Skip to main content

A Time Travel Journey Through Cancer Therapies

  • Chapter
  • First Online:
Cancer Targeted Drug Delivery
  • 3033 Accesses

Abstract

The twentieth century was a landmark period in the history of cancer therapies; a time in which conventional cancer treatments such as surgery resection, radiotherapy and chemotherapy made tremendous advances and gave birth to strategies focused on greater selective targeting. Rational drug design allied to rational drug delivery, being led by novel small molecule anti-cancer compounds and monoclonal antibodies. Such approaches prolonged survival time, often without the horrific side effects of previous therapies, but rarely prevented ultimate disease relapse. Selective targeting of membrane transporters and receptors using prodrugs, polymer-cancer drug conjugates and antibody-toxin combinations has contributed to redefine the roadmap of cancer cell targeting. Current pharmacotherapies are still far from consistently delivering cures or sustained remissions. This chapter describes some of the historical events that brought about current cancer targeting strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. DeVita VT, Chu E (2008) A history of cancer chemotherapy. Cancer Res 68(21):8643–8653. doi:10.1158/0008-5472.can-07-6611

    Article  CAS  PubMed  Google Scholar 

  2. Strebhardt K, Ullrich A (2008) Paul ehrlich’s magic bullet concept: 100 years of progress. Nat Rev Cancer 8(6):473–480. doi:nrc2394 [pii] 10.1038/nrc2394

    Article  CAS  PubMed  Google Scholar 

  3. American Cancer Society website (2009) The history of cancer. http://www.cancer.org/acs/groups/cid/documents/webcontent/002048-pdf.pdf

  4. Kufe DW, Holland JF, Frei E, Kufe D ((2003) Cancer medicine 6 review: a companion to holland-frei cancer medicine-6. B.C. Decker, Hamilton, Ont.; London

    Google Scholar 

  5. Ariel IM (1991) The role of surgery in the treatment of breast cancer: historical review and current status. Springer-Verlag, High risk breast cancer therapy

    Google Scholar 

  6. Cancer Medicine, KD. RC Bast, Pollock RE, et al, Editor 2000, Hamilton (ON): BC Decker Henderson BE, BL., Ross RK (2000). Chapter 13: Hormones and the Etiology of Cancer. K. D. RC Bast, Pollock RE, et al. Ontario, Hamilton (ON): BC Decker.

    Google Scholar 

  7. Denoix PF (1946) Enquete permanent dans les centres anticancereaux. Bull Inst Nat Hyg 1:70–75

    Google Scholar 

  8. Sabatine M (2007) Sabatine’s essentials of internal medicine. Philadelphia Lippincott Williams & Wilkins

    Google Scholar 

  9. Sikora E (1990) Treatment of cancer, 2nd edn. London, Chapman and Hall Medical

    Google Scholar 

  10. Begg AC, Stewart FA, Vens C (2011) Strategies to improve radiotherapy with targeted drugs. Nat Rev Cancer 11(4):239–253

    Article  CAS  PubMed  Google Scholar 

  11. Meyn RE, Withers HR (1980) Radiation biology in cancer research. Raven, New York

    Google Scholar 

  12. Curie P, Curie M, Bemont G (1898) Sur une nouvelle substance fortement radio-active contenue dans la pechblende. CRT 127:1215–1217

    CAS  Google Scholar 

  13. Lawrence JH, Aebersold PC, Lawrence EO (1936) Comparative effects of x-rays and neutrons on normal and tumor tissue. Proc Natl Acad Sci U S A 22(9):543–557. doi:10.2307/86432

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Puck TT, Marcus PI (1956) Action of x-rays on mammalian cells. J Exp Med 103(5):653–666

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Prise KM, Schettino G, Folkard M, Held KD (2005) New insights on cell death from radiation exposure. Lancet Oncol 6(7):520–528. doi:10.1016/s1470-2045(05)70246-1

