Skip to main content

Vascular Targeting Approaches to Treat Cancer

  • Chapter
  • First Online:
Cancer Targeted Drug Delivery

Abstract

Anticancer therapeutics have historically been targeted against malignant cells directly. These approaches often have limited efficacy, particularly in advanced disease, due to poor drug infiltration into the tumour. In recent years increasing interest has been focused on the development of alternative targeted therapies, which inhibit tumour development by disrupting the stromal cells that support it. This chapter explores the development of tumour vascular targeting therapies, the successes and setbacks and the encouraging potential of this approach to potentiate the effect of other anti-tumour therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bosslet K, Straub R, Blumrich M, Czech J, Gerken M, Sperker B, Kroemer HK, Gesson JP, Koch M, Monneret C (1998) Elucidation of the mechanism enabling tumor selective prodrug monotherapy. Cancer Res 58:1195–1201

    CAS  PubMed  Google Scholar 

  2. Hajitou A, Pasqualini R, Arap W (2006) Vascular targeting: recent advances and therapeutic perspectives. Trends Cardiovasc Med 16:80–88

    CAS  PubMed  Google Scholar 

  3. Jain RK (1987) Transport of molecules in the tumor interstitium: a review. Cancer Res 47:3039–3051

    CAS  PubMed  Google Scholar 

  4. Folli S, Pèlegrin A, Chalandon Y, Yao X, Buchegger F, Lienard D, Lejeune F, Mach JP (1993) Tumor-necrosis factor can enhance radio-antibody uptake in human colon carcinoma xenografts by increasing vascular permeability. Int J Cancer 53:829–836

    CAS  PubMed  Google Scholar 

  5. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186

    CAS  PubMed  Google Scholar 

  6. St. Croix B, Rago C, Velculescu V, Traverso G, Romans KE, Montgomery E, Lal A, Riggins GJ, Lengauer C, Vogelstein B, Kinzler KW (2000) Genes expressed in human tumor endothelium. Science 289(5482):1197–1202

    CAS  PubMed  Google Scholar 

  7. Kolonin MG, Pasqualini R, Arap W (2001) Molecular addresses in blood vessels as targets for therapy. Curr Opin Chem Biol 5:308–313

    CAS  PubMed  Google Scholar 

  8. Hida K, Klagsburn M (2005) A new perspective on tumor endothelial cells: unexpected chromosome and centrosome abnormalities. Cancer Res 65:2507–2510

    CAS  PubMed  Google Scholar 

  9. Folkman J (1997) Antiangiogenic therapy. In: DeVita VT, Hellman S, Rosenberg SA (eds) Cancer: principles and practice of oncology. Lippincott, Philadelphia, PA, pp 3075–3085

    Google Scholar 

  10. Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473:298–307

    CAS  PubMed  Google Scholar 

  11. Folkman J, Cole P, Zimmerman S (1966) Tumour behaviour in isolated perfused organs. Ann Surg 164:491

    CAS  PubMed  Google Scholar 

  12. Tannock IF (1970) Population kinetics of carcinoma cells, capillary endothelial cells, and fibroblasts in a transplanted mouse mammary tumour. Cancer Res 30:2470–2477

    CAS  PubMed  Google Scholar 

  13. Schweigerer L (1995) Antiangiogenesis as a novel therapeutic concept in pediatric oncology. J Mol Med 73:497–508

    CAS  PubMed  Google Scholar 

  14. Konerding MA, Miodonski AJ, Lametschwandtner A (1995) Microvascular corrosion casting in the study of tumor vascularity: a review. Scanning Microsc 9:1233–1244

    CAS  PubMed  Google Scholar 

  15. Konerding MA, van Ackern C, Fait E, Steinberg F, Streffer C, Molls M, Vaupel P (eds) (2002) Morphological aspects of tumor angiogenesis and microcirculation in blood perfusion and microenvironment of human tumors. Springer, Berlin, pp 5–17

    Google Scholar 

  16. Siemann DW (2006) Vascular-targeted therapies in oncology. Wiley, Chichester, UK

    Google Scholar 

  17. Van Beijnum JR, Dings RP, van der Linden E, Zwaans BM, Ramaekers FC, Mayo KH, Griffioen AW (2006) Gene expression of tumor angiogenesis dissected: specific targeting of colon cancer angiogenic vasculature. Blood 108(7):2339–2348

    PubMed  Google Scholar 

  18. Konerding MA, Fait E, Gaumann A, Dimitropoulou C, Malkush W (1998) The vascularization of experimental and human primary tumors: comparative morphometric and morphologic studies. In: Maragoudakis ME (ed) Angiogenesis: models modulators and clinical applications. Plenum, New York, pp 429–447

    Google Scholar 

  19. Fukumura D, Xavier R, Sugiura T, Chen Y, Park EC, Lu N, Selig M, Nielsen G, Taksir T, Jain RK, Seed B (1998) Tumor induction of VEGF promoter activity in stromal cells. Cell 94:715–725

    CAS  PubMed  Google Scholar 

  20. Tonini T, Rossi F, Claudio PP (2003) Molecular basis of angiogenesis and cancer. Oncogene 22:6549–6556

    CAS  PubMed  Google Scholar 

  21. Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407:249–257

    CAS  PubMed  Google Scholar 

  22. Erber R, Thurnher A, Katsen AD, Groth G, Kerger H, Hammes HP, Menger MD, Ullrich A, Vajkoczy P (2004) Combined inhibition of VEGF and PDGF signaling enforces tumor vessel regression by interfering with pericyte-mediated endothelial cell survival mechanisms. FASEB J 18:338–340

    CAS  PubMed  Google Scholar 

  23. Carmeliet P, Dor Y, Herbert JM, Fukumura D, Brusselmans K, Dewerchin M, Neeman M, Bono F, Abramovitch R, Maxwell P, Koch CJ, Ratcliffe P, Moons L, Jain RK, Collen D, Keshet E (1998) Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394:485–490

    CAS  PubMed  Google Scholar 

  24. Semenza GL (1998) Hypoxia-inducible factor 1: master regulator of O2 homeostasis. Curr Opin Genet Dev 8:588–594

    CAS  PubMed  Google Scholar 

  25. Folkman J (1972) Anti-angiogenesis: new concept for therapy of solid tumors. Ann Surg 175(3):409–416

    CAS  PubMed  Google Scholar 

  26. Presta LG, Chen H, O’Connor SJ, Chisholm V, Meng YG, Krummen L, Winkler M, Ferrara N (1997) Humanization of an anti-VEGF monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res 57:4593–4599

    CAS  PubMed  Google Scholar 

  27. Muller YA, Chen Y, Christinger HW, Li B, Cunningham BC, Lowman HB, de Vos AM (1998) VEGF and the Fab fragment of a humanized neutralizing antibody: crystal structure of the complex at 2.4 Å resolution and mutational analysis of the interface. Structure 6:1153–1167

    CAS  PubMed  Google Scholar 

  28. Gerber HP, Ferrara N (2005) Pharmacology and pharmacodynamics of bevacizumab as monotherapy or in combination with cytotoxic therapy in preclinical studies. Cancer Res 65:671–680

