Skip to main content

Dietary and Nutritional Aspects of Zinc in Critically Ill Adult Patients

  • Reference work entry
  • First Online:
Diet and Nutrition in Critical Care
  • 301 Accesses

Abstract

Zinc is a trace element and an essential micronutrient for physiologic processes in the human body. There are a growing number of medical diseases realized to be associated with zinc deficiency. A patient with one of these diseases is more likely to be zinc deficient upon presentation to the intensive care unit or at increased risk of developing deficiency during their critical illness. In addition, plasma zinc concentration declines early in the course of critical illness secondary to the acute phase response, but delineating who is zinc deficient (i.e., deplete of zinc stores) during that time is not currently possible with routine laboratory tests. The limitations in evaluating zinc status have hindered progress in determining the optimal zinc targets and dosing regimens in patients with critical illness. However, significant knowledge has been gained, in some areas of critical illness (e.g., patients with significant burns), as to the importance of providing zinc support at a time of immense biologic stress. Zinc supplementation guidelines for those patient populations serve as a building block for ongoing research in assessing the role of zinc status in acute critical illness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

APR:

Acute phase response

BSA:

Body surface area

Cu:

Copper

CV:

Cardiovascular

DM:

Diabetes mellitus

EDTA:

Edetate disodium

EZ:

Elemental zinc

GI:

Gastrointestinal

HCTZ:

Hydrochlorothiazide

HDL:

High density lipoprotein

HIV:

Human immunodeficiency virus

ICU:

Intensive care unit

IL:

Interleukin

LOS:

Length of stay

mg:

Milligram

Misc:

Miscellaneous

PN:

Parenteral nutrition

RCT:

Randomized clinical trial

RDA:

Recommended Daily Allowance

SCD:

Sickle cell disease

TNF:

Tumor necrosis factor

TPN:

Total parenteral nutrition

USA:

United States

References

  • Abbott Nutrition. Adult tube feeding products. http://abbottnutrition.com/categories/adult/adult-tube-feeding-products. Accessed May 2013.

  • Agarwal A, Khanna P, Baidya D, Arora MK. Trace elements in critical illness. J Endocrinol Metab. 2011;1:57–63.

    CAS  Google Scholar 

  • Bajait C, Thawani V. Role of zinc in pediatric diarrhea. Indian J Pharm. 2011;43:232–5.

    Article  CAS  Google Scholar 

  • Bao B, Prasad AS, Beck FW, Fitzgerald JT, Snell D, Bao GW, et al. Zinc decreases C-reactive protein, lipid peroxidation, and inflammatory cytokines in elderly subjects: a potential implication of zinc as an atheroprotective agent. Am J Clin Nutr. 2010a;91:1634–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao S, Liu MJ, Lee B, Besecker B, Lai JP, Guttridge DC, et al. Zinc modulates the innate immune response in vivo to polymicrobial sepsis through regulation of NF-kappaB. Am J Physiol Lung Cell Mol Physiol. 2010b;298:L744–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baum MK, Lai S, Sales S, Page JB, Campa A. Randomized, controlled clinical trial of zinc supplementation to prevent immunological failure in HIV-infected adults. Clin Infect Dis. 2010;50:1653–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berger MM. Antioxidant micronutrients in major trauma and burns: evidence and practice. Nutr Clin Pract. 2006;21:438–49.

    Article  PubMed  Google Scholar 

  • Berger MM, Baines M, Raffoul W, Benathan M, Chiolero RL, Reeves C, et al. Trace element supplementation after major burns modulates antioxidant status and clinical course by way of increased tissue trace element concentrations. Am J Clin Nutr. 2007;85:1293–300.

    CAS  PubMed  Google Scholar 

  • Berger MM, Berger-Gryllaki M, Wiesel PH, Revelly JP, Hurni M, Cayeux C, et al. Intestinal absorption in patients after cardiac surgery. Crit Care Med. 2000;28:2217–23.

