Skip to main content

Protein-Tyrosine Phosphatase 1B Substrates and Control of Metabolism

  • Chapter
  • First Online:
Protein Tyrosine Phosphatase Control of Metabolism

Abstract

Protein-tyrosine phosphatase 1B (PTP1B) has emerged as an important regulator of several signaling networks that are implicated in human metabolic diseases such as diabetes and obesity. A growing body of evidence demonstrates that PTP1B displays exquisite substrate specificity. In this chapter we review mechanisms that regulate PTP1B–susbtrate interactions and highlight substrates that mediate PTP1B metabolic actions. PTP1B–substrate interactions are modulated by PTP1B subcellular location and numerous posttranslational modifications that regulate its activity such as oxidation, nitrosylation, sulfhydration, sumoylation, phosphorylation, and proteolysis. The metabolic actions of PTP1B are mediated by key physiological substrates that regulate insulin and leptin signaling, cell–cell communication, and endoplasmic reticulum (ER) stress response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ER:

Endoplasmic reticulum

AMPK:

AMP-activated protein kinase

ASO:

Antisense oligonucleotide

ATF6:

Activating transcription factor 6

BRET:

Bioluminescence resonance energy transfer

EGFR:

Epidermal growth factor receptor

eIF2α:

Eukaryotic translation initiation factor 2α

ERK:

Extracellular signal-regulated kinase

FRET:

Fluorescence resonance energy transfer

Gab:

Grb2-associated binder

GH:

Growth hormone

H2S:

Hydrogen sulfide

HFD:

High fat diet

INM:

Inner nuclear membrane

IR:

Insulin receptor

IRE1α:

Inositol requiring enzyme 1α

IRS:

Insulin receptor substrate

JAK:

Janus kinase

KO:

Knockout

LepR:

Leptin receptor

MVB:

Multivesicular bodies

NO:

Nitric oxide

PDGFR:

Platelet-derived growth factor receptor

PERK:

PKR-like ER-resident kinase

PI3K:

Phosphatidylinositol 3-kinase

PIAS:

Protein inhibitor of activated STAT1

PM:

Plasma membrane

POMC:

Pro-opiomelanocortin

PPARγ:

Peroxisome proliferator-activated receptor γ

PTP1B:

Protein-tyrosine phosphatase 1B

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

RTK:

Receptor tyrosine kinase

SH:

Src homology

STAT:

Signal transducer and activator of transcription

SUMO:

Small ubiquitin-like modifier

UPR:

Unfolded protein response

XBP1:

X-box binding protein 1

ZO1:

Zonula occludens 1

References

  1. Frangioni JV, Beahm PH, Shifrin V, Jost CA, Neel BG (1992) The nontransmembrane tyrosine phosphatase PTP-1B localizes to the endoplasmic reticulum via its 35 amino acid C-terminal sequence. Cell 68(3):545–560

    CAS  PubMed  Google Scholar 

  2. Woodford-Thomas TA, Rhodes JD, Dixon JE (1992) Expression of a protein tyrosine phosphatase in normal and v-src-transformed mouse 3T3 fibroblasts. J Cell Biol 117(2):401–414

    CAS  PubMed  Google Scholar 

  3. Liu F, Chernoff J (1997) Protein tyrosine phosphatase 1B interacts with and is tyrosine phosphorylated by the epidermal growth factor receptor. Biochem J 327(Pt 1):139–145

    CAS  PubMed  Google Scholar 

  4. Haj FG, Verveer PJ, Squire A, Neel BG, Bastiaens PI (2002) Imaging sites of receptor dephosphorylation by PTP1B on the surface of the endoplasmic reticulum. Science 295(5560):1708–1711

    CAS  PubMed  Google Scholar 

  5. Haj FG, Markova B, Klaman LD, Bohmer FD, Neel BG (2003) Regulation of receptor tyrosine kinase signaling by protein tyrosine phosphatase-1B. J Biol Chem 278(2):739–744

    CAS  PubMed  Google Scholar 

  6. Boute N, Boubekeur S, Lacasa D, Issad T (2003) Dynamics of the interaction between the insulin receptor and protein tyrosine-phosphatase 1B in living cells. EMBO Rep 4(3):313–319

    CAS  PubMed  Google Scholar 

  7. Dadke S, Kusari J, Chernoff J (2000) Down-regulation of insulin signaling by protein-tyrosine phosphatase 1B is mediated by an N-terminal binding region. J Biol Chem 275(31): 23642–23647

    CAS  PubMed  Google Scholar 

  8. Elchebly M, Payette P, Michaliszyn E, Cromlish W, Collins S, Loy AL et al (1999) Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science 283(5407):1544–1548