    CAS  PubMed  Google Scholar 

  29. Rafii S, Lyden D, Benezra R, Hattori K, Heissig B (2002) Vascular and hematopoietic stem cells: novel targets for anti-angiogenesis therapy? Nat Rev Cancer 2:826–835

    CAS  PubMed  Google Scholar 

  30. Jain RK (2001) Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 7:987–989

    CAS  PubMed  Google Scholar 

  31. Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58–62

    CAS  PubMed  Google Scholar 

  32. Duda DG, Jain RK, Willett CG (2007) Antiangiogenics: the potential role of integrating this novel treatment modality with chemoradiation for solid cancers. J Clin Oncol 25:4033–4042

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Goel S, Duda DG, Xu L, Munn LL, Boucher Y, Fukumura D, Jain RK (2011) Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev 91:1071–1121

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, Berlin J, Baron A, Griffing S, Holmgren E, Ferrara N, Fyfe G, Rogers B, Ross R, Kabbinavar F (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350(23):2335–2342

    CAS  PubMed  Google Scholar 

  35. Pazdur R (2011) FDA approval for Bevacizumab. National cancer institute. Online source: http://www.cancer.gov/cancertopics/druginfo/fda-bevacizumab. Accessed 10 Oct 2012

  36. Hoeben A, Landuyt B, Highley MS, Wildiers H, Van Oosterom AT, De Bruijn EA (2004) Vascular endothelial growth factor and angiogenesis. Pharmacol Rev 56(4):549–580

    CAS  PubMed  Google Scholar 

  37. Prewett M, Huber J, Li Y, Santiago A, O’Connor W, King K, Overholser J, Hooper A, Pytowski B, Witte L, Bohlen P, Hicklin DJ (1999) Antivascular endothelial growth factor receptor (fetal liver kinase 1) monoclonal antibody inhibits tumor angiogenesis and growth of several mouse and human tumors. Cancer Res 59:5209

    CAS  PubMed  Google Scholar 

  38. Kunkel P, Ulbricht U, Bohlen P, Brockmann MA, Fillbrandt R, Stavrou D, Westphal M, Lamszus K (2001) Inhibition of glioma angiogenesis and growth in vivo by systemic treatment with a monoclonal antibody against vascular endothelial growth factor receptor-2. Cancer Res 61:6624

    CAS  PubMed  Google Scholar 

  39. Sweeney P, Karashima T, Kim SJ, Kedar D, Mian B, Huang S, Baker C, Fan Z, Hicklin DJ, Pettaway CA, Dinney CP (2002) Anti-vascular endothelial growth factor receptor 2 antibody reduces tumorigenicity and metastasis in orthotopic prostate cancer xenografts via induction of endothelial cell apoptosis and reduction of endothelial cell matrix metalloproteinase type 9 production. Clin Cancer Res 8(8):2714–2724

    CAS  PubMed  Google Scholar 

  40. Carvajal RD, Wong MK, Thompson JA, Gordon MS, Lewis KD, Pavlick AC, Wolchok JD, Fox FE, Schwartz JD, Bedikian AY (2010) A phase II randomized study of ramucirumab (IMC-1121B) with or without dacarbazine (DTIC) in patients (pts) with metastatic melanoma (MM). J Clin Oncol 28:15

    Google Scholar 

  41. Zhu AX, Finn RS, Mulcahy MF, Gurtler JS, Sun W, Schwartz JD, Rojas P, Dontabhaktuni A, Youssoufian H, Stuart KE (2010) A phase II study of ramucirumab as first-line monotherapy in patients (pts) with advanced hepatocellular carcinoma (HCC). J Clin Oncol 28:15

    Google Scholar 

  42. UCB press statement: 01.04.2008: http://www.bionity.com/en/news/80262/ucb-phase-ii-results-for-cdp791-in-non-small-cell-lung-cancer-support-further-clinical-development.html. Accessed 19 Oct 2012

  43. Holash J, Davis S, Papadopoulos N, Croll SD, Ho L, Russell M, Boland P, Leidich R, Hylton D, Burova E, Ioffe E, Huang T, Radziejewski C, Bailey K, Fandl JP, Daly T, Wiegand SJ, Yancopoulos GD, Rudge JS (2002) VEGF-Trap: a VEGF blocker with potent antitumor effects. Proc Natl Acad Sci U S A 99:11393–11398

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Saishin Y, Saishin Y, Takahashi K, Lima e Silva R, Hylton D, Rudge JS, Wiegand SJ, Campochiaro PA (2003) VEGF-TrapR1R2 suppresses choroidal neovascularization and VEGF-induced breakdown of the blood-retinal barrier. J Cell Physiol 195:241–248

    CAS  PubMed  Google Scholar 

  45. Browning DJ, Kaiser PK, Rosenfeld PJ, Stewart MW (2012) Aflibercept for age-related macular degeneration: a game-changer or quiet addition? Am J Ophthalmol 154(2):222–226

    CAS  PubMed  Google Scholar 

  46. Ramlau R, Gorbunova V, Ciuleanu TE, Novello S, Ozguroglu M, Goksel T, Baldotto C, Bennouna J, Shepherd FA, Le-Guennec S, Rey A, Miller V, Thatcher N, Scagliotti G (2012) Aflibercept and docetaxel versus docetaxel alone after platinum failure in patients with advanced or metastatic non-small-cell lung cancer: a randomized, controlled phase III trial. J Clin Oncol 30(29):3640–3647

    CAS  PubMed  Google Scholar 

  47. Wang TF, Lockhart AC (2012) Aflibercept in the treatment of metastatic colorectal cancer. Clin Med Insights Oncol 6:19–30

    PubMed Central  PubMed  Google Scholar 

  48. Van Cutsem E, Tabernero J, Lakomy R, Prenen H, Prausová J, Macarulla T, Ruff P, van Hazel GA, Moiseyenko V, Ferry D, McKendrick J, Polikoff J, Tellier A, Castan R, Allegra C (2012) Addition of aflibercept to fluorouracil, leucovorin, and irinotecan improves survival in a phase III randomized trial in patients with metastatic colorectal cancer previously treated with an oxaliplatin-based regimen. J Clin Oncol 30(28):3499–3506

    PubMed  Google Scholar 

  49. Kumar R, Harrington LE, Hopper TM, Miller CG, Onori JA, Cheung M, Stafford JA, Epperly AH, Gilmer TM (2005) Correlation of anti-tumor and anti-angiogenic activity of VEGFR inhibitors with inhibition of VEGFR2 phosphorylation in mice. J Clin Oncol. ASCO Annual Meeting Proceedings 23(16):9537

    Google Scholar 

  50. Batchelor TT, Sorensen AG, di Tomaso E, Zhang WT, Duda DG, Cohen KS, Kozak KR, Cahill DP, Chen PJ, Zhu M, Ancukiewicz M, Mrugala MM, Plotkin S, Drappatz J, Louis DN, Ivy P, Scadden DT, Benner T, Loeffler JS, Wen PY, Jain RK (2007) AZD2171, a pan-veGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 11:83–95

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Taguchi E, Nakamura K, Miura T, Shibuya M, Isoe T (2008) Anti-tumor activity and tumor vessel normalization by the vascular endothelial growth factor receptor tyrosine kinase inhibitor KrN951 in a rat peritoneal disseminated tumor model. Cancer Sci 99:623–630

