    Google Scholar 

  7. Greenblatt M, Shubi P (1968) Tumor angiogenesis: transfilter diffusion studies in the hamster by the transparent chamber technique. J Natl Cancer Inst 41(1):111–124

    CAS  PubMed  Google Scholar 

  8. Ehrmann RL, Knoth M (1968) Choriocarcinoma. Transfilter stimulation of vasoproliferation in the hamster cheek pouch. Studied by light and electron microscopy. J Natl Cancer Inst 41(6):1329–1341

    CAS  PubMed  Google Scholar 

  9. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285(21):1182–1186. doi:10.1056/NEJM197111182852108

    CAS  PubMed  Google Scholar 

  10. Folkman J (1972) Anti-angiogenesis: new concept for therapy of solid tumors. Ann Surg 175(3):409–416

    CAS  PubMed  Google Scholar 

  11. Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86(3):353–364

    CAS  PubMed  Google Scholar 

  12. Hanahan D, Weinberg Robert A (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. doi:10.1016/j.cell.2011.02.013

    CAS  PubMed  Google Scholar 

  13. Folkman J, Shing Y (1992) Angiogenesis. J Biol Chem 267(16):10931–10934

    CAS  PubMed  Google Scholar 

  14. Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C, Compton D, McClain J, Aldrich TH, Papadopoulos N, Daly TJ, Davis S, Sato TN, Yancopoulos GD (1997) Angiopoietin-2, a natural antagonist for tie2 that disrupts in vivo angiogenesis. Science 277(5322):55–60

    CAS  PubMed  Google Scholar 

  15. Escobar E, Rodriguez-Reyna TS, Arrieta O, Sotelo J (2004) Angiotensin ii, cell proliferation and angiogenesis regulator: biologic and therapeutic implications in cancer. Curr Vasc Pharmacol 2(4):385–399

    CAS  PubMed  Google Scholar 

  16. Ishihara K, Kamata M, Hayashi I, Yamashina S, Majima M (2002) Roles of bradykinin in vascular permeability and angiogenesis in solid tumor. Int Immunopharmacol 2(4):499–509. doi:10.1016/s1567-5769(01)00193-x

    CAS  PubMed  Google Scholar 

  17. Dempke W, Rie C, Grothey A, Schmoll HJ (2001) Cyclooxygenase-2: a novel target for cancer chemotherapy? J Cancer Res Clin Oncol 127(7):411–417

    CAS  PubMed  Google Scholar 

  18. Good DJ, Polverini PJ, Rastinejad F, Le Beau MM, Lemons RS, Frazier WA, Bouck NP (1990) A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc Natl Acad Sci USA 87(17):6624–6628

    CAS  PubMed  Google Scholar 

  19. Ferrara N, Clapp C, Weiner R (1991) The 16k fragment of prolactin specifically inhibits basal or fibroblast growth factor stimulated growth of capillary endothelial cells. Endocrinology 129(2):896–900

    CAS  PubMed  Google Scholar 

  20. O’Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, Lane WS, Cao Y, Sage EH, Folkman J (1994) Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a lewis lung carcinoma. Cell 79(2):315–328. doi:10.1016/0092-8674(94)90200-3

    PubMed  Google Scholar 

  21. O’Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR, Folkman J (1997) Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88(2):277–285

    PubMed  Google Scholar 

  22. Pike SE, Yao L, Jones KD, Cherney B, Appella E, Sakaguchi K, Nakhasi H, Teruya-Feldstein J, Wirth P, Gupta G, Tosato G (1998) Vasostatin, a calreticulin fragment, inhibits angiogenesis and suppresses tumor growth. J Exp Med 188(12):2349–2356

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Peterson HI, Appelgren KL (1973) Experimental studies on the uptake and rentention of labelled proteins in a rat tumour. Eur J Cancer 9(8):543–547

    CAS  PubMed  Google Scholar 

  24. Ward JD, Hadfield MG, Becker DP, Lovings ET (1974) Endothelial fenestrations and other vascular alterations in primary melanoma of the central nervous system. Cancer 34(6):1982–1991

    CAS  PubMed  Google Scholar 

  25. Ackerman NB, Hechmer PA (1978) Studies on the capillary permeability of experimental liver metastases. Surg Gynecol Obstet 146(6):884–888

    CAS  PubMed  Google Scholar 

  26. Nagy JA, Chang SH, Dvorak AM, Dvorak HF (2009) Why are tumour blood vessels abnormal and why is it important to know[quest]. Br J Cancer 100(6):865–869

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Maeda H, Matsumura Y (1989) Tumoritropic and lymphotropic principles of macromolecular drugs. Crit Rev Ther Drug Carrier Syst 6(3):193–210

    CAS  PubMed  Google Scholar 

  28. Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46(12 Part 1):6387–6392

    CAS  PubMed  Google Scholar 

  29. Greish K, Fang J, Inutsuka T, Nagamitsu A, Maeda H (2003) Macromolecular therapeutics: advantages and prospects with special emphasis on solid tumour targeting. Clin Pharmacokinet 42(13):1089–1105

    CAS  PubMed  Google Scholar 

  30. Maeda H, Takeshita J, Kanamaru R (1979) A lipophilic derivative of neocarzinostatin. A polymer conjugation of an antitumor protein antibiotic. Int J Pept Protein Res 14(2):81–87

    CAS  PubMed  Google Scholar 

  31. Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Itty Ipe B, Bawendi MG, Frangioni JV (2007) Renal clearance of quantum dots. Nat Biotechnol 25(10):1165–1170. doi:10.1038/nbt1340

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Sarin H (2010) Physiologic upper limits of pore size of different blood capillary types and another perspective on the dual pore theory of microvascular permeability. J Angiogenes Res 2:14. doi:10.1186/2040-2384-2-14

    PubMed Central  PubMed  Google Scholar 

  33. Greish K (2007) Enhanced permeability and retention of macromolecular drugs in solid tumors: a royal gate for targeted anticancer nanomedicines. J Drug Target 15(7–8):457–464. doi:10.1080/10611860701539584

    CAS  PubMed  Google Scholar 

  34. Zhu Y, Che L, He H, Jia Y, Zhang J, Li X (2011) Highly efficient nanomedicines assembled via polymer–drug multiple interactions: tissue-selective delivery carriers. J Control Release 152(2):317–324. doi:10.1016/j.jconrel.2011.03.013

    CAS  PubMed  Google Scholar 

  35. Immordino ML, Dosio F, Cattel L (2006) Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine 1(3):297–315

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Greish K (2010) Enhanced permeability and retention (epr) effect for anticancer nanomedicine drug targeting. Methods Mol Biol 624:25–37. doi:10.1007/978-1-60761-609-2_3

    CAS  PubMed  Google Scholar 

  37. Risau W, Flamme I (1995) Vasculogenesis. Annu Rev Cell Dev Biol 11:73–91. doi:10.1146/annurev.cb.11.110195.000445

    CAS  PubMed  Google Scholar 

  38. Ferrara N (1999) Role of vascular endothelial growth factor in the regulation of angiogenesis. Kidney Int 56(3):794–814. doi:10.1046/j.1523-1755.1999.00610.x

    CAS  PubMed  Google Scholar 

  39. Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, Fahrig M, Vandenhoeck A, Harpal K, Eberhardt C, Declercq C, Pawling J, Moons L, Collen D, Risau W, Nagy A (1996) Abnormal blood vessel development and lethality in embryos lacking a single vegf allele. Nature 380(6573):435–439. doi:10.1038/380435a0

    CAS  PubMed  Google Scholar 

  40. Patel-Hett S, D’Amore PA (2011) Signal transduction in vasculogenesis and developmental angiogenesis. Int J Dev Biol 55(4–5):353–363. doi:10.1387/ijdb.103213sp

    CAS  PubMed  Google Scholar 

  41. Swift MR, Weinstein BM (2009) Arterial–venous specification during development. Circ Res 104(5):576–588. doi:10.1161/circresaha.108.188805