    CAS  PubMed  Google Scholar 

  9. Klaman LD, Boss O, Peroni OD, Kim JK, Martino JL, Zabolotny JM et al (2000) Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice. Mol Cell Biol 20(15):5479–5489

    CAS  PubMed  Google Scholar 

  10. Romsicki Y, Reece M, Gauthier JY, Asante-Appiah E, Kennedy BP (2004) Protein tyrosine phosphatase-1B dephosphorylation of the insulin receptor occurs in a perinuclear endosome compartment in human embryonic kidney 293 cells. J Biol Chem 279(13):12868–12875

    CAS  PubMed  Google Scholar 

  11. Cromlish WA, Tang M, Kyskan R, Tran L, Kennedy BP (2006) PTP1B-dependent insulin receptor phosphorylation/residency in the endocytic recycling compartment of CHO-IR cells. Biochem Pharmacol 72(10):1279–1292

    CAS  PubMed  Google Scholar 

  12. Eden ER, White IJ, Tsapara A, Futter CE (2010) Membrane contacts between endosomes and ER provide sites for PTP1B-epidermal growth factor receptor interaction. Nat Cell Biol 12(3):267–272

    CAS  PubMed  Google Scholar 

  13. Stuible M, Abella JV, Feldhammer M, Nossov M, Sangwan V, Blagoev B et al (2010) PTP1B targets the endosomal sorting machinery: dephosphorylation of regulatory sites on the ESCRT component STAM2. J Biol Chem 285(31):23899–23907

    CAS  PubMed  Google Scholar 

  14. Xu G, Craig AW, Greer P, Miller M, Anastasiadis PZ, Lilien J et al (2004) Continuous association of cadherin with beta-catenin requires the non-receptor tyrosine-kinase Fer. J Cell Sci 117(Pt 15):3207–3219

    CAS  PubMed  Google Scholar 

  15. Anderie I, Schulz I, Schmid A (2007) Direct interaction between ER membrane-bound PTP1B and its plasma membrane-anchored targets. Cell Signal 19(3):582–592

    CAS  PubMed  Google Scholar 

  16. Hernandez MV, Sala MG, Balsamo J, Lilien J, Arregui CO (2006) ER-bound PTP1B is targeted to newly forming cell-matrix adhesions. J Cell Sci 119(Pt 7):1233–1243

    CAS  PubMed  Google Scholar 

  17. Balsamo J, Leung T, Ernst H, Zanin MK, Hoffman S, Lilien J (1996) Regulated binding of PTP1B-like phosphatase to N-cadherin: control of cadherin-mediated adhesion by dephosphorylation of beta-catenin. J Cell Biol 134(3):801–813

    CAS  PubMed  Google Scholar 

  18. Pathre P, Arregui C, Wampler T, Kue I, Leung TC, Lilien J et al (2001) PTP1B regulates neurite extension mediated by cell-cell and cell-matrix adhesion molecules. J Neurosci Res 63(2):143–150

    CAS  PubMed  Google Scholar 

  19. Nakamura Y, Patrushev N, Inomata H, Mehta D, Urao N, Kim HW et al (2008) Role of protein tyrosine phosphatase 1B in vascular endothelial growth factor signaling and cell-cell adhesions in endothelial cells. Circ Res 102(10):1182–1191

    CAS  PubMed  Google Scholar 

  20. Haj FG, Sabet O, Kinkhabwala A, Wimmer-Kleikamp S, Roukos V, Han HM et al (2012) Regulation of signaling at regions of cell-cell contact by endoplasmic reticulum-bound protein-tyrosine phosphatase 1B. PLoS One 7(5):e36633

    CAS  PubMed  Google Scholar 

  21. Andersen JN, Mortensen OH, Peters GH, Drake PG, Iversen LF, Olsen OH et al (2001) Structural and evolutionary relationships among protein tyrosine phosphatase domains. Mol Cell Biol 21(21):7117–7136

    CAS  PubMed  Google Scholar 

  22. Denu JM, Dixon JE (1998) Protein tyrosine phosphatases: mechanisms of catalysis and regulation. Curr Opin Chem Biol 2(5):633–641

    CAS  PubMed  Google Scholar 

  23. Salmeen A, Barford D (2005) Functions and mechanisms of redox regulation of cysteine-based phosphatases. Antioxid Redox Signal 7(5–6):560–577

    CAS  PubMed  Google Scholar 

  24. Rhee SG, Bae YS, Lee SR, Kwon J (2000) Hydrogen peroxide: a key messenger that modulates protein phosphorylation through cysteine oxidation. Sci STKE 2000(53):pe1