    CAS  PubMed  Google Scholar 

  52. Allegra CJ, Yothers G, O’Connell MJ, Sharif S, Petrelli NJ, Colangelo LH, Atkins JN, Seay TE, Fehrenbacher L, Goldberg RM, O’Reilly S, Chu L, Azar CA, Lopa S, Wolmark N (2011) Phase III trial assessing bevacizumab in stages II and III carcinoma of the colon: results of NSABP protocol C08. J Clin Oncol 29:11–16

    CAS  PubMed  Google Scholar 

  53. De Gramont A, Van Cutsem E, Tabernero J, Moore MJ, Cunningham D, Rivera F, Im S, Makrutzki M, Shang A, Hoff PM (2011) AVANT: results from a randomized, three-arm multinational phase III study to investigate bevacizumab with either XELOX or FOLFOX4 versus FOLFOX4 alone as adjuvant treatment for colon cancer. J Clin Oncol 29(4):362

    Google Scholar 

  54. Bergers G, Hanahan D (2008) Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 8:592–603

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Ebos JML, Lee CR, Cruz-Munoz W, Bjarnason GA, Christensen JG, Kerbel RS (2009) Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 15:232–239

    CAS  PubMed  Google Scholar 

  56. Pàez-Ribes M, Allen E, Hudock J, Takeda T, Okuyama H, Viñals F, Inoue M, Bergers G, Hanahan D, Casanovas O (2009) Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15:220–231

    PubMed Central  PubMed  Google Scholar 

  57. Saltz LB, Lenz HJ, Kindler HL, Hochster HS, Wadler S, Hoff PM, Kemeny NE, Hollywood EM, Gonen M, Quinones M, Morse M, Chen HX (2007) Randomized phase II trial of cetuximab, bevacizumab, and irinotecan compared with cetuximab and bevacizumab alone in irinotecan‐refractory colorectal cancer: the BOND‐2 study. J Clin Oncol 25:4557–4561

    CAS  PubMed  Google Scholar 

  58. Shojaei F, Ferrara N (2007) Antiangiogenic therapy for cancer: an update. Cancer J 13:345–348

    CAS  PubMed  Google Scholar 

  59. Kindler HL, Niedzwiecki D, Hollis D, Oraefo E, Schrag D, Hurwitz McLeod HL, Mulcahy MF, Schilsky RL, Goldberg RM (2007) A double‐blind, placebo‐controlled, randomized phase III trial of gemcitabine (G) plus bevacizumab (B) versus gemcitabine plus placebo (P) in patients (pts) with advanced pancreatic cancer (PC). J Clin Oncol 25:4508

    Google Scholar 

  60. Kerbel RS, Yu J, Tran J, Man S, Viloria-Petit A, Klement G, Coomber BL, Rak J (2001) Possible mechanisms of acquired resistance to anti‐angiogenic drugs: implications for the use of combination therapy approaches. Cancer Metastasis Rev 20:79–86

    CAS  PubMed  Google Scholar 

  61. Casanovas O, Hicklin DJ, Bergers G, Hanahan D (2005) Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late‐stage pancreatic islet tumors. Cancer Cell 8:299–309

    CAS  PubMed  Google Scholar 

  62. Allen E, Walters IB, Hanahan D (2011) Brivanib, a dual FGF/VEGF inhibitor, is active both first and second line against mouse pancreatic neuroendocrine tumors developing adaptive/evasive resistance to VEGF inhibition. Clin Cancer Res 17:5299

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Mizukami Y, Jo WS, Duerr EM, Gala M, Li J, Zhang X, Zimmer MA, Iliopoulos O, Zukerberg LR, Kohgo Y, Lynch MP, Rueda BR, Chung DC (2005) Induction of interleukin‐8 preserves the angiogenic response in HIF‐1α‐deficient colon cancer cells. Nat Med 11:992–997

    CAS  PubMed  Google Scholar 

  64. Fernando NT, Koch M, Rothrock C, Gollogly LK, D’Amore PA, Ryeom S, Yoon SS (2008) Tumor escape from endogenous, extracellular matrix‐associated angiogenesis inhibitors by up‐regulation of multiple proangiogenic factors. Clin Cancer Res 14:1529–1539

    CAS  PubMed  Google Scholar 

  65. Hattori K, Heissig B, Wu Y, Dias S, Tejada R, Ferris B, Hicklin DJ, Zhu Z, Bohlen P III, Witte L, Hendrikx J, Hackett NR, Crystal RG, Moore MAS, Werb Z, Lyden D, Rafii S (2002) Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1+ stem cells from bone‐marrow microenvironment. Nat Med 8:841–849

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, MacDonald DD, Jin DK, Shido K, Kerns SA, Zhu Z, Hicklin D, Wu Y, Port JL, Altorki N, Port ER, Ruggero D, Shmelkov SV, Jensen KK, Rafii S, Lyden D (2005) VEGFR1‐positive haematopoietic bone marrow progenitors initiate the pre‐metastatic niche. Nature 438:820–827

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Bergers G, Song S, Meyer-Morse N, Bergsland E, Hanahan D (2003) Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J Clin Invest 111:1287–1295

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Jain RK, Booth MF (2003) What brings pericytes to tumor vessels? J Clin Invest 112:1134–1136

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Benjamin L, Hemo I, Keshet E (1998) A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF‐B and VEGF. Development 125:1591–1598

    CAS  PubMed  Google Scholar 

  70. Rubenstein JL, Kim J, Ozawa T, Zhang M, Westphal M, Deen DF, Shuman MA (2000) Anti‐VEGF antibody treatment of glioblastoma prolongs survival but results in increased vascular cooption. Neoplasia 2:306–314

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Blouw B, Song H, Tihan T, Bosze J, Ferrara N, Gerber HP, Johnson RS, Bergers G (2003) The hypoxic response of tumors is dependent on their microenvironment. Cancer Cell 4:133–146

    CAS  PubMed  Google Scholar 

  72. Du R, Lu KV, Petritsch C, Liu P, Ganss R, Passegué E, Song H, VandenBerg S, Johnson RS, Werb Z, Bergers G (2008) HIF1α induces the recruitment of bone marrow‐derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell 13:206–220

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Norden AD, Young GS, Setayesh K, Muzikansky A, Klufas R, Ross GL, Ciampa AS, Ebbeling LG, Levy B, Drappatz J, Kesari S, Wen PY (2008) Bevacizumab for recurrent malignant gliomas: efficacy, toxicity, and patterns of recurrence. Neurology 70:779–787

    CAS  PubMed  Google Scholar 

  74. Narayana A, Kelly P, Golfinos J, Parker E, Johnson G, Knopp E, Zagzag D, Fischer I, Raza S, Medabalmi P, Eagan P, Gruber ML (2009) Anti‐angiogenic therapy using bevacizumab in recurrent high grade glioma: impact on local control and survival. J Neurosurg 110(1):173–180

    PubMed  Google Scholar 

  75. Xiong YQ, Sun HC, Zhang W, Zhu XD, Zhuang PY, Zhang JB, Wang L, Wu WZ, Qin LX, Tang ZY (2009) Human hepatocellular carcinoma tumor-derived endothelial cells manifest increased angiogenesis capability and drug resistance compared with normal endothelial cells. Clin Cancer Res 15:4838