    Article  CAS  PubMed  Google Scholar 

  • Berger MM, Cavadini C, Bart A, Mansourian R, Guinchard S, Bartholdi I, et al. Cutaneous copper and zinc losses in burns. Burns. 1992;18:373–80.

    Article  CAS  PubMed  Google Scholar 

  • Berger MM, Reymond MJ, Shenkin A, Rey F, Wardle C, Cayeux C, et al. Influence of selenium supplements on the post-traumatic alterations of the thyroid axis: a placebo-controlled trial. Intensive Care Med. 2001;27:91–100.

    Article  CAS  PubMed  Google Scholar 

  • Berger MM, Spertini F, Shenkin A, Wardle C, Wiesner L, Schindler C, et al. Trace element supplementation modulates pulmonary infection rates after major burns: a double-blind, placebo-controlled trial. Am J Clin Nutr. 1998;68:365–71.

    CAS  PubMed  Google Scholar 

  • Besecker BY, Exline MC, Hollyfield J, Phillips G, Disilvestro RA, Wewers MD, et al. A comparison of zinc metabolism, inflammation, and disease severity in critically ill infected and noninfected adults early after intensive care unit admission. Am J Clin Nutr. 2011;93:1356–64.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bozalioglu S, Ozkan Y, Turan M, Simsek B. Prevalence of zinc deficiency and immune response in short-term hemodialysis. J Trace Elem Med Biol. 2005;18:243–9.

    Article  CAS  PubMed  Google Scholar 

  • Braunschweig CL, Sowers M, Kovacevich DS, Hill GM, August DA. Parenteral zinc supplementation in adult humans during the acute phase response increases the febrile response. J Nutr. 1997;127:70–4.

    CAS  PubMed  Google Scholar 

  • Brocks A, Reid H, Glazer G. Acute IV zinc poisoning. BMJ. 1977;1:1390–1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakravarty P. Evaluation of serum zinc level under malignant condition and its possible implication on improving cell-mediated immunity during cancer progression. World J Oncol. 2011;2:16–23.

    CAS  Google Scholar 

  • Chausmer AB. Zinc, insulin and diabetes. J Am Coll Nutr. 1998;17:109–15.

    Article  CAS  PubMed  Google Scholar 

  • Costello LC, Franklin RB. The clinical relevance of the metabolism of prostate cancer; zinc and tumor suppression: connecting the dots. Mol Cancer. 2006;5:17.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cvijanovich NZ, King JC, Flori HR, Gildengorin G, Wong HR. Zinc homeostasis in pediatric critical illness. Pediatr Crit Care Med. 2009;10:29–34.

    Article  PubMed  Google Scholar 

  • Davies IJ, Musa M, Dormandy TL. Measurements of plasma zinc. I. In health and disease. J Clin Pathol. 1968;21:359–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Haan KE, Woroniecka UD, Boxma H, de Groot CJ, van den Hamer CJ. Urinary zinc excretion in a patient with burns: a caveat when using bladder catheters in urine zinc studies. Burns. 1990;16:393–5.

    Article  PubMed  Google Scholar 

  • Ding Y, Jia YY, Li F, Liu WX, Lu CT, Zhu YR, et al. The effect of staggered administration of zinc sulfate on the pharmacokinetics of oral cephalexin. Br J Clin Pharmacol. 2012;73:422–7.

    Article  CAS  PubMed  Google Scholar 

  • Doherty CP, Weaver LT, Prentice AM. Micronutrient supplementation and infection: a double-edged sword? J Pediatr Gastroenterol Nutr. 2002;34:346–52.

    Article  CAS  PubMed  Google Scholar 

  • Drugs.com [Internet]. Zinc supplements (systemic) monograph. 2000. http://www.Drugs.com. Accessed May 2013.

  • Farrell C, Morgan M, Rudolph D, Hwang A, Albert N, Valenzano M, et al. Proton pump inhibitors interfere with zinc absorption and zinc body stores. Gastroenterol Res. 2011;4:243–51.