    CAS  PubMed  Google Scholar 

  25. Lee SR, Kwon KS, Kim SR, Rhee SG (1998) Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. J Biol Chem 273(25):15366–15372

    CAS  PubMed  Google Scholar 

  26. Meng TC, Buckley DA, Galic S, Tiganis T, Tonks NK (2004) Regulation of insulin signaling through reversible oxidation of the protein-tyrosine phosphatases TC45 and PTP1B. J Biol Chem 279(36):37716–37725

    CAS  PubMed  Google Scholar 

  27. Yudushkin IA, Schleifenbaum A, Kinkhabwala A, Neel BG, Schultz C, Bastiaens PI (2007) Live-cell imaging of enzyme-substrate interaction reveals spatial regulation of PTP1B. Science 315(5808):115–119

    CAS  PubMed  Google Scholar 

  28. Salmeen A, Andersen JN, Myers MP, Meng TC, Hinks JA, Tonks NK et al (2003) Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate. Nature 423(6941):769–773

    CAS  PubMed  Google Scholar 

  29. Van Montfort RL, Congreve M, Tisi D, Carr R, Jhoti H (2003) Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B. Nature 423(6941):773–777

    PubMed  Google Scholar 

  30. Mahadev K, Motoshima H, Wu X, Ruddy JM, Arnold RS, Cheng G et al (2004) The NAD(P)H oxidase homolog Nox4 modulates insulin-stimulated generation of H2O2 and plays an integral role in insulin signal transduction. Mol Cell Biol 24(5):1844–1854

    CAS  PubMed  Google Scholar 

  31. Martyn KD, Frederick LM, von Loehneysen K, Dinauer MC, Knaus UG (2006) Functional analysis of Nox4 reveals unique characteristics compared to other NADPH oxidases. Cell Signal 18(1):69–82

    CAS  PubMed  Google Scholar 

  32. Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS (2005) Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol 6(2):150–166

    CAS  PubMed  Google Scholar 

  33. Lane P, Hao G, Gross SS (2001) S-nitrosylation is emerging as a specific and fundamental posttranslational protein modification: head-to-head comparison with O-phosphorylation. Sci STKE 2001(86):re1

    CAS  PubMed  Google Scholar 

  34. Gu Z, Kaul M, Yan B, Kridel SJ, Cui J, Strongin A et al (2002) S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death. Science 297(5584):1186–1190

    CAS  PubMed  Google Scholar 

  35. Mannick JB, Hausladen A, Liu L, Hess DT, Zeng M, Miao QX et al (1999) Fas-induced caspase denitrosylation. Science 284(5414):651–654

    CAS  PubMed  Google Scholar 

  36. Chen YY, Huang YF, Khoo KH, Meng TC (2007) Mass spectrometry-based analyses for identifying and characterizing S-nitrosylation of protein tyrosine phosphatases. Methods 42(3):243–249

    CAS  PubMed  Google Scholar 

  37. Chen YY, Chu HM, Pan KT, Teng CH, Wang DL, Wang AH et al (2008) Cysteine S-nitrosylation protects protein-tyrosine phosphatase 1B against oxidation-induced permanent inactivation. J Biol Chem 283(50):35265–35272

    CAS  PubMed  Google Scholar 

  38. Gadalla MM, Snyder SH (2010) Hydrogen sulfide as a gasotransmitter. J Neurochem 113(1):14–26

    CAS  PubMed  Google Scholar 

  39. Mustafa AK, Gadalla MM, Sen N, Kim S, Mu W, Gazi SK et al (2009) H2S signals through protein S-sulfhydration. Sci Signal 2(96):ra72

    PubMed  Google Scholar 

  40. Krishnan N, Fu C, Pappin DJ, Tonks NK (2012) H2S-induced sulfhydration of the phosphatase PTP1B and its role in the endoplasmic reticulum stress response. Sci Signal 303(9):C916–C923

    Google Scholar 

  41. Baskar R, Bian J (2011) Hydrogen sulfide gas has cell growth regulatory role. Eur J Pharmacol 656(1–3):5–9

    CAS  PubMed  Google Scholar 

  42. Wilkinson KA, Henley JM (2010) Mechanisms, regulation and consequences of protein SUMOylation. Biochem J 428(2):133–145

    CAS  PubMed  Google Scholar 

  43. Sarge KD, Park-Sarge OK (2011) SUMO and its role in human diseases. Int Rev Cell Mol Biol 288:167–183

    CAS  PubMed  Google Scholar 

  44. Dadke S, Cotteret S, Yip SC, Jaffer ZM, Haj F, Ivanov A et al (2007) Regulation of protein tyrosine phosphatase 1B by sumoylation. Nat Cell Biol 9(1):80–85