    CAS  PubMed  Google Scholar 

  76. Jain RK, Duda DG, Willett CG, Sahani DV, Zhu AX, Loeffler JS, Batchelor TT, Sorensen AG (2009) Biomarkers of response and resistance to antiangiogenic therapy. Nat Rev Clin Oncol 6(6):327–338

    CAS  PubMed Central  PubMed  Google Scholar 

  77. van der Worp HB, Howells DW, Sena ES, Porritt MJ, Rewell S, O’Collins V, Macleod MR (2010) Can animal models of disease reliably inform human studies? PLoS Med 7(3):e1000245

    PubMed Central  PubMed  Google Scholar 

  78. Cook N, Jodrell DI, Tuveson DA (2012) Predictive in vivo animal models and translation to clinical trials. Drug Discov Today 17(5–6):253–260

    PubMed  Google Scholar 

  79. Follin F (1852) De la cryptorchidie chez l’homme Mem Soc Biol

    Google Scholar 

  80. Woglam WH (1923) A critique of tumour resistance. J Cancer Res 7:283–311

    Google Scholar 

  81. Denekamp J, Hill SA, Hobson B (1983) Vascular occlusion and tumour cell death. Eur J Cancer Clin Oncol 19:271–275

    CAS  PubMed  Google Scholar 

  82. Denekamp J (1982) Endothelial cell proliferation as a novel approach to targeting tumour therapy. Br J Cancer 45:136–139

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Denekamp J, Hobson B (1982) Endothelial-cell proliferation in experimental tumours. Br J Cancer 46(5):711–720

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Denekamp J (1990) Vascular attack as a therapeutic strategy for cancer. Cancer Metastasis Rev 9:267–282

    CAS  PubMed  Google Scholar 

  85. Nihei Y, Suzuki M, Okano A, Tsuji T, Akiyama Y, Tsuruo T, Saito S, Hori K, Sato Y (1999) Evaluation of antivascular and antimitotic effects of tubulin binding agents in solid tumour therapy. Jpn J Cancer Res 90:1387–1396

    CAS  PubMed  Google Scholar 

  86. Baguley BC, Holdaway KM, Thomsen LL, Zhuang L, Zwi LJ (1991) Inhibition of growth of colon 38 adenocarcinoma by vinblastine and colchicine: evidence for a vascular mechanism. Eur J Cancer 27:482–487

    CAS  PubMed  Google Scholar 

  87. Dark GG, Hill SA, Prise VE, Tozer GM, Pettit GR, Chaplin DJ (1997) Combretastatin A-4, an agent that displays potent and selective toxicity toward tumour vasculature. Cancer Res 57:1829–1834

    CAS  PubMed  Google Scholar 

  88. Beauregard DA, Thelwall PE, Chaplin DJ, Hill SA, Adams GE, Brindle KM (1998) Magnetic resonance imaging and spectroscopy of combretastatin A4 prodrug-induced disruption of tumour perfusion and energetic status. Br J Cancer 77:1761–1767

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Horsman MR, Ehrnrooth E, Ladekarl M, Overgaard J (1998) The effect of combretastatin A-4 disodium phosphate in a C3H mouse mammary carcinoma and a variety of murine spontaneous tumors. Int J Radiat Oncol Biol Phys 42(4):895–898

    CAS  PubMed  Google Scholar 

  90. Malcontenti-Wilson C, Muralidharan V, Skinner S, Christophi C, Sherris D, O’Brien PE (2001) Combretastatin A4 prodrug study of effect on the growth and the microvasculature of colorectal liver metastases in a murine model. Clin Cancer Res 7(4):1052–1060

    CAS  PubMed  Google Scholar 

  91. Tozer GM, Prise VE, Wilson J, Locke RJ, Vojnovic B, Stratford MR, Dennis MF, Chaplin DJ (1999) Combretastatin A-4 phosphate as a tumour vascular targeting agent: early effects in tumours and normal tissues. Cancer Res 59:1626–1634

    CAS  PubMed  Google Scholar 

  92. Sosa JA, Elisei R, Jarzab B, Bal CS, Koussis H, Gramza AW, Ben-Yosef R, Gitlitz BJ, Haugen B, Karandikar SM, Khuri FR, Licitra LF, Remick SC, Marur S, Lu C, Ondrey FG, Lu S, Balkissoon J (2011) A randomized phase II/III trial of a tumor vascular disrupting agent fosbretabulin tromethamine (CA4P) with carboplatin (C) and paclitaxel (P) in anaplastic thyroid cancer (ATC): final survival analysis for the FACT trial. J Clin Oncol 29:2011

    Google Scholar 

  93. Holwell SE, Cooper PA, Grosios K, Lippert JW III, Pettit GR, Shnyder SD, Bibby MC (2002) Combretastatin A-1 phosphate a novel tubulin-binding agent with in vivo anti vascular effects in experimental tumours. Anticancer Res 22:707–711

    CAS  PubMed  Google Scholar 

  94. Patterson DM, Zweifel M, Middleton MR, Price PM, Folkes LK, Stratford MRL, Ross P, Halford S, Peters J, Balkissoon J, Chaplin DJ, Padhani A, Rustin GJS (2012) Phase I clinical and pharmacokinetic evaluation of the vascular disrupting agent OXi4503 in patients with advanced solid tumors. Clin Cancer Res 18(5):1415–1425

    CAS  PubMed  Google Scholar 

  95. Madlambayan GJ, Meacham AM, Hosaka K, Mir S, Jorgensen M, Scott EW, Siemann DW, Cogle CR (2010) Leukemia regression by vascular disruption and antiangiogenic therapy. Blood 116:1539–1547

    CAS  PubMed  Google Scholar 

  96. Nihei Y, Suga Y, Morinaga Y, Ohishi K, Okano A, Ohsumi K, Hatanaka T, Nakagawa R, Tsuji T, Akiyama Y, Saito S, Hori K, Sato Y, Tsuruo T (1999) A novel combretastatin A-4 derivative, AC-7700, shows marked antitumor activity against advanced solid tumors and orthotopically transplanted tumors. Jpn J Cancer Res 90(9):1016–1025

    CAS  PubMed  Google Scholar 

  97. Hori K, Saito S, Nihei Y, Suzuki M, Sato Y (1999) Antitumor effects due to irreversible stoppage of tumor tissue blood flow: evaluation of a novel combretastatin A-4 derivative, AC7700. Jpn J Cancer Res 90:1026–1038

    CAS  PubMed  Google Scholar 

  98. Hori K, Saito S, Sato Y, Kubota K (2001) Stoppage of blood flow in 3-methylcholanthrene-induced autochthonous primary tumor due to a novel combretastatin A-4 derivative, AC7700, and its antitumor effect. Med Sci Monit 7:26–33

    CAS  PubMed  Google Scholar 

  99. Hori K, Saito S, Kubota K (2002) A novel combretastatin A-4 derivative, AC7700, strongly stanches tumour blood flow and inhibits growth of tumours developing in various tissues and organs. Br J Cancer 86:1604–1614

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Ohno T, Kawano K, Sasaki A, Aramaki M, Tahara K, Etoh T, Kitano S (2002) Antitumor and antivascular effects of AC-7700, a combretastatin A-4 derivative, against rat liver cancer. Int J Clin Oncol 7:171–176