    Article  CAS  PubMed  Google Scholar 

  16. Bentzen SM, Skoczylas JZ, Overgaard M, Overgaard J (1996) Radiotherapy-related lung fibrosis enhanced by tamoxifen. J Natl Cancer Inst 88(13):918–922

    Article  CAS  PubMed  Google Scholar 

  17. Bentzen SM, Overgaard M, Thames HD (1989) Fractionation sensitivity of a functional endpoint - impaired shoulder movement after post-mastectomy radiotherapy. Int J Radiat Oncol Biol Phys 17(3):531–537

    Article  CAS  PubMed  Google Scholar 

  18. Rubin P, Johnston CJ, Williams JP, Mcdonald S, Finkelstein JN (1995) A perpetual cascade of cytokines postirradiation leads to pulmonary fibrosis. Int J Radiat Oncol Biol Phys 33(1):99–109. doi:10.1016/0360-3016(95)00095-G

    Article  CAS  PubMed  Google Scholar 

  19. Jeggo P, Lavin MF (2009) Cellular radiosensitivity: how much better do we understand it? Int J Radiat Biol 85(12):1061–1081. doi:10.3109/09553000903261263

    Article  CAS  PubMed  Google Scholar 

  20. Delaney G, Jacob S, Featherstone C, Barton M (2005) The role of radiotherapy in cancer treatment. Cancer 104(6):1129–1137. doi:10.1002/cncr.21324

    Article  PubMed  Google Scholar 

  21. Dexheimer TS (2013) DNA repair pathways and mechanisms. In: Mathews LA, Cabarcas SM, Hurt EM (eds) DNA repair of cancer stem cells. Springer, Netherlands, pp 19–32. doi:10.1007/978-94-007-4590-2_2

    Chapter  Google Scholar 

  22. Bentzen SM (2006) Preventing or reducing late side effects of radiation therapy: radiobiology meets molecular pathology. Nat Rev Cancer 6(9):702–713. doi:10.1038/Nrc1950

    Article  CAS  PubMed  Google Scholar 

  23. Charles A, Ramani A (2011) Phytochemical screening and antimicrobial resistance of alseodaphne semecarpifolia nees. J Chem Pharm Res 3(5):205–211

    Google Scholar 

  24. Goodman L (1984) Nitrogen mustard therapy: use of methyl-bis(beta-chloroethyl)amine hydrochloride and tris(beta-chloroethyl)amine hydrochloride for hodgkin´s disease, lymphosarcoma, leukemia and certain allied and miscellaneous disorders. JAMA 251(17):2255–2261. doi:10.1001/jama.1984.03340410063036

    Article  CAS  PubMed  Google Scholar 

  25. Farber S, Diamond LK, Mercer RD, Sylvester RF, Wolff JA (1948) Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid (aminopterin). N Engl J Med 238(23):787–793. doi:10.1056/NEJM194806032382301

    Article  CAS  PubMed  Google Scholar 

  26. Li MC, Hertz R, Bergenstal DM (1958) Therapy of choriocarcinoma and related trophoblastic tumors with folic acid and purine antagonists. N Engl J Med 259(2):66–74. doi:10.1056/NEJM195807102590204

    Article  CAS  PubMed  Google Scholar 

  27. Brockman RW (1963) Mechanisms of resistance to anticancer agents. Adv Cancer Res 7:129–234. doi:10.1016/S0065-230x(08)60983-5

    CAS  PubMed  Google Scholar 

  28. Al-Lazikani B, Banerji U, Workman P (2012) Combinatorial drug therapy for cancer in the post-genomic era. Nat Biotechnol 30(7):679–692

    Article  CAS  PubMed  Google Scholar 

  29. Chabner BA, Roberts TG (2005) Chemotherapy and the war on cancer. Nat Rev Cancer 5(1):65–72

    Article  CAS  PubMed  Google Scholar 

  30. Noda K, Nishiwaki Y, Kawahara M, Negoro S, Sugiura T, Yokoyama A, Fukuoka M, Mori K, Watanabe K, Tamura T, Yamamoto S, Saijo N (2002) Irinotecan plus cisplatin compared with etoposide plus cisplatin for extensive small-cell lung cancer. N Engl J Med 346(2):85–91. doi:10.1056/NEJMoa003034