    CAS  PubMed  Google Scholar 

  45. Yip SC, Cotteret S, Chernoff J (2012) Sumoylated protein tyrosine phosphatase 1B localizes to the inner nuclear membrane and regulates the tyrosine phosphorylation of emerin. J Cell Sci 125(Pt 2):310–316

    CAS  PubMed  Google Scholar 

  46. Matsuo K, Bettaieb A, Nagata N, Matsuo I, Keilhack H, Haj FG (2011) Regulation of brown fat adipogenesis by protein tyrosine phosphatase 1B. PloS one 6(1):e16446

    CAS  PubMed  Google Scholar 

  47. Bandyopadhyay D, Kusari A, Kenner KA, Liu F, Chernoff J, Gustafson TA et al (1997) Protein-tyrosine phosphatase 1B complexes with the insulin receptor in vivo and is tyrosine-phosphorylated in the presence of insulin. J Biol Chem 272(3):1639–1645

    CAS  PubMed  Google Scholar 

  48. Dadke S, Kusari A, Kusari J (2001) Phosphorylation and activation of protein tyrosine phosphatase (PTP) 1B by insulin receptor. Mol Cell Biochem 221(1–2):147–154

    CAS  PubMed  Google Scholar 

  49. Tao J, Malbon CC, Wang HY (2001) Insulin stimulates tyrosine phosphorylation and inactivation of protein-tyrosine phosphatase 1B in vivo. J Biol Chem 276(31):29520–29525

    CAS  PubMed  Google Scholar 

  50. Flint AJ, Gebbink MF, Franza BR Jr, Hill DE, Tonks NK (1993) Multi-site phosphorylation of the protein tyrosine phosphatase, PTP1B: identification of cell cycle regulated and phorbol ester stimulated sites of phosphorylation. EMBO J 12(5):1937–1946

    CAS  PubMed  Google Scholar 

  51. Shifrin VI, Davis RJ, Neel BG (1997) Phosphorylation of protein-tyrosine phosphatase PTP-1B on identical sites suggests activation of a common signaling pathway during mitosis and stress response in mammalian cells. J Biol Chem 272(5):2957–2962

    CAS  PubMed  Google Scholar 

  52. Ravichandran LV, Chen H, Li Y, Quon MJ (2001) Phosphorylation of PTP1B at Ser(50) by Akt impairs its ability to dephosphorylate the insulin receptor. Mol Endocrinol 15(10): 1768–1780

    CAS  PubMed  Google Scholar 

  53. Frangioni JV, Oda A, Smith M, Salzman EW, Neel BG (1993) Calpain-catalyzed cleavage and subcellular relocation of protein phosphotyrosine phosphatase 1B (PTP-1B) in human platelets. EMBO J 12(12):4843–4856

    CAS  PubMed  Google Scholar 

  54. Azam M, Andrabi SS, Sahr KE, Kamath L, Kuliopulos A, Chishti AH (2001) Disruption of the mouse mu-calpain gene reveals an essential role in platelet function. Mol Cell Biol 21(6):2213–2220

    CAS  PubMed  Google Scholar 

  55. Kuchay SM, Kim N, Grunz EA, Fay WP, Chishti AH (2007) Double knockouts reveal that protein tyrosine phosphatase 1B is a physiological target of calpain-1 in platelets. Mol Cell Biol 27(17):6038–6052

    CAS  PubMed  Google Scholar 

  56. Trumpler A, Schlott B, Herrlich P, Greer PA, Bohmer FD (2009) Calpain-mediated degradation of reversibly oxidized protein-tyrosine phosphatase 1B. FEBS J 276(19):5622–5633

    PubMed  Google Scholar 

  57. Liu F, Hill DE, Chernoff J (1996) Direct binding of the proline-rich region of protein tyrosine phosphatase 1B to the Src homology 3 domain of p130(Cas). J Biol Chem 271(49): 31290–31295

    CAS  PubMed  Google Scholar 

  58. Salmeen A, Andersen JN, Myers MP, Tonks NK, Barford D (2000) Molecular basis for the dephosphorylation of the activation segment of the insulin receptor by protein tyrosine phosphatase 1B. Mol Cell 6(6):1401–1412

    CAS  PubMed  Google Scholar 

  59. Myers MP, Andersen JN, Cheng A, Tremblay ML, Horvath CM, Parisien JP et al (2001) TYK2 and JAK2 are substrates of protein-tyrosine phosphatase 1B. J Biol Chem 276(51):47771–47774

    CAS  PubMed  Google Scholar 

  60. Zhang M, Van Etten RL, Stauffacher CV (1994) Crystal structure of bovine heart phosphotyrosyl phosphatase at 2.2-A resolution. Biochemistry 33(37):11097–11105