    CAS  PubMed  Google Scholar 

  101. Clémenson C, Jouannot E, Merino-Trigo A, Rubin-Carrez C, Deutsch E (2012) The vascular disrupting agent ombrabulin (AVE8062) enhances the efficacy of standard therapies in head and neck squamous cell carcinoma xenograft models. Invest New Drugs 31(2):273–284

    PubMed  Google Scholar 

  102. Blaschuk OW, Rowlands TM (2000) Cadherins as modulators of angiogenesis and the structural integrity of blood vessels. Cancer Metastasis Rev 19:1–5

    CAS  PubMed  Google Scholar 

  103. Vestweber D, Winderlich M, Cagna G, Nottebaum AF (2009) Cell adhesion dynamics at endothelial junctions: VE-cadherin as a major player. Trends Cell Biol 19:8–15

    CAS  PubMed  Google Scholar 

  104. Kelland L (2007) Drug evaluation: ADH-1, an N-cadherin antagonist targeting cancer vascularization. Curr Opin Mol Ther 9:86–91

    CAS  PubMed  Google Scholar 

  105. Li H, Price DK, Figg WD (2007) ADH1, an N-cadherin inhibitor, evaluated in preclinical models of angiogenesis and androgen-independent prostate cancer. Anticancer Drugs 18:563–568

    CAS  PubMed  Google Scholar 

  106. Mariotti A, Perotti A, Sessa C, Ruegg C (2007) N-cadherin as a therapeutic target in cancer. Expert Opin Investig Drugs 16:451–465

    CAS  PubMed  Google Scholar 

  107. Perotti A, Sessa C, Mancuso A, Noberasco C, Cresta S, Locatelli A, Carcangiu ML, Passera K, Braghetti A, Scaramuzza D, Zanaboni F, Fasolo A, Capri G, Miani M, Peters WP, Gianni L (2009) Clinical and pharmacological phase I evaluation of Exherin (ADH-1), a selective anti-N-cadherin peptide in patients with N-cadherin-expressing solid tumours. Ann Oncol 20:741–745

    CAS  PubMed  Google Scholar 

  108. Yarom N, Stewart D, Malik R, Wells J, Avruch L, Jonker DJ (2012) Phase I clinical trial of Exherin (ADH-1) in patients with advanced solid tumors. Curr Clin Pharmacol 8(1):81–88

    Google Scholar 

  109. Blakey DC, Westwood FR, Walker M, Hughes GD, Davis PD, Ashton SE, Ryan AJ (2002) Antitumor activity of the novel vascular targeting agent ZD6126 in a panel of tumor models. Clin Cancer Res 8:1974–1983

    CAS  PubMed  Google Scholar 

  110. Goertz DE, Yu JL, Kerbel RS, Burns PN, Foster FS (2002) High-frequency Doppler ultrasound monitors the effects of antivascular therapy on tumor blood flow. Cancer Res 62:6371–6375

    CAS  PubMed  Google Scholar 

  111. Davis PD, Dougherty GJ, Blakey DC, Galbraith SM, Tozer GM, Holder AL, Naylor MA, Nolan J, Stratford MR, Chaplin DJ, Hill SA (2002) ZD6126: a novel vascular-targeting agent that causes selective destruction of tumor vasculature. Cancer Res 62:7247–7253

    CAS  PubMed  Google Scholar 

  112. Siemann DW, Rojiani AM (2002) Antitumor efficacy of conventional anticancer drugs is enhanced by the vascular targeting agent ZD6126. Int J Radiat Oncol Biol Phys 54:1512–1517

    CAS  PubMed  Google Scholar 

  113. Goto H, Yano S, Zhang H, Matsumori Y, Ogawa H, Blakey DC, Sone S (2002) Activity of a new vascular targeting agent, ZD6126, in pulmonary metastases by human lung adenocarcinoma in nude mice. Cancer Res 62:3711–3715

    CAS  PubMed  Google Scholar 

  114. Lippert JW III (2007) Vascular disrupting agents. Bioorg Med Chem 15(2):605–615

    CAS  PubMed  Google Scholar 

  115. Gould S, Westwood FR, Curwen JO, Ashton SE, Roberts DW, Lovick SC, Ryan AJ (2007) Effect of pretreatment with atenolol and nifedipine on ZD6126-induced cardiac toxicity in rats. J Natl Cancer Inst 99:1724–1728

    CAS  PubMed  Google Scholar 

  116. Thorpe PE (2004) Vascular targeting agents as cancer therapeutics. Clin Cancer Res 10:415–427

    PubMed  Google Scholar 

  117. Burrows FJ, Thorpe PE (1993) Eradication of large solid tumors in mice with an immunotoxin directed against tumor vasculature. Proc Natl Acad Sci USA 90:8996–9000

    CAS  PubMed  Google Scholar 

  118. Carnemolla B, Baiza E, Siri A, Zardi L, Nicotra MR, Bigotti A, Natalie PG (1989) A tumor-associated fibronectin isoform generated by alternative splicing of messenger RNA precursors. J Cell Biol 108:1139–1148

    CAS  PubMed  Google Scholar 

  119. Carnemolla B, Neri D, Castellani P, Leprini A, Neri G, Pini A, Winter G, Zardi L (1996) Phage antibodies with pan-species recognition of the oncofoetal angiogenesis marker fibronectin ED-B domain. Int J Cancer 68(3):397–405

    CAS  PubMed  Google Scholar 

  120. Castellani P, Borsi L, Carnemolla B, Birò A, Dorcaratto A, Viale GL, Neri D, Zardi L (2002) Differentiation between high- and low-grade astrocytoma using a human recombinant antibody to the extra domain-B of fibronectin. Am J Pathol 161(5):1695–1700

    CAS  PubMed  Google Scholar 

  121. Neri D, Carnemolla B, Nissim A, Leprini A, Querzè G, Balza E, Pini A, Tarli L, Halin C, Neri P, Zardi L, Winter G (1997) Targeting by affinity-matured recombinant antibody fragments of an angiogenesis associated fibronectin isoform. Nat Biotechnol 15(12):1271–1275

    CAS  PubMed  Google Scholar 

  122. Birchler MT, Milisavlijevic D, Pfaltz M, Neri D, Odermatt B, Schmid S, Stoeckli SJ (2003) Expression of the extra domain B of fibronectin, a marker of angiogenesis, in head and neck tumors. Laryngoscope 113(7):1231–1237

    CAS  PubMed  Google Scholar 

  123. Schliemann C, Wiedmer A, Pedretti M, Szczepanowski M, Klapper W, Neri D (2009) Three clinical-stage tumor targeting antibodies reveal differential expression of oncofetal fibronectin and tenascin-C isoforms in human lymphoma. Leuk Res 33(12):1718–1722

    CAS  PubMed  Google Scholar 

  124. Sauer S, Erba PA, Petrini M, Menrad A, Giovannoni L, Grana C, Hirsch B, Zardi L, Paganelli G, Mariani G, Neri D, Dürkop H, Menssen HD (2009) Expression of the oncofetal ED-B-containing fibronectin isoform in hematologic tumors enables ED-B-targeted 131I-L19SIP radioimmunotherapy in Hodgkin lymphoma patients. Blood 113:2265–2274