    Article  CAS  PubMed  Google Scholar 

  31. Bodurka DC, Levenback C, Wolf JK, Gano J, Wharton JT, Kavanagh JJ, Gershenson DM (2003) Phase ii trial of irinotecan in patients with metastatic epithelial ovarian cancer or peritoneal cancer. J Clin Oncol 21(2):291–297. doi:10.1200/jco.2003.02.091

    Article  PubMed  CAS  Google Scholar 

  32. Workman P (2002) The impact of genomic and proteomic technologies on the development of new cancer drugs. Ann Oncol 13(suppl 4):115–124

    Article  PubMed  Google Scholar 

  33. Heppner GH (1984) Tumor heterogeneity. Cancer Res 44(6):2259–2265

    CAS  PubMed  Google Scholar 

  34. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70, http://dx.doi.org/10.1016/S0092-8674(00)81683-9

    Article  CAS  PubMed  Google Scholar 

  35. Alaimo PJ, Shogren-Knaak MA, Shokat KM (2001) Chemical genetic approaches for the elucidation of signaling pathways. Curr Opin Chem Biol 5(4):360–367. doi:10.1016/S1367-5931(00)00215-5

    Article  CAS  PubMed  Google Scholar 

  36. Scott AM, Allison JP, Wolchok JD (2012) Monoclonal antibodies in cancer therapy. Cancer Immun 12:14

    PubMed  Google Scholar 

  37. Wiseman GA, White CA, Stabin M, Dunn WL, Erwin W, Dahlbom M, Raubitschek A, Karvelis K, Schultheiss T, Witzig TE, Belanger R, Spies S, Silverman DHS, Berlfein JR, Ding E, Grillo-López AJ (2000) Phase i/ii 90y-zevalin (yttrium-90 ibritumomab tiuxetan, idec-y2b8) radioimmunotherapy dosimetry results in relapsed or refractory non-hodgkin’s lymphoma. Eur J Nucl Med 27(7):766–777. doi:10.1007/s002590000276

    Article  CAS  PubMed  Google Scholar 

  38. Chari RVJ, Martell BA, Gross JL, Cook SB, Shah SA, Blättler WA, McKenzie SJ, Goldmacher VS (1992) Immunoconjugates containing novel maytansinoids: promising anticancer drugs. Cancer Res 52(1):127–131

    CAS  PubMed  Google Scholar 

  39. Remillard S, Rebhun LI, Howie GA, Kupchan SM (1975) Antimitotic activity of the potent tumor inhibitor maytansine. Science (New York, NY) 189(4207):1002–1005

    Article  CAS  Google Scholar 

  40. Oldham RK, Dillman RO (2008) Monoclonal antibodies in cancer therapy: 25 years of progress. J Clin Oncol 26(11):1774–1777. doi:10.1200/Jco.2007.15.7438

    Article  PubMed  Google Scholar 

  41. Dillman R (2003) Monoclonal antibody therapy. Principles of cancer biotherapy, 4th edn. Kluwer, Norwell, MA

    Google Scholar 

  42. Atkins JH, Gershell LJ (2002) Selective anticancer drugs. Nat Rev Drug Discov 1(7):491–492

    Article  CAS  PubMed  Google Scholar 

  43. Arteaga CL, Baselga J (2004) Tyrosine kinase inhibitors: why does the current process of clinical development not apply to them? Cancer Cell 5(6):525–531. doi:10.1016/j.ccr.2004.05.028

    Article  CAS  PubMed  Google Scholar 

  44. Ciardiello F, Vita F (2005) Epidermal growth factor receptor (egfr) inhibitors in cancer therapy. In: Herrling P, Matter A, Schultz R (eds) Advances in targeted cancer therapy, vol 63. Progress in drug research. Birkhäuser, Basel, pp 93–115. doi:10.1007/3-7643-7414-4_5

    Chapter  Google Scholar 

  45. Salomon DS, Brandt R, Ciardiello F, Normanno N (1995) Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol 19(3):183–232. doi:10.1016/1040-8428(94)00144-i

    Article  CAS  PubMed  Google Scholar 

  46. Xu H, Yu YJ, Marciniak D, Rishi AK, Sarkar FH, Kucuk O, Majumdar APN (2005) Epidermal growth factor receptor (egfr)-related protein inhibits multiple members of the egfr family in colon and breast cancer cells. Mol Cancer Ther 4(3):435–442

    CAS  PubMed  Google Scholar 

  47. Perez-Soler R (2004) Her1/egfr targeting: refining the strategy. Oncologist 9(1):58–67. doi:10.1634/theoncologist.9-1-58

    Article  CAS  PubMed  Google Scholar 

  48. Bange J, Zwick E, Ullrich A (2001) Molecular targets for breast cancer therapy and prevention. Nat Med 7(5):548–552. doi:10.1038/87872

    Article  CAS  PubMed  Google Scholar 

  49. Mackey JR, Clemons M, Cote MA, Delgado D, Dent S, Paterson A, Provencher L, Sawyer MB, Verma S (2008) Cardiac management during adjuvant trastuzumab therapy: recommendations of the canadian trastuzumab working group. Curr Oncol 15(1):24–35. doi:10.3747/Co.2008.199

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Giaccone G, Herbst RS, Manegold C, Scagliotti G, Rosell R, Miller V, Natale RB, Schiller JH, von Pawel J, Pluzanska A, Gatzemeier M, Grous J, Ochs JS, Averbuch SD, Wolf MK, Rennie P, Fandi A, Johnson DH (2004) Gefitinib in combination with gemcitabine and cisplatin in advanced non-small-cell lung cancer: a phase iii trial-intact1. J Clin Oncol 22(5):777–784. doi:10.1200/Jco.2004.08.001

    Article  CAS  PubMed  Google Scholar 

  51. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, Harris PL, Haserlat SM, Supko JG, Haluska FG, Louis DN, Christiani DC, Settleman J, Haber DA (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350(21):2129–2139. doi:10.1056/NEJMoa040938

    Article  CAS  PubMed  Google Scholar 

  52. Paez JG, Jänne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N, Boggon TJ, Naoki K, Sasaki H, Fujii Y, Eck MJ, Sellers WR, Johnson BE, Meyerson M (2004) Egfr mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304(5676):1497–1500. doi:10.1126/science.1099314

    Article  CAS  PubMed  Google Scholar 

  53. Algire GH, Legallais FY (1951) Vascular reactions of normal and malignant tissues invivo.1. The effect of peripheral hypotension on transplanted tumors. J Natl Cancer Inst 12(2):399

    CAS  PubMed  Google Scholar 

  54. Ferrara N, Gerber HP, LeCouter J (2003) The biology of vegf and its receptors. Nat Med 9(6):669–676. doi:10.1038/Nm0603-669

    Article  CAS  PubMed  Google Scholar 

  55. Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF (1983) Tumor-cells secrete a vascular-permeability factor that promotes accumulation of ascites-fluid. Science 219(4587):983–985. doi:10.1126/science.6823562

    Article  CAS  PubMed  Google Scholar 

  56. Ferrara N, DavisSmyth T (1997) The biology of vascular endothelial growth factor. Endocr Rev 18(1):4–25. doi:10.1210/Er.18.1.4