    CAS  PubMed  Google Scholar 

  61. Flint AJ, Tiganis T, Barford D, Tonks NK (1997) Development of “substrate-trapping” mutants to identify physiological substrates of protein tyrosine phosphatases. Proc Natl Acad Sci U S A 94(5):1680–1685

    CAS  PubMed  Google Scholar 

  62. Stuible M, Dube N, Tremblay ML (2008) PTP1B regulates cortactin tyrosine phosphorylation by targeting Tyr446. J Biol Chem 283(23):15740–15746

    CAS  PubMed  Google Scholar 

  63. Mertins P, Eberl HC, Renkawitz J, Olsen JV, Tremblay ML, Mann M et al (2008) Investigation of protein tyrosine phosphatase 1B function by quantitative proteomics. Mol Cell Proteomics 7(9):1763–1777

    CAS  PubMed  Google Scholar 

  64. Bettaieb A, Matsuo K, Matsuo I, Wang S, Melhem R, Koromilas AE et al (2012) Protein tyrosine phosphatase 1B deficiency potentiates PERK/eIF2alpha signaling in brown adipocytes. PLoS One 7(4):e34412

    CAS  PubMed  Google Scholar 

  65. Spiegelman BM, Flier JS (2001) Obesity and the regulation of energy balance. Cell 104(4):531–543

    CAS  PubMed  Google Scholar 

  66. Biddinger SB, Kahn CR (2006) From mice to men: insights into the insulin resistance syndromes. Annu Rev Physiol 68:123–158

    CAS  PubMed  Google Scholar 

  67. Taniguchi CM, Emanuelli B, Kahn CR (2006) Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol 7(2):85–96

    CAS  PubMed  Google Scholar 

  68. Luo J, Cantley LC (2005) The negative regulation of phosphoinositide 3-kinase signaling by p85 and it’s implication in cancer. Cell Cycle 4(10):1309–1312

    CAS  PubMed  Google Scholar 

  69. Avruch J (1998) Insulin signal transduction through protein kinase cascades. Mol Cell Biochem 182(1–2):31–48

    CAS  PubMed  Google Scholar 

  70. Pouyssegur J, Volmat V, Lenormand P (2002) Fidelity and spatio-temporal control in MAP kinase (ERKs) signalling. Biochem Pharmacol 64(5–6):755–763

    CAS  PubMed  Google Scholar 

  71. Rask-Madsen C, Kahn CR (2012) Tissue-specific insulin signaling, metabolic syndrome, and cardiovascular disease. Arterioscler Thromb Vasc Biol 32(9):2052–2059

    CAS  PubMed  Google Scholar 

  72. Cicirelli MF, Tonks NK, Diltz CD, Weiel JE, Fischer EH, Krebs EG (1990) Microinjection of a protein-tyrosine-phosphatase inhibits insulin action in Xenopus oocytes. Proc Natl Acad Sci U S A 87(14):5514–5518

    CAS  PubMed  Google Scholar 

  73. Tonks NK, Cicirelli MF, Diltz CD, Krebs EG, Fischer EH (1990) Effect of microinjection of a low-Mr human placenta protein tyrosine phosphatase on induction of meiotic cell division in Xenopus oocytes. Mol Cell Biol 10(2):458–463

    CAS  PubMed  Google Scholar 

  74. Ahmad F, Li PM, Meyerovitch J, Goldstein BJ (1995) Osmotic loading of neutralizing antibodies demonstrates a role for protein-tyrosine phosphatase 1B in negative regulation of the insulin action pathway. J Biol Chem 270(35):20503–20508

    CAS  PubMed  Google Scholar 

  75. Kenner KA, Anyanwu E, Olefsky JM, Kusari J (1996) Protein-tyrosine phosphatase 1B is a negative regulator of insulin- and insulin-like growth factor-I-stimulated signaling. J Biol Chem 271(33):19810–19816

    CAS  PubMed  Google Scholar 

  76. Chen H, Wertheimer SJ, Lin CH, Katz SL, Amrein KE, Burn P et al (1997) Protein-tyrosine phosphatases PTP1B and syp are modulators of insulin-stimulated translocation of GLUT4 in transfected rat adipose cells. J Biol Chem 272(12):8026–8031

    CAS  PubMed  Google Scholar 

  77. Walchli S, Curchod ML, Gobert RP, Arkinstall S, Hooft van Huijsduijnen R (2000) Identification of tyrosine phosphatases that dephosphorylate the insulin receptor. A brute force approach based on “substrate-trapping” mutants. J Biol Chem 275(13):9792–9796

    CAS  PubMed  Google Scholar 

  78. Seely BL, Staubs PA, Reichart DR, Berhanu P, Milarski KL, Saltiel AR et al (1996) Protein tyrosine phosphatase 1B interacts with the activated insulin receptor. Diabetes 45(10): 1379–1385

    CAS  PubMed  Google Scholar 

  79. Goldstein BJ, Bittner-Kowalczyk A, White MF, Harbeck M (2000) Tyrosine dephosphorylation and deactivation of insulin receptor substrate-1 by protein-tyrosine phosphatase 1B. Possible facilitation by the formation of a ternary complex with the Grb2 adaptor protein. J Biol Chem 275(6):4283–4289

    CAS  PubMed  Google Scholar 

  80. Zabolotny JM, Haj FG, Kim YB, Kim HJ, Shulman GI, Kim JK et al (2004) Transgenic overexpression of protein-tyrosine phosphatase 1B in muscle causes insulin resistance, but overexpression with leukocyte antigen-related phosphatase does not additively impair insulin action. J Biol Chem 279(23):24844–24851

    CAS  PubMed  Google Scholar 

  81. Haj FG, Zabolotny JM, Kim YB, Kahn BB, Neel BG (2005) Liver-specific protein-tyrosine phosphatase 1B (PTP1B) re-expression alters glucose homeostasis of PTP1B-/-mice. J Biol Chem 280(15):15038–15046

    CAS  PubMed  Google Scholar 

  82. Bence KK, Delibegovic M, Xue B, Gorgun CZ, Hotamisligil GS, Neel BG et al (2006) Neuronal PTP1B regulates body weight, adiposity and leptin action. Nat Med 12(8):917–924

    CAS  PubMed  Google Scholar 

  83. Banno R, Zimmer D, De Jonghe BC, Atienza M, Rak K, Yang W et al (2010) PTP1B and SHP2 in POMC neurons reciprocally regulate energy balance in mice. J Clin Investig 120(3):720–734

    CAS  PubMed  Google Scholar 

  84. Tsou RC, Zimmer DJ, De Jonghe BC, Bence KK (2012) Deficiency of PTP1B in leptin receptor-expressing neurons leads to decreased body weight and adiposity in mice. Endocrinology 153(9):4227–4237

    CAS  PubMed  Google Scholar 

  85. Xue B, Pulinilkunnil T, Murano I, Bence KK, He H, Minokoshi Y et al (2009) Neuronal protein tyrosine phosphatase 1B deficiency results in inhibition of hypothalamic AMPK and isoform-specific activation of AMPK in peripheral tissues. Mol Cell Biol 29(16):4563–4573

    CAS  PubMed  Google Scholar 

  86. Delibegovic M, Bence KK, Mody N, Hong EG, Ko HJ, Kim JK et al (2007) Improved glucose homeostasis in mice with muscle-specific deletion of protein-tyrosine phosphatase 1B. Mol Cell Biol 27(21):7727–7734

    CAS  PubMed  Google Scholar 

  87. Delibegovic M, Zimmer D, Kauffman C, Rak K, Hong EG, Cho YR et al (2009) Liver-specific deletion of protein-tyrosine phosphatase 1B (PTP1B) improves metabolic syndrome and attenuates diet-induced endoplasmic reticulum stress. Diabetes 58(3):590–599

    CAS  PubMed  Google Scholar 

  88. Hooft van Huijsduijnen R, Bombrun A, Swinnen D (2002) Selecting protein tyrosine phosphatases as drug targets. Drug Discov Today 7(19):1013–1019

    CAS  PubMed  Google Scholar 

  89. Lee S, Wang Q (2007) Recent development of small molecular specific inhibitor of protein tyrosine phosphatase 1B. Med Res Rev 27(4):553–573

    CAS  PubMed  Google Scholar 

  90. Zhang S, Zhang ZY (2007) PTP1B as a drug target: recent developments in PTP1B inhibitor discovery. Drug Discov Today 12(9–10):373–381

    CAS  PubMed  Google Scholar 

  91. Vintonyak VV, Antonchick AP, Rauh D, Waldmann H (2009) The therapeutic potential of phosphatase inhibitors. Curr Opin Chem Biol 13(3):272–283

    CAS  PubMed  Google Scholar 

  92. Blaskovich MA (2009) Drug discovery and protein tyrosine phosphatases. Curr Med Chem 16(17):2095–2176

    CAS  PubMed  Google Scholar 

  93. Zinker BA, Rondinone CM, Trevillyan JM, Gum RJ, Clampit JE, Waring JF et al (2002) PTP1B antisense oligonucleotide lowers PTP1B protein, normalizes blood glucose, and improves insulin sensitivity in diabetic mice. Proc Natl Acad Sci U S A 99(17): 11357–11362