    CAS  PubMed  Google Scholar 

  125. Trepel M, Arap W, Pasqualini R (2002) In vivo phage display and vascular heterogeneity: implications for targeted medicine. Curr Opin Chem Biol 6:399–404

    CAS  PubMed  Google Scholar 

  126. Arap W, Kolonin MG, Trepel M, Lahdenranta J, Cardo-Vila M, Giordano RJ, Mintz PJ, Ardelt PU, Yao VJ, Vidal CI, Chen L, Flamm A, Valtanen H, Weavind LM, Hicks ME, Pollock RE, Botz GH, Bucana CD, Koivunen E, Cahill D, Troncoso P, Baggerly KA, Pentz RD, Do KA, Logothetis CJ, Pasqualini R (2002) Steps toward mapping the human vasculature by phage display. Nat Med 8:121–127

    CAS  PubMed  Google Scholar 

  127. Essler M, Ruoslahti E (2002) Molecular specialization of breast vasculature: a breast-homing phage-displayed peptide binds to aminopeptidase P in breast vasculature. Proc Natl Acad Sci U S A 99(4):2252–2257

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Ruan W, Sassoon A, An F, Simko JP, Liu B (2006) Identification of clinically significant tumor antigens by selecting phage antibody library on tumor cells in situ using laser capture microdissection. Mol Cell Proteomics 5(12):2364–2373

    CAS  PubMed  Google Scholar 

  129. Mutuberria R, Satijn S, Huijbers A, Van Der Linden E, Lichtenbeld H, Chames P, Arends JW, Hoogenboom HR (2004) Isolation of human antibodies to tumor-associated endothelial cell markers by in vitro human endothelial cell selection with phage display libraries. J Immunol Methods 287(1–2):31–47

    CAS  PubMed  Google Scholar 

  130. Carson-Walter EB, Watkins DN, Nanda A, Vogelstein B, Kinzler KW, St. Croix B (2001) Cell surface tumor endothelial markers are conserved in mice and humans. Cancer Res 61:6649–6655

    CAS  PubMed  Google Scholar 

  131. Zhang HT, Gorn M, Smith K, Graham AP, Lau KK, Bicknell R (1999) Transcriptional profiling of human microvascular endothelial cells in the proliferative and quiescent state using cDNA arrays. Angiogenesis 3(3):211–219

    CAS  PubMed  Google Scholar 

  132. Ho M, Yang E, Matcuk G, Deng D, Sampas N, Tsalenko A, Tabibiazar R, Zhang Y, Chen M, Talbi S, Ho YD, Wang J, Tsao PS, Ben-Dor A, Yakhini Z, Bruhn L, Quertermous T (2003) Identification of endothelial cell genes by combined database mining and microarray analysis. Physiol Genomics 13(3):249–262

    CAS  PubMed  Google Scholar 

  133. Ghilardi C, Chiorino G, Dossi R, Nagy Z, Giavazzi R, Bani MR (2008) Identification of novel vascular markers through gene expression profiling of tumor-derived endothelium. BMC Genomics 9:201

    PubMed Central  PubMed  Google Scholar 

  134. Huminiecki L, Bicknell R (2000) In silico cloning of novel endothelial-specific genes. Genome Res 10(11):1796–1806

    CAS  PubMed  Google Scholar 

  135. Huminiecki L, Gorn M, Suchting S, Poulsom R, Bicknell R (2002) Magic roundabout is a new member of the roundabout receptor family that is endothelial specific and expressed at sites of active angiogenesis. Genomics 79(4):547–552

    CAS  PubMed  Google Scholar 

  136. Sullivan DC, Huminiecki L, Moore JW, Boyle JJ, Poulsom R, Creamer D, Barker J, Bicknell R (2003) EndoPDI, a novel protein-disulfide isomerase-like protein that is preferentially expressed in endothelial cells acts as a stress survival factor. J Biol Chem 278:47079–47088

    CAS  PubMed  Google Scholar 

  137. Herbert JMJ, Stekel D, Sanderson S, Heath VL, Bicknell R (2008) A novel method of differential gene expression analysis using multiple cDNA libraries applied to the identification of tumour endothelial genes. BMC Genomics 9:153

    PubMed Central  PubMed  Google Scholar 

  138. Oh P, Li Y, Yu J, Durr E, Krasinska KM, Carver LA, Testa JE, Schnitzer JE (2004) Subtractive proteomic mapping of the endothelial surface in lung and solid tumours for tissue-specific therapy. Nature 429(6992):629–635

    CAS  PubMed  Google Scholar 

  139. Rybak JN, Ettorre A, Kaissling B, Giavazzi R, Neri D, Elia G (2005) In vivo protein biotinylation for identification of organ-specific antigens accessible from the vasculature. Nat Methods 2(4):291–298

    CAS  PubMed  Google Scholar 

  140. Castronovo V, Waltregny D, Kischel P, Roesli C, Elia G, Rybak JN, Neri D (2006) A chemical proteomics approach for the identification of accessible antigens expressed in human kidney cancer. Mol Cell Proteomics 5(11):2083–2091

    CAS  PubMed  Google Scholar 

  141. Conrotto P, Roesli C, Rybak J, Kischel P, Waltregny D, Neri D, Castronovo V (2008) Identification of new accessible tumor antigens in human colon cancer by ex vivo protein biotinylation and comparative mass spectrometry analysis. Int J Cancer 123(12):2856–2864

    CAS  PubMed  Google Scholar 

  142. Burrows FJ, Derbyshire EJ, Tazzari PL, Amlot P, Gazdar AF, King SW, Letarte M, Vitetta ES, Thorpe PE (1995) Up-regulation of endoglin on vascular endothelial cells in human solid tumors: implications for diagnosis and therapy. Clin Cancer Res 1:1623–1634

    CAS  PubMed  Google Scholar 

  143. Huang X, Molema G, King S, Watkins L, Edgington TS, Thorpe PE (1997) Tumor infarction in mice by antibody-directed targeting of tissue factor to tumor vasculature. Science 275:547–550

    CAS  PubMed  Google Scholar 

  144. Ran S, Gao B, Duffy S, Watkins L, Rote N, Thorpe PE (1998) Infarction of solid Hodgkin’s tumors in mice by antibody-directed targeting of tissue factor to tumor vasculature. Cancer Res 58:4646–4653

    CAS  PubMed  Google Scholar 

  145. Nilsson F, Kosmehl H, Zardi L, Neri D (2001) Targeted delivery of tissue factor to the ED-B domain of fibronectin, a marker of angiogenesis, mediates the infarction of solid tumors in mice. Cancer Res 61:711–716

    CAS  PubMed  Google Scholar 

  146. Liu C, Huang H, Donate F, Dickinson C, Santucci R, El-Sheikh A, Vessella R, Edgington TS (2002) Prostate-specific membrane antigen directed selective thrombotic infarction of tumors. Cancer Res 62:5470–5475

    CAS  PubMed  Google Scholar 

  147. Arora N, Masood R, Zheng T, Cai J, Smith DL, Gill PS (1999) Vascular endothelial growth factor chimeric toxin is highly active against endothelial cells. Cancer Res 59:183–188