    Article  CAS  PubMed  Google Scholar 

  57. Willett CG, Boucher Y, di Tomaso E, Duda DG, Munn LL, Tong RT, Chung DC, Sahani DV, Kalva SP, Kozin SV, Mino M, Cohen KS, Scadden DT, Hartford AC, Fischman AJ, Clark JW, Ryan DP, Zhu AX, Blaszkowsky LS, Chen HX, Shellito PC, Lauwers GY, Jain RK (2004) Direct evidence that the vegf-specific antibody bevacizumab has antivascular effects in human rectal cancer (vol 10, pg 145, 2004). Nat Med 10(6):649–649. doi:10.1038/Nm0604-649c

    Article  CAS  Google Scholar 

  58. Singh M, Ferrara N (2012) Modeling and predicting clinical efficacy for drugs targeting the tumor milieu. Nat Biotechnol 30(7):648–657

    Article  CAS  PubMed  Google Scholar 

  59. Kerbel R, Folkman J (2002) Clinical translation of angiogenesis inhibitors. Nat Rev Cancer 2(10):727–739. doi:10.1038/Nrc905

    Article  CAS  PubMed  Google Scholar 

  60. Ferrara N, Kerbel RS (2005) Angiogenesis as a therapeutic target. Nature 438(7070):967–974. doi:10.1038/Nature04483

    Article  CAS  PubMed  Google Scholar 

  61. Gerber HP, Dixit V, Ferrara N (1998) Vascular endothelial growth factor induces expression of the antiapoptotic proteins bcl-2 and a1 in vascular endothelial cells. J Biol Chem 273(21):13313–13316. doi:10.1074/jbc.273.21.13313

    Article  CAS  PubMed  Google Scholar 

  62. Gerber HP, Hillan KJ, Ryan AM, Kowalski J, Keller GA, Rangell L, Wright BD, Radtke F, Aguet M, Ferrara N (1999) Vegf is required for growth and survival in neonatal mice. Development 126(6):1149–1159

    CAS  PubMed  Google Scholar 

  63. Reed JC (2005) Apoptosis-based therapies for cancer. Clin Cancer Res 11(24):9175s–9175s

    Google Scholar 

  64. Hu W, Kavanagh JJ (2003) Anticancer therapy targeting the apoptotic pathway. Lancet Oncol 4(12):721–729. doi:S1470204503012774 [pii]

    Article  CAS  PubMed  Google Scholar 

  65. Los M, Burek CJ, Stroh C, Benedyk K, Hug H, Mackiewicz A (2003) Anticancer drugs of tomorrow: apoptotic pathways as targets for drug design. Drug Discov Today 8(2):67–77. doi:Pii S1359-6446(02)02563-1, Doi 10.1016/S1359-6446(02)02563-1

    Article  CAS  PubMed  Google Scholar 

  66. Nakamoto T, Inagawa H, Takagi K, Soma GI (2000) A new method of antitumor therapy with a high dose of tnf perfusion for unresectable liver tumors. Anticancer Res 20(6A):4087–4096

    CAS  PubMed  Google Scholar 

  67. Johnstone RW, Frew AJ, Smyth MJ (2008) The trail apoptotic pathway in cancer onset, progression and therapy. Nat Rev Cancer 8(10):782–798

    Article  CAS  PubMed  Google Scholar 

  68. Xiang H, Fox JA, Totpal K, Aikawa M, Dupree K, Sinicropi D, Lowe J, Escandón E (2002) Enhanced tumor killing by apo2l/trail and cpt-11 co-treatment is associated with p21 cleavage and differential regulation of apo2l/trail ligand and its receptors. Oncogene 21(22):3611–3619

    Article  CAS  PubMed  Google Scholar 

  69. Jo M, Kim T-H, Seol D-W, Esplen JE, Dorko K, Billiar TR, Strom SC (2000) Apoptosis induced in normal human hepatocytes by tumor necrosis factor-related apoptosis-inducing ligand. Nat Med 6(5):564–567

    Article  CAS  PubMed  Google Scholar 

  70. Srivastava RK, Mi QS, Hardwick JM, Longo DL (1999) Deletion of the loop region of bcl-2 completely blocks paclitaxel-induced apoptosis. Proc Natl Acad Sci U S A 96(7):3775–3780. doi:10.1073/pnas.96.7.3775