    CAS  Google Scholar 

  • Fell GS, Fleck A, Cuthbertson DP, Queen K, Morrison C, Bessent RG, et al. Urinary zinc levels as an indication of muscle catabolism. Lancet. 1973;1:280–2.

    Article  CAS  PubMed  Google Scholar 

  • Fosmire GJ. Zinc toxicity. Am J Clin Nutr. 1990;51:225–7.

    CAS  PubMed  Google Scholar 

  • Fraker PJ, King LE. Reprogramming of the immune system during zinc deficiency. Annu Rev Nutr. 2004;24:277–98.

    Article  CAS  PubMed  Google Scholar 

  • Fuhrman PM, Herrmann HV. Micronutrients in critical illness. In: Shikora SA, Martindale RG, Schwaitzberg SD, editors. Nutrition considerations in the intensive care unit. Silver Springs: American Society for Parenteral and Enteral Nutrition; 2002. p. 51–60.

    Google Scholar 

  • Gazzola L, Tincati C, Bellistri GM, Monforte A, Marchetti G. The absence of CD4+ T cell count recovery despite receipt of virologically suppressive highly active antiretroviral therapy: clinical risk, immunological gaps, and therapeutic options. Clin Infect Dis. 2009;48:328–37.

    Article  PubMed  Google Scholar 

  • Golik A, Modai D, Weissgarten J, Cohen N, Averbukh Z, Sigler E, et al. Hydrochlorothiazide-amiloride causes excessive urinary zinc excretion. Clin Pharmacol Ther. 1987;42:42–4.

    Article  CAS  PubMed  Google Scholar 

  • Heyland DK, Dhaliwalm R, Day A, Drover J, Cote H, Wischmeyer P. Optimizing the dose of glutamine dipeptides and antioxidants in critically ill patients: a phase I dose-finding study. J Parenter Enteral Nutr. 2007;31:109–18.

    Article  CAS  Google Scholar 

  • Heyland DK, Dhaliwal R, Suchner U, Berger MM. Antioxidant nutrients: a systematic review of trace elements and vitamins in the critically ill patient. Intensive Care Med. 2005;31:327–37.

    Article  PubMed  Google Scholar 

  • Heyland DK, Jones N, Cvijanovich NZ, Wong H. Zinc supplementation in critically ill patients: a key pharmaconutrient? J Parenter Enteral Nutr. 2008;32:509–19.

    Article  CAS  Google Scholar 

  • Ho E. Zinc deficiency, DNA damage and cancer risk. J Nutr Biochem. 2004;15:572–8.

    Article  CAS  PubMed  Google Scholar 

  • Ho E, Courtemanche C, Ames BN. Zinc deficiency induces oxidative DNA damage and increases p53 expression in human lung fibroblasts. J Nutr. 2003;133:2543–8.

    CAS  PubMed  Google Scholar 

  • Jansen J, Karges W, Rink L. Zinc and diabetes–clinical links and molecular mechanisms. J Nutr Biochem. 2009;20:399–417.

    Article  CAS  PubMed  Google Scholar 

  • Krebs N, Westcott J, Huffer J, Miller L. Absorption of exogenous zinc and secretion of endogenous zinc in the human small intestine. FASEB J. 1998;12:A345.

    Google Scholar 

  • Liuzzi JP, Lichten LA, Rivera S, Blanchard RK, Aydemir TB, Knutson MD, et al. Interleukin-6 regulates the zinc transporter Zip14 in liver and contributes to the hypozincemia of the acute-phase response. Proc Natl Acad Sci USA. 2005;102:6843–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lonnerdal B. Dietary factors influencing zinc absorption. J Nutr. 2000;130:1378S–83.

    CAS  PubMed  Google Scholar 

  • Lonnerdal B, Cederblad A, Davidsson L, Sandstrom B. The effect of individual components of soy formula and cows’ milk formula on zinc bioavailability. Am J Clin Nutr. 1984;40:1064–70.