    CAS  PubMed  Google Scholar 

  148. Ramakrishnan S, Olson TA, Bautch VL, Mohanraj D (1996) Vascular endothelial growth factor-toxin conjugate specifically inhibits KDR/flk-1-positive endothelial cell proliferation in vitro and angiogenesis in vivo. Cancer Res 56:1324–1330

    CAS  PubMed  Google Scholar 

  149. Veenendaal LM, Jin H, Cheung L, Ran S, Navone N, Marks JW, Waltenberger J, Thorpe P, Rosenblum MG (2002) In vitro and in vivo studies of a VEGF121/rGelonin chimeric fusion toxin targeting the neovasculature of solid tumors. Proc Natl Acad Sci U S A 99:7866–7871

    CAS  PubMed Central  PubMed  Google Scholar 

  150. Carnemolla B, Borsi L, Balza E, Castellani P, Meazza R, Berndt A, Ferrini S, Kosmehl H, Neri D, Zardi L (2002) Enhancement of the antitumor properties of interleukin-2 by its targeted delivery to the tumor blood vessel extracellular matrix. Blood 99(5):1659–1665

    PubMed  Google Scholar 

  151. Gafner V, Trachsel E, Neri D (2006) An engineered antibody-interleukin-12 fusion protein with enhanced tumor vascular targeting properties. Int J Cancer 119(9):2205–2212

    CAS  PubMed  Google Scholar 

  152. Villa A, Trachsel E, Kaspar M, Schliemann C, Sommavilla R, Rybak JN, Rösli C, Borsi L, Neri D (2008) A high-affinity human monoclonal antibody specific to the alternatively spliced EDA domain of fibronectin efficiently targets tumor neo-vasculature in vivo. Int J Cancer 122(11):2405–2413

    CAS  PubMed  Google Scholar 

  153. Fonsatti E, Altomonte M, Arslan P, Maio M (2003) Endoglin (CD105): a target for anti-angiogenetic cancer therapy. Curr Drug Targets 4(4):291–296

    CAS  PubMed  Google Scholar 

  154. Brack SS, Silacci M, Birchler M, Neri D (2006) Tumor-targeting properties of novel antibodies specific to the large isoform of tenascin-C. Clin Cancer Res 12(10):3200–3208

    CAS  PubMed  Google Scholar 

  155. Zalutsky MR, Reardon DA, Akabani G, Coleman RE, Friedman AH, Friedman HS, McLendon RE, Wong TZ, Bigner DD (2007) Clinical experience with alpha-particle emitting 211At: treatment of recurrent brain tumor patients with 211At-labeled chimeric antitenascin monoclonal antibody 81C6. J Nucl Med 49(1):30–38

    PubMed Central  PubMed  Google Scholar 

  156. Tsunoda S, Ohizumi I, Matsui J, Koizumi K, Wakai Y, Makimoto H, Tsutsumi Y, Utoguchi N, Taniguchi K, Saito H, Harada N, Ohsugi Y, Mayumi T (1999) Specific binding of TES-23 antibody to tumour vascular endothelium in mice, rats and human cancer tissue: a novel drug carrier for cancer targeting therapy. Br J Cancer 81:1155–1161

    CAS  PubMed Central  PubMed  Google Scholar 

  157. Koivunen E, Arap W, Valtanen H, Rainisalo A, Medina OP, Heikkilä P, Kantor C, Gahmberg CG, Salo T, Konttinen YT, Sorsa T, Ruoslahti E, Pasqualini R (1999) Tumor targeting with a selective gelatinase inhibitor. Nat Biotechnol 17:768–774

    CAS  PubMed  Google Scholar 

  158. Liu Z, Wang F, Chen X (2008) Integrin αvβ3-targeted cancer therapy. Drug Dev Res 69(6):329–339

    CAS  PubMed Central  PubMed  Google Scholar 

  159. Bhaskar V, Law DA, Ibsen E, Breinberg D, Cass KM, DuBridge RB, Evangelista F, Henshall SM, Hevezi P, Miller JC, Pong M, Powers R, Senter P, Stockett D, Sutherland RL, von Freeden-Jeffry U, Willhite D, Murray R, Afar DE, Ramakrishnan V (2003) E-selectin up-regulation allows for targeted drug delivery in prostate cancer. Cancer Res 63:6387–6394

    CAS  PubMed  Google Scholar 

  160. Rho SS, Choi HJ, Min JK, Lee HW, Park H, Park H, Kim YM, Kwon YG (2011) Clec14a is specifically expressed in endothelial cells and mediates cell to cell adhesion. Biochem Biophys Res Commun 404(1):103–108

    CAS  PubMed  Google Scholar 

  161. Ran S, He J, Huang X, Soares M, Scothorn D, Thorpe PE (2005) Antitumor effects of a monoclonal antibody that binds anionic phospholipids on the surface of tumor blood vessels in mice. Clin Cancer Res 11:1551–1562

    CAS  PubMed  Google Scholar 

  162. Hu Z, Sun Y, Garen A (1999) Targeting tumor vasculature endothelial cells and tumor cells for immunotherapy of human melanoma in a mouse xenograft model. Proc Natl Acad Sci U S A 96(14):8161–8166

    CAS  PubMed Central  PubMed  Google Scholar 

  163. Zhang YF, Wang J, Bian D, Zhang X, Zhang Q (2010) Targeted delivery of RGD-modified liposomes encapsulating both combretastatin A-4 and doxorubicin for tumor therapy: in vitro and in vivo studies. Eur J Pharm Biopharm 74(3):467–473

    CAS  PubMed  Google Scholar 

  164. Schuch G (2005) EndoTAG-1. MediGene. Curr Opin Investig Drugs 6(12):1259–1265

    CAS  PubMed  Google Scholar 

  165. Corti A, Ponzoni M (2004) Tumor vascular targeting with tumor necrosis factor alpha and chemotherapeutic drugs. Ann N Y Acad Sci 1028:104–112

    CAS  PubMed  Google Scholar 

  166. Hood JD, Cheresh DA (2002) Targeted delivery of mutant Raf kinase to neovessels causes tumor regression. Cold Spring Harb Symp Quant Biol 67:285–292

    CAS  PubMed  Google Scholar 

  167. Arap W, Haedicke W, Bernasconi M, Kain R, Rajotte D, Krajewski S, Ellerby HM, Bredesen DE, Pasqualini R, Ruoslahti E (2002) Targeting the prostate for destruction through a vascular address. Proc Natl Acad Sci U S A 99(3):1527–1531

    CAS  PubMed Central  PubMed  Google Scholar 

  168. Tijink BM, Neri D, Leemans CR, Budde M, Dinkelborg LM, Stigter-van Walsum M, Zardi L, van Dongen GA (2006) Radioimmunotherapy of head and neck cancer xenografts using 131I-labeled antibody L19-SIP for selective targeting of tumor vasculature. J Nucl Med 47(7):1127–1135

    CAS  PubMed  Google Scholar 

  169. Kennel SJ, Chappell LL, Dadachova K, Brechbiel MW, Lankford TK, Davis A, Stabin M, Mirzadeh S (2000) Evaluation of 225Ac for vascular targeted radioimmunotherapy of lung tumors. Cancer Biother Radiopharm 15(3):235–244

    CAS  PubMed  Google Scholar 

  170. Davis IA, Kennel SJ (1999) Radioimmunotherapy using vascular targeted 213Bi: the role of tumor necrosis factor alpha in the development of pulmonary fibrosis. Clin Cancer Res 5(10):3160–3164

    Google Scholar 

  171. Löhr M, Haas S, Bechstein W, Karrasch M, Mescheder A, Meyer I, Bodoky G, Pap A, Jäger D, Fölsch UR (2008) First-line treatment of inoperable pancreatic adenocarcinoma with lipid complexed paclitaxel nanoparticles plus gemcitabine compared with gemcitabine monotherapy. A prospective RCT—phase II study. J Clin Oncol 26:2008

    Google Scholar 

  172. Medigene press statement: http://www.medigene.com/products-pipeline/development-projects/endotag-1. Accessed 2 Oct 2012

  173. Wagner K, Schulz P, Scholz A, Wiedenmann B, Menrad A (2008) The targeted immunocytokine L19-IL2 efficiently inhibits the growth of orthotopic pancreatic cancer. Clin Cancer Res 14(15):4951–4960

    CAS  PubMed  Google Scholar 

  174. Johannsen M, Roemer A, Spitaleri G, Curigliano G, Giovannoni L, Menssen HD, Zardi L, Neri D, Miller K, de Braud FG (2008) Phase I/II study of the tumor-targeting human L19-IL2 monoclonal antibody-cytokine fusion protein in patients with advanced renal cell carcinoma. J Clin Oncol 26:2008

    Google Scholar 

  175. Garbe C, Romanini A, Spitaleri G, Giovannoni L, Zardi L, Neri D, Shaw A, Menssen HD, deBraud F, Eigentler TK (2009) Phase I/II study of the tumor-targeting human L19-IL2 monoclonal antibody-cytokine fusion protein in combination with DTIC in metastatic melanoma patients. J Clin Oncol 27:15s

    Google Scholar 

  176. Weide B, Eigentler TK, Romanini A, De Braud FG, Giovannoni L, Neri D, Menssen H, Garbe C (2010) Tumor-targeting human L19IL2 monoclonal antibody-cytokine fusion protein in combination with DTIC in chemotherapy-naïve stage IV melanoma patients. J Clin Oncol 28:15s

    Google Scholar 

  177. Masood R, Gordon EM, Whitley MD, Wu BW, Cannon P, Evans L, Anderson WF, Gill P, Hall FL (2001) Retroviral vectors bearing IgG-binding motifs for antibody-mediated targeting of vascular endothelial growth factor receptors. Int J Mol Med 8:335–343

    CAS  PubMed  Google Scholar 

  178. Yao X, Yoshioka Y, Morishige T, Eto Y, Narimatsu S, Kawai Y, Mizuguchi H, Gao JQ, Mukai Y, Okada N, Nakagawa S (2011) Tumor vascular targeted delivery of polymer-conjugated adenovirus vector for cancer gene therapy. Mol Ther 19(9):1619–1625

    CAS  PubMed  Google Scholar 

  179. Jin N, Chen W, Blazar BR, Ramakrishnan S, Vallera DA (2002) Gene therapy of murine solid tumors with T cells transduced with a retroviral vascular endothelial growth factor–immunotoxin target gene. Hum Gene Ther 13:497–508

    CAS  PubMed  Google Scholar 

  180. Chou B, Hiromatsu K, Okano S, Ishii K, Duan X, Sakai T, Murata S, Tanaka K, Himeno K (2012) Antiangiogenic tumor therapy by DNA vaccine inducing aquaporin-1-specific CTL based on ubiquitin-proteasome system in mice. J Immunol 189(4):1618–1626

    CAS  PubMed  Google Scholar 

  181. Siemann DW, Chaplin DJ, Horsman MR (2004) Vascular-targeting therapies for treatment of malignant disease. Cancer 100(12):2491–2499

    CAS  PubMed  Google Scholar 

  182. Siemann DW, Horsman MR (2004) Targeting the tumor vasculature: a strategy to improve radiation therapy. Expert Rev Anticancer Ther 4(2):321–327

    CAS  PubMed  Google Scholar 

  183. Pietras K, Hanahan D (2005) A multitargeted, metronomic, and maximum-tolerated dose ‘chemo-switch’ regimen is antiangiogenic, producing objective responses and survival benefit in a mouse model of cancer. J Clin Oncol 23(5):939–952

    CAS  PubMed  Google Scholar 

  184. Rapisarda A, Hollingshead M, Uranchimeg B, Bonomi CA, Borgel SD, Carter JP, Gehrs B, Raffeld M, Kinders RJ, Parchment R, Anver MR, Shoemaker RH, Melillo G (2009) Increased antitumor activity of bevacizumab in combination with hypoxia inducible factor-1 inhibition. Mol Cancer Ther 8(7):1867–1877

    CAS  PubMed Central  PubMed  Google Scholar 

  185. Ferrario A, von Tiehl KF, Rucker N, Schwarz MA, Gill PS, Gomer CJ (2000) Antiangiogenic treatment enhances photodynamic therapy responsiveness in a mouse mammary carcinoma. Cancer Res 60(15):4066–4069

    CAS  PubMed  Google Scholar 

  186. Siemann DW, Shi W (2004) Efficacy of combined antiangiogenic and vascular disrupting agents in treatment of solid tumors. Int J Radiat Oncol Biol Phys 60(4):1233–1240

    CAS  PubMed  Google Scholar 

  187. Shi W, Siemann DW (2005) Targeting the tumor vasculature: enhancing antitumor efficacy through combination treatment with ZD6126 and ZD6474. In Vivo 19(6):1045–1050

    CAS  PubMed  Google Scholar 

  188. Siemann DW, Shi W (2008) Dual targeting of tumor vasculature: combining Avastin and vascular disrupting agents (CA4P or OXi4503). Anticancer Res 28(4B):2027–2031

    CAS  PubMed Central  PubMed  Google Scholar 

  189. Nathan PD, Judson I, Padhani A, Harris A, Carden CP, Smythe J, Collins D, Leach M, Walicke P, Rustin GJ (2008) A phase I study of combretastatin A4 phosphate (CA4P) and bevacizumab in subjects with advanced solid tumors. J Clin Oncol 26:3550

    Google Scholar 

  190. Garon EB, Kabbinavar FF, Neidhart JA, Neidhart JD, Gabrail NY, Oliveira MR, Lu S, Balkissoon J (2011) A randomized phase II trial of a vascular disrupting agent (VDA) fosbretabulin tromethamine (CA4P) with carboplatin (C), paclitaxel (P), and bevacizumab (B) in stage 3B/4 nonsquamous non-small cell lung cancer (NSCLC): analysis of safety and activity of the FALCON trial. J Clin Oncol 29:2011

    Google Scholar 

  191. Pruijn FB, van Daalen M, Holford NH, Wilson WR (1997) Mechanisms of enhancement of the antitumour activity of melphalan by the tumour-blood-flow inhibitor 5,6-dimethylxanthenone-4-acetic acid. Cancer Chemother Pharmacol 39(6):541–546

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roy Bicknell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wragg, J.W., Bicknell, R. (2013). Vascular Targeting Approaches to Treat Cancer. In: Bae, Y., Mrsny, R., Park, K. (eds) Cancer Targeted Drug Delivery. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7876-8_3

Download citation

Publish with us

Policies and ethics