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Kim R, Tanabe K, Uchida Y, Emi M, Inoue H, Toge T (2002) Current status of the molecular mechanisms of anticancer drug-induced apoptosis. Cancer Chemother Pharmacol 50(5):343–352. doi:10.1007/s00280-002-0522-7

    Article  CAS  PubMed  Google Scholar 

  72. LeBlanc R, Catley LP, Hideshima T, Lentzsch S, Mitsiades CS, Mitsiades N, Neuberg D, Goloubeva O, Pien CS, Adams J, Gupta D, Richardson PG, Munshi NC, Anderson KC (2002) Proteasome inhibitor ps-341 inhibits human myeloma cell growth in vivo and prolongs survival in a murine model. Cancer Res 62(17):4996–5000

    CAS  PubMed  Google Scholar 

  73. Heppner G, Miller B (1983) Tumor heterogeneity: biological implications and therapeutic consequences. Cancer Metast Rev 2(1):5–23. doi:10.1007/bf00046903

    Article  CAS  Google Scholar 

  74. de Bono JS, Ashworth A (2010) Translating cancer research into targeted therapeutics. Nature 467(7315):543–549. doi:10.1038/Nature09339

    Article  PubMed  CAS  Google Scholar 

  75. Pietras K, Ostman A (2010) Hallmarks of cancer: interactions with the tumor stroma. Exp Cell Res 316(8):1324–1331. doi:10.1016/j.yexcr.2010.02.045

    Article  CAS  PubMed  Google Scholar 

  76. Li XQ, Ma QY, Xu QH, Duan WX, Lei JJ, Wu EX (2012) Targeting the cancer-stroma interaction: a potential approach for pancreatic cancer treatment. Curr Pharm Design 18(17):2404–2415

    Article  CAS  Google Scholar 

  77. Jaffee EM, Hruban RH, Canto M, Kern SE (2002) Focus on pancreas cancer. Cancer Cell 2(1):25–28. doi:10.1016/S1535-6108(02)00093-4

    Article  CAS  PubMed  Google Scholar 

  78. Yang WQ, Zhang Y (2012) Rnai-mediated gene silencing in cancer therapy. Expert Opin Biol Ther 12(11):1495–1504. doi:10.1517/14712598.2012.712107

    Article  CAS  PubMed  Google Scholar 

  79. Davidson BL, McCray PB (2011) Current prospects for rna interference-based therapies. Nat Rev Genet 12(5):329–340. doi:10.1038/Nrg2968

    Article  CAS  PubMed  Google Scholar 

  80. Dassie JP, Liu XY, Thomas GS, Whitaker RM, Thiel KW, Stockdale KR, Meyerholz DK, McCaffrey AP, McNamara JO, Giangrande PH (2009) Systemic administration of optimized aptamer-sirna chimeras promotes regression of psma-expressing tumors. Nat Biotechnol 27(9):839–U895. doi:10.1038/Nbt.1560

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Devi GR (2006) Sirna-based approaches in cancer therapy. Cancer Gene Ther 13(9):819–829. doi:10.1038/sj.cgt.7700931

    Article  CAS  PubMed  Google Scholar 

  82. Nakanishi T (2007) Drug transporters as targets for cancer chemotherapy. Cancer Genomics Proteomics 4(3):241–254

    CAS  PubMed  Google Scholar 

  83. Weitman SD, Lark RH, Coney LR, Fort DW, Frasca V, Zurawski VR, Kamen BA (1992) Distribution of the folate receptor gp38 in normal and malignant cell lines and tissues. Cancer Res 52(12):3396–3401

    CAS  PubMed  Google Scholar 

  84. Sudimack J, Lee RJ (2000) Targeted drug delivery via the folate receptor. Adv Drug Deliv Rev 41(2):147–162, http://dx.doi.org/10.1016/S0169-409X(99)00062-9

    Article  CAS  PubMed  Google Scholar 

  85. Gabizon A, Horowitz AT, Goren D, Tzemach D, Mandelbaum-Shavit F, Qazen MM, Zalipsky S (1999) Targeting folate receptor with folate linked to extremities of poly(ethylene glycol)-grafted liposomes: in vitro studies. Bioconjug Chem 10(2):289–298. doi:10.1021/bc9801124

    Article  CAS  PubMed  Google Scholar 

  86. Lee RJ, Low PS (1995) Folate-mediated tumor cell targeting of liposome-entrapped doxorubicin in vitro. Biochim Biophys Acta (BBA) – Biomembranes 1233(2):134–144, http://dx.doi.org/10.1016/0005-2736(94)00235-H

    Article  Google Scholar 

  87. Tsuji A (1999) Tissue selective drug delivery utilizing carrier-mediated transport systems. J Control Release 62(1–2):239–244, http://dx.doi.org/10.1016/S0168-3659(99)00043-7

    Article  CAS  PubMed  Google Scholar 

  88. Knutter I, Rubio-Aliaga I, Boll M, Hause G, Daniel H, Neubert K, Brandsch M (2002) H+−peptide cotransport in the human bile duct epithelium cell line sk-cha-1. Am J Physiol Gastrointest Liver Physiol 283(1):G222–G229. doi:10.1152/ajpgi.00534.2001

    CAS  PubMed  Google Scholar 

  89. Gonzalez DE, Covitz K-MY, Sadée W, Mrsny RJ (1998) An oligopeptide transporter is expressed at high levels in the pancreatic carcinoma cell lines aspc-1 and capan-2. Cancer Res 58(3):519–525

    CAS  PubMed  Google Scholar 

  90. Mitsuoka K, Miyoshi S, Kato Y, Murakami Y, Utsumi R, Kubo Y, Noda A, Nakamura Y, Nishimura S, Tsuji A (2008) Cancer detection using a pet tracer, c-11-glycylsarcosine, targeted to h+/peptide transporter. J Nucl Med 49(4):615–622. doi:10.2967/jnumed.107.048231

    Article  CAS  PubMed  Google Scholar 

  91. Nakanishi T, Tamai I, Takaki A, Tsuji A (2000) Cancer cell-targeted drug delivery utilizing oligopeptide transport activity. Int J Cancer 88(2):274–280. doi:10.1002/1097-0215(20001015)88:2<274::Aid-Ijc20>3.0.Co;2–5

    Article  CAS  PubMed  Google Scholar 

  92. Feng Cao YG, Ping Q (2012) Advances in research of pept1-targeted prodrug. ÑÇÖÞÒ©ÎïÖƼÁ¿Æѧ 7(2) Asian Journal of Pharmaceutical Sciences: 110–110

    Google Scholar 

  93. Song X, Lorenzi PL, Landowski CP, Vig BS, Hilfinger JM, Amidon GL (2005) Amino acid ester prodrugs of the anticancer agent gemcitabine: synthesis, bioconversion, metabolic bioevasion, and hpept1-mediated transport. Mol Pharm 2(2):157–167. doi:10.1021/mp049888e

    Article  CAS  PubMed  Google Scholar 

  94. Tsume Y, Hilfinger JM, Amidon GL (2008) Enhanced cancer cell growth inhibition by dipeptide prodrugs of floxuridine: increased transporter affinity and metabolic stability. Mol Pharm 5(5):717–727. doi:10.1021/mp800008c

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Lee VHL (2000) Membrane transporters. Eur J Pharm Sci 11 2(Suppl 2 11):S41–S411. doi:10.1016/s0928-0987(00)00163-9

    Google Scholar 

  96. Mrsny RJ (1998) Oligopeptide transporters as putative therapeutic targets for cancer cells - commentary. Pharmaceut Res 15(6):816–818. doi:10.1023/A:1011904027137

    Article  CAS  Google Scholar 

  97. Duncan R (2006) Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 6(9):688–701

    Article  CAS  PubMed  Google Scholar 

  98. Folkman J, Long DM, Rosenbaum R (1967) Silicone rubber: a new diffusion property useful for general anesthesia. Rubb Chem Technol 40(3):928–931. doi:10.5254/1.3539107

    Article  Google Scholar 

  99. Folkman J, Long DM (1964) The use of silicone rubber as a carrier for prolonged drug therapy. J Surg Res 4:139–142. doi:10.1016/s0022-4804(64)80040-8

    Article  CAS  PubMed  Google Scholar 

  100. Hoffman AS (2008) The origins and evolution of “controlled” drug delivery systems. J Control Release 132(3):153–163, http://dx.doi.org/10.1016/j.jconrel.2008.08.012

    Article  CAS  PubMed  Google Scholar 

  101. Ringsdorf H (1975) Structure and properties of pharmacologically active polymers. J Polym Sci: Polymer Symposia 51(1):135–153. doi:10.1002/polc.5070510111

    CAS  Google Scholar 

  102. Duncan R, Vicent MJ, Greco F, Nicholson RI (2005) Polymer–drug conjugates: towards a novel approach for the treatment of endrocine-related cancer. Endocr Relat Cancer 12(Suppl 1):S189–S199. doi:10.1677/erc.1.01045

    Article  CAS  PubMed  Google Scholar 

  103. Duncan R (1997) Polymer therapeutics for tumour specific delivery. Chem Ind-London 7:262–264

    Google Scholar 

  104. Maeda H, Ueda M, Morinaga T, Matsumoto T (1985) Conjugation of poly(styrene-co-maleic acid) derivatives to the antitumor protein neocarzinostatin: pronounced improvements in pharmacological properties. J Med Chem 28(4):455–461. doi:10.1021/jm00382a012

    Article  CAS  PubMed  Google Scholar 

  105. Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46(12 Part 1):6387–6392

    CAS  PubMed  Google Scholar 

  106. Maeda H, Matsumura Y (1989) Tumoritropic and lymphotropic principles of macromolecular drugs. Crit Rev Ther Drug Carrier Syst 6(3):193–210

    CAS  PubMed  Google Scholar 

  107. Chytil P, Etrych T, Konák C, Sírová M, Mrkvan T, Boucek J, Ríhová B, Ulbrich K (2008) New hpma copolymer-based drug carriers with covalently bound hydrophobic substituents for solid tumour targeting. J Control Release 127(2):121–130

    Article  CAS  PubMed  Google Scholar 

  108. Li C, Wallace S (2008) Polymer-drug conjugates: recent development in clinical oncology. Adv Drug Deliv Rev 60(8):886–898

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  109. Seymour LW, Ferry DR, Anderson D, Hesslewood S, Julyan PJ, Poyner R, Doran J, Young AM, Burtles S, Kerr DJ, Committee ftCRCPIICT (2002) Hepatic drug targeting: phase i evaluation of polymer-bound doxorubicin. J Clin Oncol 20(6):1668–1676. doi:10.1200/jco.20.6.1668

    Article  CAS  PubMed  Google Scholar 

  110. Shashwat BNA, Rajesh P, Jayant K (2012) Poly(ethylene glycol)-prodrug conjugates: concept, design, and applications. J Drug Deliv 2012:17. doi:10.1155/2012/103973

    Google Scholar 

  111. Lindahl T, Barnes DE (2000) Repair of endogenous DNA damage. Cold Spring Harb Sym 65:127–133. doi:10.1101/sqb.2000.65.127

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randall J. Mrsny .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cravo, A.S., Mrsny, R.J. (2013). A Time Travel Journey Through Cancer Therapies. In: Bae, Y., Mrsny, R., Park, K. (eds) Cancer Targeted Drug Delivery. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7876-8_1

Download citation

Publish with us

Policies and ethics