    CAS  PubMed  Google Scholar 

  94. Swarbrick MM, Havel PJ, Levin AA, Bremer AA, Stanhope KL, Butler M et al (2009) Inhibition of protein tyrosine phosphatase-1B with antisense oligonucleotides improves insulin sensitivity and increases adiponectin concentrations in monkeys. Endocrinology 150(4):1670–1679

    CAS  PubMed  Google Scholar 

  95. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372(6505):425–432

    CAS  PubMed  Google Scholar 

  96. Ahima RS, Flier JS (2000) Leptin. Annu Rev Physiol 62:413–437

    CAS  PubMed  Google Scholar 

  97. Tartaglia LA (1997) The leptin receptor. J Biol Chem 272(10):6093–6096

    CAS  PubMed  Google Scholar 

  98. Ahima RS, Osei SY (2004) Leptin signaling. Physiol Behav 81(2):223–241

    CAS  PubMed  Google Scholar 

  99. Pelleymounter MA, Cullen MJ, Baker MB, Hecht R, Winters D, Boone T et al (1995) Effects of the obese gene product on body weight regulation in ob/ob mice. Science 269(5223):540–543

    CAS  PubMed  Google Scholar 

  100. Cheng A, Uetani N, Simoncic PD, Chaubey VP, Lee-Loy A, McGlade CJ et al (2002) Attenuation of leptin action and regulation of obesity by protein tyrosine phosphatase 1B. Dev cell 2(4):497–503

    CAS  PubMed  Google Scholar 

  101. Zabolotny JM, Bence-Hanulec KK, Stricker-Krongrad A, Haj F, Wang Y, Minokoshi Y et al (2002) PTP1B regulates leptin signal transduction in vivo. Dev Cell 2(4):489–495

    CAS  PubMed  Google Scholar 

  102. Pasquali C, Curchod ML, Walchli S, Espanel X, Guerrier M, Arigoni F et al (2003) Identification of protein tyrosine phosphatases with specificity for the ligand-activated growth hormone receptor. Mol Endocrinol 17(11):2228–2239

    CAS  PubMed  Google Scholar 

  103. Gu F, Dube N, Kim JW, Cheng A, Ibarra-Sanchez Mde J, Tremblay ML et al (2003) Protein tyrosine phosphatase 1B attenuates growth hormone-mediated JAK2-STAT signaling. Mol Cell Biol 23(11):3753–3762

    CAS  PubMed  Google Scholar 

  104. Nievergall E, Janes PW, Stegmayer C, Vail ME, Haj FG, Teng SW et al (2010) PTP1B regulates Eph receptor function and trafficking. J Cell Biol 191(6):1189–1203

    CAS  PubMed  Google Scholar 

  105. Pasquale EB (2008) Eph-ephrin bidirectional signaling in physiology and disease. Cell 133(1):38–52

    CAS  PubMed  Google Scholar 

  106. Mathis D, Vence L, Benoist C (2001) beta-cell death during progression to diabetes. Nature 414(6865):792–798

    CAS  PubMed  Google Scholar 

  107. Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC (2003) Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52(1):102–110

    CAS  PubMed  Google Scholar 

  108. Henquin JC (2000) Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes 49(11):1751–1760

    CAS  PubMed  Google Scholar 

  109. Ravier MA, Guldenagel M, Charollais A, Gjinovci A, Caille D, Sohl G et al (2005) Loss of connexin36 channels alters beta-cell coupling, islet synchronization of glucose-induced Ca2+ and insulin oscillations, and basal insulin release. Diabetes 54(6):1798–1807

    CAS  PubMed  Google Scholar 

  110. Konstantinova I, Nikolova G, Ohara-Imaizumi M, Meda P, Kucera T, Zarbalis K et al (2007) EphA-Ephrin-A-mediated beta cell communication regulates insulin secretion from pancreatic islets. Cell 129(2):359–370

    CAS  PubMed  Google Scholar 

  111. Kushner JA, Haj FG, Klaman LD, Dow MA, Kahn BB, Neel BG et al (2004) Islet-sparing effects of protein tyrosine phosphatase-1b deficiency delays onset of diabetes in IRS2 knockout mice. Diabetes 53(1):61–66

    CAS  PubMed  Google Scholar 

  112. Ozcan U, Cao Q, Yilmaz E, Lee AH, Iwakoshi NN, Ozdelen E et al (2004) Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306(5695): 457–461

    PubMed  Google Scholar 

  113. Hummasti S, Hotamisligil GS (2010) Endoplasmic reticulum stress and inflammation in obesity and diabetes. Circ Res 107(5):579–591

    CAS  PubMed  Google Scholar 

  114. Schroder M, Kaufman RJ (2005) The mammalian unfolded protein response. Annu Rev Biochem 74:739–789

    PubMed  Google Scholar 

  115. Kaufman RJ, Scheuner D, Schroder M, Shen X, Lee K, Liu CY et al (2002) The unfolded protein response in nutrient sensing and differentiation. Nat Rev Mol Cell Biol 3(6):411–421

    CAS  PubMed  Google Scholar 

  116. Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8(7):519–529

    CAS  PubMed  Google Scholar 

  117. Hotamisligil GS (2010) Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 140(6):900–917

    CAS  PubMed  Google Scholar 

  118. Shi Y, Vattem KM, Sood R, An J, Liang J, Stramm L et al (1998) Identification and characterization of pancreatic eukaryotic initiation factor 2 alpha-subunit kinase, PEK, involved in translational control. Mol Cell Biol 18(12):7499–7509

    CAS  PubMed  Google Scholar 

  119. Harding HP, Zhang Y, Ron D (1999) Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397(6716):271–274

    CAS  PubMed  Google Scholar 

  120. Novoa I, Zhang Y, Zeng H, Jungreis R, Harding HP, Ron D (2003) Stress-induced gene expression requires programmed recovery from translational repression. EMBO J 22(5): 1180–1187

    CAS  PubMed  Google Scholar 

  121. Ma Y, Lu Y, Zeng H, Ron D, Mo W, Neubert TA (2001) Characterization of phosphopeptides from protein digests using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and nanoelectrospray quadrupole time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 15(18):1693–1700

    CAS  PubMed  Google Scholar 

  122. Su Q, Wang S, Gao HQ, Kazemi S, Harding HP, Ron D et al (2008) Modulation of the eukaryotic initiation factor 2 alpha-subunit kinase PERK by tyrosine phosphorylation. J Biol Chem 283(1):469–475

    CAS  PubMed  Google Scholar 

  123. Sidrauski C, Walter P (1997) The transmembrane kinase Ire1p is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response. Cell 90(6):1031–1039

    CAS  PubMed  Google Scholar 

  124. Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K (2001) XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107(7):881–891

    CAS  PubMed  Google Scholar 

  125. Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, Harding HP et al (2002) IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415(6867):92–96

    CAS  PubMed  Google Scholar 

  126. Ye J, Rawson RB, Komuro R, Chen X, Dave UP, Prywes R et al (2000) ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol Cell 6(6):1355–1364

    CAS  PubMed  Google Scholar 

  127. Okada T, Yoshida H, Akazawa R, Negishi M, Mori K (2002) Distinct roles of activating transcription factor 6 (ATF6) and double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase (PERK) in transcription during the mammalian unfolded protein response. Biochem J 366(Pt 2):585–594

    CAS  PubMed  Google Scholar 

  128. Zinszner H, Kuroda M, Wang X, Batchvarova N, Lightfoot RT, Remotti H et al (1998) CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev 12(7):982–995

    CAS  PubMed  Google Scholar 

  129. Nishitoh H, Matsuzawa A, Tobiume K, Saegusa K, Takeda K, Inoue K et al (2002) ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev 16(11):1345–1355

    CAS  PubMed  Google Scholar 

  130. Gu F, Nguyen DT, Stuible M, Dube N, Tremblay ML, Chevet E (2004) Protein-tyrosine phosphatase 1B potentiates IRE1 signaling during endoplasmic reticulum stress. J Biol Chem 279(48):49689–49693

    CAS  PubMed  Google Scholar 

  131. Agouni A, Mody N, Owen C, Czopek AJ, Zimmer D, Bentires-Alj M et al (2011) Liver-specific deletion of protein tyrosine phosphatase (PTP) 1B improves obesity- and pharmacologically-induced endoplasmic reticulum stress. Biochem J 438(2):369–378

    CAS  PubMed  Google Scholar 

  132. Bettaieb A, Liu S, Xi Y, Nagata N, Matsuo K, Matsuo I et al (2011) Differential regulation of endoplasmic reticulum stress by protein tyrosine phosphatase 1B and T cell protein tyrosine phosphatase. J Biol Chem 286(11):9225–9235

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fawaz G. Haj M.Sc., D.Phil. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Xi, Y., Haj, F.G. (2013). Protein-Tyrosine Phosphatase 1B Substrates and Control of Metabolism. In: Bence, K. (eds) Protein Tyrosine Phosphatase Control of Metabolism. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7855-3_3

Download citation

Publish with us

Policies and ethics