    CAS  PubMed  Google Scholar 

  42. Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473(7347):298–307

    CAS  PubMed  Google Scholar 

  43. Hobson B, Denekamp J (1984) Endothelial proliferation in tumours and normal tissues: continuous labelling studies. Br J Cancer 49(4):405–413

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Hendrix MJC, Seftor EA, Hess AR, Seftor REB (2003) Vasculogenic mimicry and tumour-cell plasticity: lessons from melanoma. Nat Rev Cancer 3(6):411–421

    CAS  PubMed  Google Scholar 

  45. Wang R, Chadalavada K, Wilshire J, Kowalik U, Hovinga KE, Geber A, Fligelman B, Leversha M, Brennan C, Tabar V (2010) Glioblastoma stem-like cells give rise to tumour endothelium. Nature 468(7325):829–833, doi:http://www.nature.com/nature/journal/v468/n7325/abs/nature09624.html#supplementary-information

    CAS  PubMed  Google Scholar 

  46. Holash J, Maisonpierre PC, Compton D, Boland P, Alexander CR, Zagzag D, Yancopoulos GD, Wiegand SJ (1999) Vessel cooption, regression, and growth in tumors mediated by angiopoietins and vegf. Science 284(5422):1994–1998. doi:10.1126/science.284.5422.1994

    CAS  PubMed  Google Scholar 

  47. De Spiegelaere W, Casteleyn C, Van den Broeck W, Plendl J, Bahramsoltani M, Simoens P, Djonov V, Cornillie P (2012) Intussusceptive angiogenesis: a biologically relevant form of angiogenesis. J Vasc Res 49(5):390–404. doi:10.1159/000338278

    PubMed  Google Scholar 

  48. Rafii S, Heissig B, Hattori K (2002) Efficient mobilization and recruitment of marrow-derived endothelial and hematopoietic stem cells by adenoviral vectors expressing angiogenic factors. Gene Ther 9(10):631–641. doi:10.1038/sj.gt.3301723

    CAS  PubMed  Google Scholar 

  49. Herbert SP, Stainier DY (2011) Molecular control of endothelial cell behaviour during blood vessel morphogenesis. Nat Rev Mol Cell Biol 12(9):551–564. doi:10.1038/nrm3176

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Brown JM, Giaccia AJ (1998) The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res 58(7):1408–1416

    CAS  PubMed  Google Scholar 

  51. Goel S, Duda DG, Xu L, Munn LL, Boucher Y, Fukumura D, Jain RK (2011) Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev 91(3):1071–1121. doi:10.1152/physrev.00038.2010

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Maeda H, Matsumura Y, Kato H (1988) Purification and identification of [hydroxyprolyl3]bradykinin in ascitic fluid from a patient with gastric cancer. J Biol Chem 263(31):16051–16054

    CAS  PubMed  Google Scholar 

  53. Greenhough A, Smartt HJM, Moore AE, Roberts HR, Williams AC, Paraskeva C, Kaidi A (2009) The cox-2/pge2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis 30(3):377–386. doi:10.1093/carcin/bgp014

    CAS  PubMed  Google Scholar 

  54. Maeda H, Noguchi Y, Sato K, Akaike T (1994) Enhanced vascular permeability in solid tumor is mediated by nitric oxide and inhibited by both new nitric oxide scavenger and nitric oxide synthase inhibitor. Cancer Sci 85(4):331–334. doi:10.1111/j.1349-7006.1994.tb02362.x

    CAS  Google Scholar 

  55. Dvorak HF, Nagy JA, Feng D, Brown LF, Dvorak AM (1999) Vascular permeability factor/vascular endothelial growth factor and the significance of microvascular hyperpermeability in angiogenesis. Curr Top Microbiol Immunol 237:97–132

    CAS  PubMed  Google Scholar 

  56. Roberts WG, Palade GE (1997) Neovasculature induced by vascular endothelial growth factor is fenestrated. Cancer Res 57(4):765–772

    CAS  PubMed  Google Scholar 

  57. Dvorak HF, Nagy JA, Dvorak JT, Dvorak AM (1988) Identification and characterization of the blood vessels of solid tumors that are leaky to circulating macromolecules. Am J Pathol 133(1):95–109

    CAS  PubMed  Google Scholar 

  58. Yuan F, Leunig M, Huang SK, Berk DA, Papahadjopoulos D, Jain RK (1994) Mirovascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft. Cancer Res 54(13):3352–3356

    CAS  PubMed  Google Scholar 

  59. Fang J, Nakamura H, Maeda H (2011) The epr effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 63(3):136–151

    CAS  PubMed  Google Scholar 

  60. Noguchi Y, Wu J, Duncan R, Strohalm J, Ulbrich K, Akaike T, Maeda H (1998) Early phase tumor accumulation of macromolecules: a great difference in clearance rate between tumor and normal tissues. Jpn J Cancer Res 89(3):307–314

    CAS  PubMed  Google Scholar 

  61. Padera TP, Kadambi A, di Tomaso E, Carreira CM, Brown EB, Boucher Y, Choi NC, Mathisen D, Wain J, Mark EJ, Munn LL, Jain RK (2002) Lymphatic metastasis in the absence of functional intratumor lymphatics. Science 296(5574):1883–1886. doi:10.1126/science.1071420

    CAS  PubMed  Google Scholar 

  62. Leu AJ, Berk DA, Lymboussaki A, Alitalo K, Jain RK (2000) Absence of functional lymphatics within a murine sarcoma: a molecular and functional evaluation. Cancer Res 60(16):4324–4327

    CAS  PubMed  Google Scholar 

  63. Kohn S, Nagy JA, Dvorak HF, Dvorak AM (1992) Pathways of macromolecular tracer transport across venules and small veins. Structural basis for the hyperpermeability of tumor blood vessels. Lab Invest 67(5):596–607

    CAS  PubMed  Google Scholar 

  64. Lichtenbeld HC, Yuan F, Michel CC, Jain RK (1996) Perfusion of single tumor microvessels: application to vascular permeability measurement. Microcirculation 3(4):349–357

    CAS  PubMed  Google Scholar 

  65. Seymour LW, Miyamoto Y, Maeda H, Brereton M, Strohalm J, Ulbrich K, Duncan R (1995) Influence of molecular weight on passive tumour accumulation of a soluble macromolecular drug carrier. Eur J Cancer 31A(5):766–770

    CAS  PubMed  Google Scholar 

  66. Arnida J-AMM, Ray A, Peterson CM, Ghandehari H (2011) Geometry and surface characteristics of gold nanoparticles influence their biodistribution and uptake by macrophages. Eur J Pharm Biopharm 77(3):417–423. doi:10.1016/j.ejpb.2010.11.010

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Moghimi SM, Hunter AC, Murray JC (2001) Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 53(2):283–318

    CAS  PubMed  Google Scholar 

  68. Davis ME, Chen ZG, Shin DM (2008) Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 7(9):771–782. doi:10.1038/nrd2614

    CAS  PubMed  Google Scholar 

  69. Decuzzi P, Pasqualini R, Arap W, Ferrari M (2009) Intravascular delivery of particulate systems: does geometry really matter? Pharm Res 26(1):235–243. doi:10.1007/s11095-008-9697-x

    CAS  PubMed  Google Scholar 

  70. Torchilin VP (2007) Micellar nanocarriers: pharmaceutical perspectives. Pharm Res 24(1):1–16. doi:10.1007/s11095-006-9132-0

    CAS  PubMed  Google Scholar 

  71. Brigger I, Dubernet C, Couvreur P (2002) Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 54(5):631–651

    CAS  PubMed  Google Scholar 

  72. Minko T, Dharap SS, Pakunlu RI, Wang Y (2004) Molecular targeting of drug delivery systems to cancer. Curr Drug Targets 5(4):389–406

    CAS  PubMed  Google Scholar 

  73. Pinto MP, Badtke MM, Dudevoir ML, Harrell JC, Jacobsen BM, Horwitz KB (2010) Vascular endothelial growth factor secreted by activated stroma enhances angiogenesis and hormone-independent growth of estrogen receptor-positive breast cancer. Cancer Res 70(7):2655–2664. doi:10.1158/0008-5472.can-09-4373

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Dvorak HF (2002) Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol 20(21):4368–4380

    CAS  PubMed  Google Scholar 

  75. Maeda H, Fang J, Inutsuka T, Kitamoto Y (2003) Vascular permeability enhancement in solid tumor: various factors, mechanisms involved and its implications. Int Immunopharmacol 3(3):319–328. doi:10.1016/s1567-5769(02)00271-0

    CAS  PubMed  Google Scholar 

  76. Senger D, Galli S, Dvorak A, Perruzzi C, Harvey V, Dvorak H (1983) Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219(4587):983–985. doi:10.1126/science.6823562

    CAS  PubMed  Google Scholar 

  77. Senger DR, Perruzzi CA, Feder J, Dvorak HF (1986) A highly conserved vascular permeability factor secreted by a variety of human and rodent tumor cell lines. Cancer Res 46(11):5629–5632

    CAS  PubMed  Google Scholar 

  78. Ferrara N, Henzel W (1989) Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun 161(2):851–858

    CAS  PubMed  Google Scholar 

  79. Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307(5706):58–62. doi:10.1126/science.1104819

    CAS  PubMed  Google Scholar 

  80. Claffey KP, Brown LF, del Aguila LF, Tognazzi K, Yeo KT, Manseau EJ, Dvorak HF (1996) Expression of vascular permeability factor/vascular endothelial growth factor by melanoma cells increases tumor growth, angiogenesis, and experimental metastasis. Cancer Res 56(1):172–181

    CAS  PubMed  Google Scholar 

  81. Leung D, Cachianes G, Kuang W, Goeddel D, Ferrara N (1989) Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246(4935):1306–1309. doi:10.1126/science.2479986

    CAS  PubMed  Google Scholar 

  82. Houck KA, Leung DW, Rowland AM, Winer J, Ferrara N (1992) Dual regulation of vascular endothelial growth factor bioavailability by genetic and proteolytic mechanisms. J Biol Chem 267(36):26031–26037

    CAS  PubMed  Google Scholar 

  83. Park JE, Keller GA, Ferrara N (1993) The vascular endothelial growth factor (vegf) isoforms: differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound vegf. Mol Biol Cell 4(12):1317–1326

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Lee S, Jilani SM, Nikolova GV, Carpizo D, Iruela-Arispe ML (2005) Processing of vegf-a by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. J Cell Biol 169(4):681–691. doi:10.1083/jcb.200409115

    CAS  PubMed  Google Scholar 

  85. Geretti E, Shimizu A, Klagsbrun M (2008) Neuropilin structure governs vegf and semaphorin binding and regulates angiogenesis. Angiogenesis 11(1):31–39. doi:10.1007/s10456-008-9097-1

    CAS  PubMed  Google Scholar 

  86. Soker S, Fidder H, Neufeld G, Klagsbrun M (1996) Characterization of novel vascular endothelial growth factor (vegf) receptors on tumor cells that bind vegf via its exon 7-encoded domain. J Biol Chem 271(10):5761–5767. doi:10.1074/jbc.271.10.5761

    CAS  PubMed  Google Scholar 

  87. Yamazaki Y, Morita T (2006) Molecular and functional diversity of vascular endothelial growth factors. Mol Divers 10(4):515–527. doi:10.1007/s11030-006-9027-3

    CAS  PubMed  Google Scholar 

  88. Alitalo K, Tammela T, Petrova TV (2005) Lymphangiogenesis in development and human disease. Nature 438(7070):946–953. doi:10.1038/nature04480

    CAS  PubMed  Google Scholar 

  89. Semenza GL (2003) Targeting hif-1 for cancer therapy. Nat Rev Cancer 3(10):721–732. doi:10.1038/nrc1187

    CAS  PubMed  Google Scholar 

  90. Maeda H (2012) Vascular permeability in cancer and infection as related to macromolecular drug delivery, with emphasis on the epr effect for tumor-selective drug targeting. Proc Jpn Acad Ser B Phys Biol Sci 88(3):53–71

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Bhoola KD, Figueroa CD, Worthy K (1992) Bioregulation of kinins: kallikreins, kininogens, and kininases. Pharmacol Rev 44(1):1–80

    CAS  PubMed  Google Scholar 

  92. Leeb-Lundberg LMF, Marceau F, Müller-Esterl W, Pettibone DJ, Zuraw BL (2005) International union of pharmacology. Xlv. Classification of the kinin receptor family: from molecular mechanisms to pathophysiological consequences. Pharmacol Rev 57(1):27–77. doi:10.1124/pr.57.1.2

    CAS  PubMed  Google Scholar 

  93. Matsumura Y, Maruo K, Kimura M, Yamamoto T, Konno T, Maeda H (1991) Kinin-generating cascade in advanced cancer patients and in vitro study. Jpn J Cancer Res 82(6):732–741

    CAS  PubMed  Google Scholar 

  94. Wu J, Akaike T, Hayashida K, Miyamoto Y, Nakagawa T, Miyakawa K, Muller-Esterl W, Maeda H (2002) Identification of bradykinin receptors in clinical cancer specimens and murine tumor tissues. Int J Cancer 98(1):29–35

    CAS  PubMed  Google Scholar 

  95. Cockcroft JR, Chowienczyk PJ, Brett SE, Ritter JM (1994) Effect of ng-monomethyl-l-arginine on kinin-induced vasodilation in the human forearm. Br J Clin Pharmacol 38(4):307–310

    CAS  PubMed  Google Scholar 

  96. Ignarro LJ, Byrns RE, Buga GM, Wood KS (1987) Mechanisms of endothelium-dependent vascular smooth muscle relaxation elicited by bradykinin and vip. Am J Physiol 253(5 Pt 2):H1074–1082

    CAS  PubMed  Google Scholar 

  97. Doi K, Akaike T, Horie H, Noguchi Y, Fujii S, Beppu T, Ogawa M, Maeda H (1996) Excessive production of nitric oxide in rat solid tumor and its implication in rapid tumor growth. Cancer 77(8 Suppl):1598–1604, doi:10.1002/(sici)1097-0142(19960415)77:8<1598::aid-cncr27>3.0.co;2-u

    CAS  PubMed  Google Scholar 

  98. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci 87(4):1620–1624

    CAS  PubMed  Google Scholar 

  99. Yu JL, Rak JW (2003) Host microenvironment in breast cancer development: inflammatory and immune cells in tumour angiogenesis and arteriogenesis. Breast Cancer Res 5(2):83–88

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Pollard JW (2008) Macrophages define the invasive microenvironment in breast cancer. J Leukoc Biol 84(3):623–630. doi:10.1189/jlb.1107762

    CAS  PubMed  Google Scholar 

  101. Siveen KS, Kuttan G (2009) Role of macrophages in tumour progression. Immunol Lett 123(2):97–102. doi:10.1016/j.imlet.2009.02.011

    CAS  PubMed  Google Scholar 

  102. Robinson-Smith TM, Isaacsohn I, Mercer CA, Zhou M, Van Rooijen N, Husseinzadeh N, McFarland-Mancini MM, Drew AF (2007) Macrophages mediate inflammation-enhanced metastasis of ovarian tumors in mice. Cancer Res 67(12):5708–5716. doi:10.1158/0008-5472.can-06-4375

    CAS  PubMed  Google Scholar 

  103. Laakkonen P, Waltari M, Holopainen T, Takahashi T, Pytowski B, Steiner P, Hicklin D, Persaud K, Tonra JR, Witte L, Alitalo K (2007) Vascular endothelial growth factor receptor 3 is involved in tumor angiogenesis and growth. Cancer Res 67(2):593–599. doi:10.1158/0008-5472.can-06-3567

    CAS  PubMed  Google Scholar 

  104. Lee TH, Seng S, Sekine M, Hinton C, Fu Y, Avraham HK, Avraham S (2007) Vascular endothelial growth factor mediates intracrine survival in human breast carcinoma cells through internally expressed vegfr1/flt1. PLoS Med 4(6):e186. doi:10.1371/journal.pmed.0040186

    PubMed Central  PubMed  Google Scholar 

  105. Mezquita B, Mezquita J, Pau M, Mezquita C (2010) A novel intracellular isoform of vegfr-1 activates src and promotes cell invasion in mda-mb-231 breast cancer cells. J Cell Biochem 110(3):732–742. doi:10.1002/jcb.22584

    CAS  PubMed  Google Scholar 

  106. Timoshenko AV, Chakraborty C, Wagner GF, Lala PK (2006) Cox-2-mediated stimulation of the lymphangiogenic factor vegf-c in human breast cancer. Br J Cancer 94(8):1154–1163. doi:10.1038/sj.bjc.6603067

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Timoshenko AV, Rastogi S, Lala PK (2007) Migration-promoting role of vegf-c and vegf-c binding receptors in human breast cancer cells. Br J Cancer 97(8):1090–1098. doi:10.1038/sj.bjc.6603993

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Weigand M, Hantel P, Kreienberg R, Waltenberger J (2005) Autocrine vascular endothelial growth factor signalling in breast cancer. Evidence from cell lines and primary breast cancer cultures in vitro. Angiogenesis 8(3):197–204. doi:10.1007/s10456-005-9010-0

    CAS  PubMed  Google Scholar 

  109. Hoeben A, Landuyt B, Highley MS, Wildiers H, Van Oosterom AT, De Bruijn EA (2004) Vascular endothelial growth factor and angiogenesis. Pharmacol Rev 56(4):549–580. doi:10.1124/pr.56.4.3

    CAS  PubMed  Google Scholar 

  110. Ryden L, Stendahl M, Jonsson H, Emdin S, Bengtsson NO, Landberg G (2005) Tumor-specific vegf-a and vegfr2 in postmenopausal breast cancer patients with long-term follow-up. Implication of a link between vegf pathway and tamoxifen response. Breast Cancer Res Treat 89(2):135–143. doi:10.1007/s10549-004-1655-7

    CAS  PubMed  Google Scholar 

  111. Schmidt M, Voelker HU, Kapp M, Dietl J, Kammerer U (2008) Expression of vegfr-1 (flt-1) in breast cancer is associated with vegf expression and with node-negative tumour stage. Anticancer Res 28(3A):1719–1724

    CAS  PubMed  Google Scholar 

  112. Seymour LW, Ferry DR, Anderson D, Hesslewood S, Julyan PJ, Poyner R, Doran J, Young AM, Burtles S, Kerr DJ, Committee ftCRCPIICT (2002) Hepatic drug targeting: phase i evaluation of polymer-bound doxorubicin. J Clin Oncol 20(6):1668–1676. doi:10.1200/jco.20.6.1668

    CAS  PubMed  Google Scholar 

  113. Qian ZM, Li H, Sun H, Ho K (2002) Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway. Pharmacol Rev 54(4):561–587. doi:10.1124/pr.54.4.561

    CAS  PubMed  Google Scholar 

  114. Wang S, Low PS (1998) Folate-mediated targeting of antineoplastic drugs, imaging agents, and nucleic acids to cancer cells. J Control Release 53(1–3):39–48

    CAS  PubMed  Google Scholar 

  115. Lammers T, Kiessling F, Hennink WE, Storm G (2011) Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress. J Control Release. doi:10.1016/j.jconrel.2011.09.063

    Google Scholar 

  116. Garcia-Bennett A, Nees M, Fadeel B (2011) In search of the holy grail: folate-targeted nanoparticles for cancer therapy. Biochem Pharmacol 81(8):976–984. doi:10.1016/j.bcp.2011.01.023

    CAS  PubMed  Google Scholar 

  117. Blankenberg FG, Teplitz RL, Ellis W, Salamat MS, Min BH, Hall L, Boothroyd DB, Johnstone IM, Enzmann DR (1995) The influence of volumetric tumor doubling time, DNA ploidy, and histologic grade on the survival of patients with intracranial astrocytomas. AJNR Am J Neuroradiol 16(5):1001–1012

    CAS  PubMed  Google Scholar 

  118. Malaise EP, Chavaudra N, Charbit A, Tubiana M (1974) Relationship between the growth rate of human metastases, survival and pathological type. Eur J Cancer 10(7):451–459

    CAS  PubMed  Google Scholar 

  119. Okazaki N, Yoshino M, Yoshida T, Suzuki M, Moriyama N, Takayasu K, Makuuchi M, Yamazaki S, Hasegawa H, Noguchi M et al (1989) Evaluation of the prognosis for small hepatocellular carcinoma based on tumor volume doubling time. A preliminary report. Cancer 63(11):2207–2210

    CAS  PubMed  Google Scholar 

  120. Tanaka K, Shimada H, Miura M, Fujii Y, Yamaguchi S, Endo I, Sekido H, Togo S, Ike H (2004) Metastatic tumor doubling time: most important prehepatectomy predictor of survival and nonrecurrence of hepatic colorectal cancer metastasis. World J Surg 28(3):263–270. doi:10.1007/s00268-003-7088-3

    PubMed  Google Scholar 

  121. Usuda K, Saito Y, Sagawa M, Sato M, Kanma K, Takahashi S, Endo C, Chen Y, Sakurada A, Fujimura S (1994) Tumor doubling time and prognostic assessment of patients with primary lung cancer. Cancer 74(8):2239–2244

    CAS  PubMed  Google Scholar 

  122. Weiss W (1974) Tumor doubling time and survival of men with bronchogenic carcinoma. Chest 65(1):3–8

    CAS  PubMed  Google Scholar 

  123. Tanaka Y, Hongo K, Tada T, Sakai K, Kakizawa Y, Kobayashi S (2003) Growth pattern and rate in residual nonfunctioning pituitary adenomas: correlations among tumor volume doubling time, patient age, and mib-1 index. J Neurosurg 98(2):359–365. doi:10.3171/jns.2003.98.2.0359

    PubMed  Google Scholar 

  124. Nakasu S, Nakasu Y, Nakajima M, Yokoyama M, Matsuda M, Handa J (1996) Potential doubling time and tumour doubling time in meningiomas and neurinomas. Acta Neurochir (Wien) 138(6):763–770

    CAS  Google Scholar 

  125. Winer-Muram HT, Jennings SG, Tarver RD, Aisen AM, Tann M, Conces DJ, Meyer CA (2002) Volumetric growth rate of stage I lung cancer prior to treatment: serial ct scanning. Radiology 223(3):798–805

    PubMed  Google Scholar 

  126. Kuroishi T, Tominaga S, Morimoto T, Tashiro H, Itoh S, Watanabe H, Fukuda M, Ota J, Horino T, Ishida T et al (1990) Tumor growth rate and prognosis of breast cancer mainly detected by mass screening. Jpn J Cancer Res 81(5):454–462

    CAS  PubMed  Google Scholar 

  127. Arai T, Kuroishi T, Saito Y, Kurita Y, Naruke T, Kaneko M (1994) Tumor doubling time and prognosis in lung cancer patients: evaluation from chest films and clinical follow-up study. Japanese lung cancer screening research group. Jpn J Clin Oncol 24(4):199–204

    CAS  PubMed  Google Scholar 

  128. El-Assal ON, Yamanoi A, Soda Y, Yamaguchi M, Igarashi M, Yamamoto A, Nabika T, Nagasue N (1998) Clinical significance of microvessel density and vascular endothelial growth factor expression in hepatocellular carcinoma and surrounding liver: possible involvement of vascular endothelial growth factor in the angiogenesis of cirrhotic liver. Hepatology 27(6):1554–1562. doi:10.1002/hep.510270613

    CAS  PubMed  Google Scholar 

  129. Jaaskelainen J, Haltia M, Laasonen E, Wahlstrom T, Valtonen S (1985) The growth rate of intracranial meningiomas and its relation to histology. An analysis of 43 patients. Surg Neurol 24(2):165–172

    CAS  PubMed  Google Scholar 

  130. James BM, Gillard JH, Antoun NM, Scott IS, Coleman N, Pinto EM, Jefferies SJ, Burnet NG (2007) Glioblastoma doubling time and cellular proliferation markers. Clin Oncol 19(3):S33

    Google Scholar 

  131. Carlson JA (2003) Tumor doubling time of cutaneous melanoma and its metastasis. Am J Dermatopathol 25(4):291–299

    PubMed  Google Scholar 

  132. Yoshino M (1983) Growth kinetics of hepatocellular carcinoma. Jpn J Clin Oncol 13(1):45–52

    CAS  PubMed  Google Scholar 

  133. Garnett MC, Kallinteri P (2006) Nanomedicines and nanotoxicology: some physiological principles. Occup Med 56(5):307–311. doi:10.1093/occmed/kql052

    CAS  Google Scholar 

  134. Nagy JA, Chang SH, Shih SC, Dvorak AM, Dvorak HF (2010) Heterogeneity of the tumor vasculature. Semin Thromb Hemost 36(3):321–331. doi:10.1055/s-0030-1253454

    CAS  PubMed Central  PubMed  Google Scholar 

  135. Pasqualini R, Arap W, McDonald DM (2002) Probing the structural and molecular diversity of tumor vasculature. Trends Mol Med 8(12):563–571

    CAS  PubMed  Google Scholar 

  136. Ng IO, Poon RT, Lee JM, Fan ST, Ng M, Tso WK (2001) Microvessel density, vascular endothelial growth factor and its receptors flt-1 and flk-1/kdr in hepatocellular carcinoma. Am J Clin Pathol 116(6):838–845. doi:10.1309/fxnl-qtn1-94fh-ab3a

    CAS  PubMed  Google Scholar 

  137. Dunphy F, Stack BC Jr, Boyd JH, Dunleavy TL, Kim HJ, Dunphy CH (2002) Microvessel density in advanced head and neck squamous cell carcinoma before and after chemotherapy. Anticancer Res 22(3):1755–1758

    PubMed  Google Scholar 

  138. Hollingsworth HC, Kohn EC, Steinberg SM, Rothenberg ML, Merino MJ (1995) Tumor angiogenesis in advanced stage ovarian carcinoma. Am J Pathol 147(1):33–41

    CAS  PubMed  Google Scholar 

  139. Abulafia O, Triest WE, Sherer DM, Hansen CC, Ghezzi F (1995) Angiogenesis in endometrial hyperplasia and stage I endometrial carcinoma. Obstet Gynecol 86(4 Pt 1):479–485

    CAS  PubMed  Google Scholar 

  140. Bosari S, Lee AK, DeLellis RA, Wiley BD, Heatley GJ, Silverman ML (1992) Microvessel quantitation and prognosis in invasive breast carcinoma. Hum Pathol 23(7):755–761

    CAS  PubMed  Google Scholar 

  141. Graham CH, Rivers J, Kerbel RS, Stankiewicz KS, White WL (1994) Extent of vascularization as a prognostic indicator in thin (< 0.76 mm) malignant melanomas. Am J Pathol 145(3):510–514

    CAS  PubMed  Google Scholar 

  142. Weidner N, Carroll PR, Flax J, Blumenfeld W, Folkman J (1993) Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma. Am J Pathol 143(2):401–409

    CAS  PubMed  Google Scholar 

  143. Weidner N, Semple JP, Welch WR, Folkman J (1991) Tumor angiogenesis and metastasis—correlation in invasive breast carcinoma. N Engl J Med 324(1):1–8. doi:10.1056/nejm199101033240101

    CAS  PubMed  Google Scholar 

  144. Weis SM, Cheresh DA (2005) Pathophysiological consequences of vegf-induced vascular permeability. Nature 437(7058):497–504. doi:10.1038/nature03987

    CAS  PubMed  Google Scholar 

  145. Van S, Das SK, Wang X, Feng Z, Jin Y, Hou Z, Chen F, Pham A, Jiang N, Howell SB, Yu L (2010) Synthesis, characterization, and biological evaluation of poly(l-gamma-glutamyl-glutamine)-paclitaxel nanoconjugate. Int J Nanomedicine 5:825–837. doi:10.2147/ijn.s13482

    CAS  PubMed Central  PubMed  Google Scholar 

  146. Duncan R, Vicent MJ, Greco F, Nicholson RI (2005) Polymer–drug conjugates: towards a novel approach for the treatment of endrocrine-related cancer. Endocr Relat Cancer 12(Supplement 1):S189–S199. doi:10.1677/erc.1.01045

    CAS  PubMed  Google Scholar 

  147. Meerum Terwogt JM, ten Bokkel Huinink WW, Schellens JH, Schot M, Mandjes IA, Zurlo MG, Rocchetti M, Rosing H, Koopman FJ, Beijnen JH (2001) Phase i clinical and pharmacokinetic study of pnu166945, a novel water-soluble polymer-conjugated prodrug of paclitaxel. Anticancer Drugs 12(4):315–323

    CAS  PubMed  Google Scholar 

  148. Wachters FM, Groen HJ, Maring JG, Gietema JA, Porro M, Dumez H, de Vries EG, van Oosterom AT (2004) A phase i study with mag-camptothecin intravenously administered weekly for 3 weeks in a 4-week cycle in adult patients with solid tumours. Br J Cancer 90(12):2261–2267. doi:10.1038/sj.bjc.6601811

    CAS  PubMed Central  PubMed  Google Scholar 

  149. Schoemaker NE, van Kesteren C, Rosing H, Jansen S, Swart M, Lieverst J, Fraier D, Breda M, Pellizzoni C, Spinelli R, Grazia Porro M, Beijnen JH, Schellens JH, ten Bokkel Huinink WW (2002) A phase i and pharmacokinetic study of mag-cpt, a water-soluble polymer conjugate of camptothecin. Br J Cancer 87(6):608–614. doi:10.1038/sj.bjc.6600516

    CAS  PubMed Central  PubMed  Google Scholar 

  150. Zaki N, Tirelli N (2010) Gateways for the intracellular access of nanocarriers: a review of receptor-mediated endocytosis mechanisms and of strategies in receptor targeting. Expert Opin Drug Deliv 7(8):895–913

    CAS  PubMed  Google Scholar 

  151. Macheda ML, Rogers S, Best JD (2005) Molecular and cellular regulation of glucose transporter (glut) proteins in cancer. J Cell Physiol 202(3):654–662. doi:10.1002/jcp.20166

    CAS  PubMed  Google Scholar 

  152. Hu Z, Luo F, Pan Y, Hou C, Ren L, Chen J, Wang J, Zhang Y (2008) Arg-gly-asp (rgd) peptide conjugated poly(lactic acid)-poly(ethylene oxide) micelle for targeted drug delivery. J Biomed Mater Res A 85(3):797–807. doi:10.1002/jbm.a.31615

    PubMed  Google Scholar 

  153. Zhang Y, Yang M, Portney NG, Cui D, Budak G, Ozbay E, Ozkan M, Ozkan CS (2008) Zeta potential: a surface electrical characteristic to probe the interaction of nanoparticles with normal and cancer human breast epithelial cells. Biomed Microdevices 10(2):321–328. doi:10.1007/s10544-007-9139-2

    CAS  PubMed  Google Scholar 

  154. Yu T, Malugin A, Ghandehari H (2011) Impact of silica nanoparticle design on cellular toxicity and hemolytic activity. ACS Nano 5(7):5717–5728. doi:10.1021/nn2013904

    CAS  PubMed Central  PubMed  Google Scholar 

  155. Kedmi R, Ben-Arie N, Peer D (2010) The systemic toxicity of positively charged lipid nanoparticles and the role of toll-like receptor 4 in immune activation. Biomaterials 31(26):6867–6875. doi:10.1016/j.biomaterials.2010.05.027

    CAS  PubMed  Google Scholar 

  156. Dobrovolskaia MA, McNeil SE (2007) Immunological properties of engineered nanomaterials. Nat Nanotechnol 2(8):469–478. doi:10.1038/nnano.2007.223

    CAS  PubMed  Google Scholar 

  157. Klibanov AL, Maruyama K, Torchilin VP, Huang L (1990) Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett 268(1):235–237

    CAS  PubMed  Google Scholar 

  158. Papahadjopoulos D, Allen TM, Gabizon A, Mayhew E, Matthay K, Huang SK, Lee KD, Woodle MC, Lasic DD, Redemann C et al (1991) Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad Sci USA 88(24):11460–11464

    CAS  PubMed  Google Scholar 

  159. Senior J, Delgado C, Fisher D, Tilcock C, Gregoriadis G (1991) Influence of surface hydrophilicity of liposomes on their interaction with plasma protein and clearance from the circulation: studies with poly(ethylene glycol)-coated vesicles. Biochim Biophys Acta 1062(1):77–82

    CAS  PubMed  Google Scholar 

  160. Senior JH (1987) Fate and behavior of liposomes in vivo: a review of controlling factors. Crit Rev Ther Drug Carrier Syst 3(2):123–193

    CAS  PubMed  Google Scholar 

  161. Torchilin VP, Omelyanenko VG, Papisov MI, Bogdanov AA Jr, Trubetskoy VS, Herron JN, Gentry CA (1994) Poly(ethylene glycol) on the liposome surface: on the mechanism of polymer-coated liposome longevity. Biochim Biophys Acta 1195(1):11–20

    CAS  PubMed  Google Scholar 

  162. Shiah JG, Dvorak M, Kopeckova P, Sun Y, Peterson CM, Kopecek J (2001) Biodistribution and antitumour efficacy of long-circulating n-(2-hydroxypropyl)methacrylamide copolymer-doxorubicin conjugates in nude mice. Eur J Cancer 37(1):131–139

    CAS  PubMed  Google Scholar 

  163. Lasic DD, Martin FJ, Gabizon A, Huang SK, Papahadjopoulos D (1991) Sterically stabilized liposomes: a hypothesis on the molecular origin of the extended circulation times. Biochim Biophys Acta 1070(1):187–192

    CAS  PubMed  Google Scholar 

  164. Dixit V, Van den Bossche J, Sherman DM, Thompson DH, Andres RP (2006) Synthesis and grafting of thioctic acid−peg−folate conjugates onto au nanoparticles for selective targeting of folate receptor-positive tumor cells. Bioconjug Chem 17(3):603–609. doi:10.1021/bc050335b

    CAS  PubMed  Google Scholar 

  165. Bellocq NC, Pun SH, Jensen GS, Davis ME (2003) Transferrin-containing, cyclodextrin polymer-based particles for tumor-targeted gene delivery. Bioconjug Chem 14(6):1122–1132. doi:10.1021/bc034125f

    CAS  PubMed  Google Scholar 

  166. Breunig M, Bauer S, Goepferich A (2008) Polymers and nanoparticles: intelligent tools for intracellular targeting? Eur J Pharm Biopharm 68(1):112–128. doi:10.1016/j.ejpb.2007.06.010

    CAS  PubMed  Google Scholar 

  167. Haley B, Frenkel E (2008) Nanoparticles for drug delivery in cancer treatment. Urol Oncol 26(1):57–64. doi:10.1016/j.urolonc.2007.03.015

    CAS  PubMed  Google Scholar 

  168. Sugahara KN, Teesalu T, Karmali PP, Kotamraju VR, Agemy L, Greenwald DR, Ruoslahti E (2010) Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs. Science 328(5981):1031–1035. doi:10.1126/science.1183057

    CAS  PubMed Central  PubMed  Google Scholar 

  169. Jain RK, Stylianopoulos T (2010) Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol 7(11):653–664. doi:10.1038/nrclinonc.2010.139

    CAS  PubMed Central  PubMed  Google Scholar 

  170. Howard MD, Ponta A, Eckman A, Jay M, Bae Y (2011) Polymer micelles with hydrazone-ester dual linkers for tunable release of dexamethasone. Pharm Res 28(10):2435–2446. doi:10.1007/s11095-011-0470-1

    CAS  PubMed  Google Scholar 

  171. Duncan R (2003) The dawning era of polymer therapeutics. Nat Rev Drug Discov 2(5):347–360. doi:10.1038/nrd1088

    CAS  PubMed  Google Scholar 

  172. Bae YH, Park K (2011) Targeted drug delivery to tumors: myths, reality and possibility. J Control Release 153(3):198–205. doi:10.1016/j.jconrel.2011.06.001

    CAS  PubMed Central  PubMed  Google Scholar 

  173. Longmire M, Choyke PL, Kobayashi H (2008) Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine (Lond) 3(5):703–717. doi:10.2217/17435889.3.5.703

    CAS  Google Scholar 

  174. Yuan A, Yang PC, Yu CJ, Lee YC, Yao YT, Chen CL, Lee LN, Kuo SH, Luh KT (1995) Tumor angiogenesis correlates with histologic type and metastasis in non-small-cell lung cancer. Am J Respir Crit Care Med 152(6 Pt 1):2157–2162

    CAS  PubMed  Google Scholar 

  175. Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP, Jain RK (1998) Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci USA 95(8):4607–4612

    CAS  PubMed  Google Scholar 

  176. Horn T, Henriksen JH, Christoffersen P (1986) The sinusoidal lining cells in “normal” human liver. A scanning electron microscopic investigation. Liver 6(2):98–110

    CAS  PubMed  Google Scholar 

  177. Uchino H, Matsumura Y, Negishi T, Koizumi F, Hayashi T, Honda T, Nishiyama N, Kataoka K, Naito S, Kakizoe T (2005) Cisplatin-incorporating polymeric micelles (nc-6004) can reduce nephrotoxicity and neurotoxicity of cisplatin in rats. Br J Cancer 93(6):678–687. doi:10.1038/sj.bjc.6602772

    CAS  PubMed Central  PubMed  Google Scholar 

  178. Anderson JM, Rodriguez A, Chang DT (2008) Foreign body reaction to biomaterials. Semin Immunol 20(2):86–100. doi:10.1016/j.smim.2007.11.004

    CAS  PubMed Central  PubMed  Google Scholar 

  179. Mukhopadhyay S, Gal AA (2010) Granulomatous lung disease: an approach to the differential diagnosis. Arch Pathol Lab Med 134(5):667–690. doi:10.1043/1543-2165-134.5.667

    PubMed  Google Scholar 

  180. O’Neill LAJ (2008) How frustration leads to inflammation. Science 320(5876):619–620. doi:10.1126/science.1158398

    PubMed  Google Scholar 

  181. Panyam J, Labhasetwar V (2004) Sustained cytoplasmic delivery of drugs with intracellular receptors using biodegradable nanoparticles. Mol Pharm 1(1):77–84

    CAS  PubMed  Google Scholar 

  182. Etrych T, Kovář L, Strohalm J, Chytil P, Říhová B, Ulbrich K (2011) Biodegradable star hpma polymer–drug conjugates: biodegradability, distribution and anti-tumor efficacy. J Control Release 154(3):241–248. doi:10.1016/j.jconrel.2011.06.015

    CAS  PubMed  Google Scholar 

  183. Dvořák M, Kopečková P, Kopeček J (1999) High-molecular weight HPMA copolymer-adriamycin conjugates. J Control Release 60(2–3):321–332. doi:10.1016/s0168-3659(99)00087-5

    PubMed  Google Scholar 

  184. Cabral H, Nishiyama N, Kataoka K (2007) Optimization of (1,2-diamino-cyclohexane)platinum(ii)-loaded polymeric micelles directed to improved tumor targeting and enhanced antitumor activity. J Control Release 121(3):146–155. doi:10.1016/j.jconrel.2007.05.024

    CAS  PubMed  Google Scholar 

  185. Gabizon AA (1995) Liposome circulation time and tumor targeting: implications for cancer chemotherapy. Adv Drug Deliv Rev 16(2–3):285–294. doi:10.1016/0169-409x(95)00030-b

    CAS  Google Scholar 

  186. Lim HJ, Masin D, McIntosh NL, Madden TD, Bally MB (2000) Role of drug release and liposome-mediated drug delivery in governing the therapeutic activity of liposomal mitoxantrone used to treat human a431 and ls180 solid tumors. J Pharmacol Exp Ther 292(1):337–345

    CAS  PubMed  Google Scholar 

  187. Lopes de Menezes DE, Hudon N, McIntosh N, Mayer LD (2000) Molecular and pharmacokinetic properties associated with the therapeutics of bcl-2 antisense oligonucleotide g3139 combined with free and liposomal doxorubicin. Clin Cancer Res 6(7):2891–2902

    CAS  PubMed  Google Scholar 

  188. Newman MS, Colbern GT, Working PK, Engbers C, Amantea MA (1999) Comparative pharmacokinetics, tissue distribution, and therapeutic effectiveness of cisplatin encapsulated in long-circulating, pegylated liposomes (spi-077) in tumor-bearing mice. Cancer Chemother Pharmacol 43(1):1–7

    CAS  PubMed  Google Scholar 

  189. Nishiyama N, Okazaki S, Cabral H, Miyamoto M, Kato Y, Sugiyama Y, Nishio K, Matsumura Y, Kataoka K (2003) Novel cisplatin-incorporated polymeric micelles can eradicate solid tumors in mice. Cancer Res 63(24):8977–8983

    CAS  PubMed  Google Scholar 

  190. Unezaki S, Maruyama K, Ishida O, Suginaka A, J-i H, Iwatsuru M (1995) Enhanced tumor targeting and improved antitumor activity of doxorubicin by long-circulating liposomes containing amphipathic poly(ethylene glycol). Int J Pharm 126(1–2):41–48. doi:10.1016/0378-5173(95)04074-9

    CAS  Google Scholar 

  191. Vaage J, Barbera-Guillem E, Abra R, Huang A, Working P (1994) Tissue distribution and therapeutic effect of intravenous free or encapsulated liposomal doxorubicin on human prostate carcinoma xenografts. Cancer 73(5):1478–1484

    CAS  PubMed  Google Scholar 

  192. Xiong XB, Huang Y, Lu WL, Zhang X, Zhang H, Nagai T, Zhang Q (2005) Enhanced intracellular delivery and improved antitumor efficacy of doxorubicin by sterically stabilized liposomes modified with a synthetic rgd mimetic. J Control Release 107(2):262–275. doi:10.1016/j.jconrel.2005.03.030

    CAS  PubMed  Google Scholar 

  193. Yokoyama M, Okano T, Sakurai Y, Fukushima S, Okamoto K, Kataoka K (1999) Selective delivery of adriamycin to a solid tumor using a polymeric micelle carrier system. J Drug Target 7(3):171–186. doi:10.3109/10611869909085500

    CAS  PubMed  Google Scholar 

  194. Yoo HS, Park TG (2004) Folate receptor targeted biodegradable polymeric doxorubicin micelles. J Control Release 96(2):273–283. doi:10.1016/j.jconrel.2004.02.003

    CAS  PubMed  Google Scholar 

  195. Zhang JQ, Zhang ZR, Yang H, Tan QY, Qin SR, Qiu XL (2005) Lyophilized paclitaxel magnetoliposomes as a potential drug delivery system for breast carcinoma via parenteral administration: in vitro and in vivo studies. Pharm Res 22(4):573–583. doi:10.1007/s11095-005-2496-8

    CAS  PubMed  Google Scholar 

  196. Laginha KM, Verwoert S, Charrois GJ, Allen TM (2005) Determination of doxorubicin levels in whole tumor and tumor nuclei in murine breast cancer tumors. Clin Cancer Res 11(19 Pt 1):6944–6949. doi:10.1158/1078-0432.ccr-05-0343

    CAS  PubMed  Google Scholar 

  197. Bae Y, Nishiyama N, Fukushima S, Koyama H, Yasuhiro M, Kataoka K (2005) Preparation and biological characterization of polymeric micelle drug carriers with intracellular ph-triggered drug release property: tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy. Bioconjug Chem 16(1):122–130. doi:10.1021/bc0498166

    CAS  PubMed  Google Scholar 

  198. Peng CL, Lai PS, Lin FH, Yueh-Hsiu Wu S, Shieh MJ (2009) Dual chemotherapy and photodynamic therapy in an ht-29 human colon cancer xenograft model using sn-38-loaded chlorin-core star block copolymer micelles. Biomaterials 30(21):3614–3625. doi:10.1016/j.biomaterials.2009.03.048

    CAS  PubMed  Google Scholar 

  199. Rafi M, Cabral H, Kano MR, Mi P, Iwata C, Yashiro M, Hirakawa K, Miyazono K, Nishiyama N, Kataoka K (2012) Polymeric micelles incorporating (1,2-diaminocyclohexane)platinum (ii) suppress the growth of orthotopic scirrhous gastric tumors and their lymph node metastasis. J Control Release. doi:10.1016/j.jconrel.2012.01.038

    PubMed  Google Scholar 

  200. Saito Y, Yasunaga M, Kuroda J, Koga Y, Matsumura Y (2010) Antitumour activity of nk012, sn-38-incorporating polymeric micelles, in hypovascular orthotopic pancreatic tumour. Eur J Cancer 46(3):650–658. doi:10.1016/j.ejca.2009.11.014

    CAS  PubMed  Google Scholar 

  201. Takahashi A, Ohkohchi N, Yasunaga M, Kuroda J, Koga Y, Kenmotsu H, Kinoshita T, Matsumura Y (2010) Detailed distribution of nk012, an sn-38-incorporating micelle, in the liver and its potent antitumor effects in mice bearing liver metastases. Clin Cancer Res 16(19):4822–4831. doi:10.1158/1078-0432.ccr-10-1467

    CAS  PubMed  Google Scholar 

  202. Immordino ML, Brusa P, Arpicco S, Stella B, Dosio F, Cattel L (2003) Preparation, characterization, cytotoxicity and pharmacokinetics of liposomes containing docetaxel. J Control Release 91(3):417–429

    CAS  PubMed  Google Scholar 

  203. Jukanti R, Devraj G, Shashank AS, Devraj R (2011) Biodistribution of ascorbyl palmitate loaded doxorubicin pegylated liposomes in solid tumor bearing mice. J Microencapsul 28(2):142–149. doi:10.3109/02652048.2010.542496

    CAS  PubMed  Google Scholar 

  204. Colombo PE, Boustta M, Poujol S, Pinguet F, Rouanet P, Bressolle F, Vert M (2007) Biodistribution of doxorubicin-alkylated poly(l-lysine citramide imide) conjugates in an experimental model of peritoneal carcinomatosis after intraperitoneal administration. Eur J Pharm Sci 31(1):43–52. doi:10.1016/j.ejps.2007.02.004

    CAS  PubMed  Google Scholar 

  205. Conover CD, Greenwald RB, Pendri A, Gilbert CW, Shum KL (1998) Camptothecin delivery systems: enhanced efficacy and tumor accumulation of camptothecin following its conjugation to polyethylene glycol via a glycine linker. Cancer Chemother Pharmacol 42(5):407–414

    CAS  PubMed  Google Scholar 

  206. Harada M, Murata J, Sakamura Y, Sakakibara H, Okuno S, Suzuki T (2001) Carrier and dose effects on the pharmacokinetics of t-0128, a camptothecin analogue-carboxymethyl dextran conjugate, in non-tumor- and tumor-bearing rats. J Control Release 71(1):71–86

    CAS  PubMed  Google Scholar 

  207. Li C, Newman RA, Wu QP, Ke S, Chen W, Hutto T, Kan Z, Brannan MD, Charnsangavej C, Wallace S (2000) Biodistribution of paclitaxel and poly(l-glutamic acid)-paclitaxel conjugate in mice with ovarian oca-1 tumor. Cancer Chemother Pharmacol 46(5):416–422

    CAS  PubMed  Google Scholar 

  208. Schluep T, Cheng J, Khin KT, Davis ME (2006) Pharmacokinetics and biodistribution of the camptothecin-polymer conjugate it-101 in rats and tumor-bearing mice. Cancer Chemother Pharmacol 57(5):654–662. doi:10.1007/s00280-005-0091-7

    CAS  PubMed  Google Scholar 

  209. Song R, Joo Jun Y, Ik Kim J, Jin C, Sohn YS (2005) Synthesis, characterization, and tumor selectivity of a polyphosphazene-platinum(ii) conjugate. J Control Release 105(1–2):142–150. doi:10.1016/j.jconrel.2005.03.016

    CAS  PubMed  Google Scholar 

  210. Sparreboom A, Scripture CD, Trieu V, Williams PJ, De T, Yang A, Beals B, Figg WD, Hawkins M, Desai N (2005) Comparative preclinical and clinical pharmacokinetics of a cremophor-free, nanoparticle albumin-bound paclitaxel (abi-007) and paclitaxel formulated in cremophor (taxol). Clin Cancer Res 11(11):4136–4143. doi:10.1158/1078-0432.ccr-04-2291

    CAS  PubMed  Google Scholar 

  211. Sugahara S, Kajiki M, Kuriyama H, Kobayashi TR (2007) Complete regression of xenografted human carcinomas by a paclitaxel-carboxymethyl dextran conjugate (az10992). J Control Release 117(1):40–50. doi:10.1016/j.jconrel.2006.10.009

    CAS  PubMed  Google Scholar 

  212. Wang X, Zhao G, Van S, Jiang N, Yu L, Vera D, Howell SB (2010) Pharmacokinetics and tissue distribution of pgg-paclitaxel, a novel macromolecular formulation of paclitaxel, in nu/nu mice bearing nci-460 lung cancer xenografts. Cancer Chemother Pharmacol 65(3):515–526. doi:10.1007/s00280-009-1058-x

    CAS  PubMed Central  PubMed  Google Scholar 

  213. Maeda H, Bharate GY, Daruwalla J (2009) Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur J Pharm Biopharm 71(3):409–419. doi:10.1016/j.ejpb.2008.11.010

    CAS  PubMed  Google Scholar 

  214. Gordon AN, Fleagle JT, Guthrie D, Parkin DE, Gore ME, Lacave AJ (2001) Recurrent epithelial ovarian carcinoma: a randomized phase iii study of pegylated liposomal doxorubicin versus topotecan. J Clin Oncol 19(14):3312–3322

    CAS  PubMed  Google Scholar 

  215. James ND, Coker RJ, Tomlinson D, Harris JR, Gompels M, Pinching AJ, Stewart JS (1994) Liposomal doxorubicin (doxil): an effective new treatment for kaposi’s sarcoma in AIDS. Clin Oncol 6(5):294–296

    CAS  Google Scholar 

  216. (1996) FDA approves daunoxome as first-line therapy for kaposi’s sarcoma. Food and drug administration. J Int Assoc Physicians AIDS Care 2(5):50–51

    Google Scholar 

  217. Chhikara BS, Parang K (2010) Development of cytarabine prodrugs and delivery systems for leukemia treatment. Expert Opin Drug Deliv 7(12):1399–1414

    CAS  PubMed  Google Scholar 

  218. Swenson CE, Bolcsak LE, Batist G, Guthrie TH Jr, Tkaczuk KH, Boxenbaum H, Welles L, Chow SC, Bhamra R, Chaikin P (2003) Pharmacokinetics of doxorubicin administered i.V. As myocet (tlc d-99; liposome-encapsulated doxorubicin citrate) compared with conventional doxorubicin when given in combination with cyclophosphamide in patients with metastatic breast cancer. Anticancer Drugs 14(3):239–246

    CAS  PubMed  Google Scholar 

  219. Ando K, Mori K, Corradini N, Redini F, Heymann D (2011) Mifamurtide for the treatment of nonmetastatic osteosarcoma. Expert Opin Pharmacother 12(2):285–292

    CAS  PubMed Central  PubMed  Google Scholar 

  220. Dinndorf PA, Gootenberg J, Cohen MH, Keegan P, Pazdur R (2007) Fda drug approval summary: pegaspargase (oncaspar) for the first-line treatment of children with acute lymphoblastic leukemia (all). Oncologist 12(8):991–998

    CAS  PubMed  Google Scholar 

  221. Oerlemans C, Bult W, Bos M, Storm G, Nijsen JF, Hennink WE (2010) Polymeric micelles in anticancer therapy: targeting, imaging and triggered release. Pharm Res 27(12):2569–2589

    CAS  PubMed Central  PubMed  Google Scholar 

  222. Gradishar WJ (2006) Albumin-bound paclitaxel: a next-generation taxane. Expert Opin Pharmacother 7(8):1041–1053

    CAS  PubMed  Google Scholar 

  223. Morana G, Salviato E, Guarise A (2007) Contrast agents for hepatic MRI. Cancer Imag 7 Spec No A:S24–S27. doi:10.1102/1470-7330.2007.9001

  224. Jung CW (1995) Surface properties of superparamagnetic iron oxide mr contrast agents: ferumoxides, ferumoxtran, ferumoxsil. Magn Reson Imaging 13(5):675–691

    CAS  PubMed  Google Scholar 

  225. Aoki T, Nakata H, Watanabe H, Nakamura K, Kasai T, Hashimoto H, Yasumoto K, Kido M (2000) Evolution of peripheral lung adenocarcinomas. Am J Roentgenol 174(3):763–768

    CAS  Google Scholar 

  226. Mucci LA, Powolny A, Giovannucci E, Liao Z, Kenfield SA, Shen R, Stampfer MJ, Clinton SK (2009) Prospective study of prostate tumor angiogenesis and cancer-specific mortality in the health professionals follow-up study. J Clin Oncol 27(33):5627–5633. doi:10.1200/jco.2008.20.8876

    PubMed  Google Scholar 

  227. Cucchetti A, Vivarelli M, Piscaglia F, Nardo B, Montalti R, Grazi GL, Ravaioli M, La Barba G, Cavallari A, Bolondi L, Pinna AD (2005) Tumor doubling time predicts recurrence after surgery and describes the histological pattern of hepatocellular carcinoma on cirrhosis. J Hepatol 43(2):310–316. doi:10.1016/j.jhep.2005.03.014

    PubMed  Google Scholar 

  228. Poon RT, Ng IO, Lau C, Yu WC, Yang ZF, Fan ST, Wong J (2002) Tumor microvessel density as a predictor of recurrence after resection of hepatocellular carcinoma: a prospective study. J Clin Oncol 20(7):1775–1785

    PubMed  Google Scholar 

  229. Daumas-Duport C, Scheithauer B, O’Fallon J, Kelly P (1988) Grading of astrocytomas. A simple and reproducible method. Cancer 62(10):2152–2165

    CAS  PubMed  Google Scholar 

  230. Wang M, Tang J, Liu S, Yoshida D, Teramoto A (2005) Expression of cathepsin b and microvascular density increases with higher grade of astrocytomas. J Neurooncol 71(1):3–7. doi:10.1007/s11060-004-9163-5

    CAS  PubMed  Google Scholar 

  231. Herbst C, Kosmehl H, Stiller KJ, Berndt A, Eiselt M, Schubert J, Katenkamp D (1998) Evaluation of microvessel density by computerised image analysis in human renal cell carcinoma. Correlation to pt category, nuclear grade, proliferative activity and occurrence of metastasis. J Cancer Res Clin Oncol 124(3–4):141–147

    CAS  PubMed  Google Scholar 

  232. Lee JY, Kim CK, Choi D, Park BK (2008) Volume doubling time and growth rate of renal cell carcinoma determined by helical ct: a single-institution experience. Eur Radiol 18(4):731–737. doi:10.1007/s00330-007-0820-x

    PubMed  Google Scholar 

  233. Tas F, Yavuz E, Aydiner A, Saip P, Disci R, Iplikci A, Topuz E (2000) Angiogenesis and p53 protein expression in breast cancer: prognostic roles and interrelationships. Am J Clin Oncol 23(6):546–553

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled Greish M.D., Ph.D .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Taurin, S., Nehoff, H., van Aswegen, T., Greish, K. (2013). Tumor Vasculature, EPR Effect, and Anticancer Nanomedicine: Connecting the Dots. In: Bae, Y., Mrsny, R., Park, K. (eds) Cancer Targeted Drug Delivery. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7876-8_8

Download citation

Publish with us

Policies and ethics