    CAS  PubMed  Google Scholar 

  • Menard MP, Cousins RJ. Zinc transport by brush border membrane vesicles from rat intestine. J Nutr. 1983;113:1434–42.

    CAS  PubMed  Google Scholar 

  • Miller LV, Hambidge KM, Naake VL, Hong Z, Westcott JL, Fennessey PV. Size of the zinc pools that exchange rapidly with plasma zinc in humans: alternative techniques for measuring and relation to dietary zinc intake. J Nutr. 1994;124:268–76.

    CAS  PubMed  Google Scholar 

  • Murphy J. Intoxication following ingestion of elemental zinc. JAMA. 1970;212:2119–20.

    Article  CAS  PubMed  Google Scholar 

  • NestleHealthScience. Critical Care Formulas. http://www.nestlehealthscience.us/products. Accessed May 2013.

  • NIH U.S. National Library of Medicine. Propofol injection, emulsion. Rev. Aug 2010 http://dailymed.nlm.nih.gov. Accessed May 2013.

  • Office of Dietary Supplements. Zinc Health Professional Fact Sheet. http://ods.od.nih.gov/factsheets/zinc-healthprofessional. Accessed May 2013.

  • Prasad AS, Beck FW, Kaplan J, Chandrasekar PH, Ortega J, Fitzgerald JT, et al. Effect of zinc supplementation on incidence of infections and hospital admissions in sickle cell disease (SCD). Am J Hematol. 1999;61:194–202.

    Article  CAS  PubMed  Google Scholar 

  • Prasad AS, Meftah S, Abdallah J, Kaplan J, Brewer GJ, Bach JF, et al. Serum thymulin in human zinc deficiency. J Clin Invest. 1988;82:1202–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prelack K, Sheridan RL. Micronutrient supplementation in the critically ill patient: strategies for clinical practice. J Trauma. 2001;51:601–20.

    CAS  PubMed  Google Scholar 

  • Solomons NW. Biological availability of zinc in humans. Am J Clin Nutr. 1982;35:1048–75.

    CAS  PubMed  Google Scholar 

  • Sriram K, Lonchyna VA. Micronutrient supplementation in adult nutrition therapy: practical considerations. JPEN J Parenter Enteral Nutr. 2009;33:548–62.

    Article  CAS  PubMed  Google Scholar 

  • Tapazoglou E, Prasad AS, Hill G, Brewer GJ, Kaplan J. Decreased natural killer cell activity in patients with zinc deficiency with sickle cell disease. J Lab Clin Med. 1985;105:19–22.

    CAS  PubMed  Google Scholar 

  • Vanek VW, Borum P, Buchman A, Fessler TA, Howard L, Jeejeebhoy K, et al. A.S.P.E.N. position paper: recommendations for changes in commercially available parenteral multivitamin and multi-trace element products. Nutr Clin Pract. 2012;27:440–91.

    Article  PubMed  Google Scholar 

  • Visser J, Labadarios D, Blaauw R. Micronutrient supplementation for critically ill adults: a systematic review and meta-analysis. Nutrition. 2011;27:745–58.

    Article  CAS  PubMed  Google Scholar 

  • Wolman SL, Anderson GH, Marliss EB, Jeejeebhoy KN. Zinc in total parenteral nutrition: requirements and metabolic effects. Gastroenterology. 1979;76:458–67.

    CAS  PubMed  Google Scholar 

  • Young B, Ott L, Kasarskis E, Rapp R, Moles K, Dempsey RJ, et al. Zinc supplementation is associated with improved neurologic recovery rate and visceral protein levels of patients with severe closed head injury. J Neurotrauma. 1996;13:25–34.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beth Besecker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science and Business Media New York (outside the USA)

About this entry

Cite this entry

Besecker, B. (2015). Dietary and Nutritional Aspects of Zinc in Critically Ill Adult Patients. In: Rajendram, R., Preedy, V.R., Patel, V.B. (eds) Diet and Nutrition in Critical Care. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7836-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7836-2_20

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7837-9

  • Online ISBN: 978-1-4614-7836-2

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics