Skip to main content

Solar radiometry

  • Chapter
  • First Online:
Observing Photons in Space

Part of the book series: ISSI Scientific Report Series ((ISSI,volume 9))

Abstract

The classical radiometry for total solar irradiance (TSI) measurements is described using examples of the four types of radiometers currently used in space. The design, characterization and operation of these radiometers are described. Besides the instrumental characteristics determining the measurement uncertainties, an important issue is possible long-term changes of the radiometers exposed to solar irradiance — especially in the EUV — and the space environment. A model for the degradation has been developed which can explain the behaviour of most radiometers in space. The TSI record since 1978 from different platforms and radiometers can be combined in a composite time series which demonstrates that although the assumed uncertainty of the present state-of-the-art radiometers is insufficient, their short- and long-term precision is good enough to produce a reliable time series of TSI over almost 30 years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    i.e., electrical connections

References

  • Abbot C (1952) Periodicities in the solar-constant measures. Smithsonian MiscColl 117(10):1–31

    Google Scholar 

  • Aldrich L, Hoover W (1954) Annals of the Astrophysical Observatory of the Smithsonian Institution, vol 7, Smithsonian Institution, Washington, DC, U.S.A., chap 7: Statistical Studies of the Solar-Constant Record, pp 165–168

    Google Scholar 

  • Brusa RW, Fröhlich C (1986) Absolute radiometers (PMO6) and their experimental characterization. Appl Opt 25:4173–4180

    Google Scholar 

  • Crommelynck D (1989) Factors limiting the accuracy of absolute radiometry. In: New Developments and Applications in Optical Radiometry (ed N Fox) Inst Phys Conf Ser 92, London, pp 19–24

    Google Scholar 

  • Crommelynck D, Dewitte S (2005) The DIARAD type instruments: Principles and error estimates, presented at the “Total Solar Irradiance Workshop” at NIST, Gaithersberg, Md, USA, 18–20 July 2005

    Google Scholar 

  • Crommelynck DA, Brusa RW, Domingo V (1987) Results of the solar constant experiment onboard Spacelab 1. Sol Phys 107:1–9

    Google Scholar 

  • Dewitte S, Crommelynck D, Joukoff A (2004a) Total solar irradiance observations from DIARAD/VIRGO. J Geophys Res 109:A02102

    Google Scholar 

  • Dewitte S, Crommelynck D, Mekaoui S, Joukoff A (2004b) Measurement and uncertainty of the long-term total solar irradiance trend. Sol Phys 224:209–216

    Google Scholar 

  • Drummond AJ, Hickey JR, Scholes WJ (1968) New value for the solar constant of radiation. Nature 218:259–261

    Google Scholar 

  • Finsterle W, Blattner P, Moebus S (plus four authors) (2008) Third comparison of the World Radiometric Reference and the SI radiometric scale. Metrologia 45:377–381

    Google Scholar 

  • Foukal P, Ortiz A, Schnerr R (2011) Dimming of the 17th Century Sun. Astrophys Journal Lett 733:L38

    Google Scholar 

  • Fröhlich C (1977) Contemporary measures of the solar constant. In: The Solar Output and its Variation (ed. OR White), Colorado Associated Univ. Press, Boulder, pp 93–109

    Google Scholar 

  • Fröhlich C (1991) History of solar radiometry and the World Radiometric Reference. Metrologia 28:111–115

    Google Scholar 

  • Fröhlich C (2003) Long-term behaviour of space radiometers. Metrologia 40:60–65

    Google Scholar 

  • Fröhlich C (2004) Solar irradiance variability. In: Geophysical Monograph 141: Solar Variability and its Effect on Climate, American Geophysical Union, Washington DC, USA, chap 2: Solar Energy Flux Variations, pp 97–110

    Google Scholar 

  • Fröhlich C (2006) Solar irradiance variability since 1978: Revision of the PMOD composite during solar cycle 21. Space Sci Rev 125:53–65

    Google Scholar 

  • Fröhlich C (2009) Total solar irradiance variability: What have we learned about its variability from the record of the last three solar cycles? In: Climate and Weather of the Sun-Earth System(CAWSES): Selected Papers from the 2007 Kyoto Symposium, October, 23–27 2007, (eds T Tsuda, R Fujii, K Shibata, M Geller) Terra Publishing, Setagaya-ku, Tokyo, Japan, 217–230

    Google Scholar 

  • Fröhlich C (2010) Possible Influence of Aperture Heating on VIRGO Radiometry on SOHO. AGU Fall Meeting Abstracts B874

    Google Scholar 

  • Fröhlich C (2011) A four-component proxy model for total solar irradiance calibrated during solar cycles 21–23. Contrib Astron Obs Skalnate Pleso 41:113–132

    Google Scholar 

  • Fröhlich C (2012) Total solar irradiance observations. Surveys in Geophysics 33 (3–4):453–473

    Google Scholar 

  • Fröhlich C, Anklin M (2000) Uncertainty of total solar irradiance: An assessment of the last 20 years of space radiometry. Metrologia 37:387–391

    Google Scholar 

  • Fröhlich C, Finsterle W (2001) VIRGO radiometry and total solar irradiance 1996-2000 revised. ASP Conf Ser 203:105–110

    Google Scholar 

  • Fröhlich C, Romero J, Roth H (plus 21 authors) (1995) VIRGO: Experiment for helioseismology and solar irradiance monitoring. Sol Phys 162:101–128

    Google Scholar 

  • Fröhlich C, Crommelynck D, Wehrli C (plus seven authors) (1997) In-flight performances of VIRGO solar irradiance instruments on SOHO. Sol Phys 175:267–286

    Google Scholar 

  • Geist J (1972) Fundamental principles of absolute radiometry and the philosophy of this NBS program (1968–1971). In: NBS Technical Note 594-1, U.S. Department of Commerce, National Bureau of Standards, Gaithersburg, Md, USA

    Google Scholar 

  • Johnson BC, Litorja M, Butler JJ (2003) Preliminary results of aperture-area comparison for exo-atmospheric solar irradiance. Proc SPIE 5151:454–462

    Google Scholar 

  • Kopp G, Lawrence G (2005) The Total Irradiance Monitor (TIM): Instrument design. Sol Phys 230:91–109

    Google Scholar 

  • Kopp G, Lean JL (2011) A new, lower value of total solar irradiance: Evidence and climate significance. Geophys Res Lett 38:L01706

    Google Scholar 

  • Kopp G, Heuerman K, Lawrence G (2005a) The Total Irradiance Monitor (TIM): Instrument calibration. Sol Phys 230:111–127

    Google Scholar 

  • Kopp G, Lawrence G, Rottman G (2005b) The Total Irradiance Monitor (TIM): Science results. Sol Phys 230:129–139

    Google Scholar 

  • Kopp G, Heuerman K, Harber D, Drake G (2007) The TSI Radiometer Facility: absolute calibrations for total solar irradiance instruments. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series 6677, DOI 10.1117/12.734553

    Google Scholar 

  • Litorja M, Johnson BC, Fowler J (2007) Area measurements of apertures for exo-atmospheric solar irradiance for JPL. Proc SPIE 6677:667–708

    Google Scholar 

  • Lockwood M, Fröhlich C (2007) Recent oppositely directed trends in solar climate forcing and the global mean surface air temperature. Proc R Soc A 463:2447–2460

    Google Scholar 

  • Lockwood M, Fröhlich C (2008) Recent oppositely-directed trends in solar climate forcings and the global mean surface air temperature: II. different reconstructions of the total solar irradiance variation and dependence on response timescale. Proc R Soc A 464:1367–1385

    Google Scholar 

  • Mekaoui S, Dewitte S, Conscience C, Chevalier A (2010) Total solar irradiance absolute level from DIARAD/SOVIM on the International Space Station. Advances in Space Research 45:1393–1406

    Google Scholar 

  • Plamondon J (1969) The Mariner Mars 1969 temperature control flux monitor. JPL Space Prog Summary 37–59, Vol.III(37–59):162–168

    Google Scholar 

  • Rottman G, Floyd L, Viereck R (2004) Measurement of the solar ultraviolet irradiance.Geophysical Monograph 141:111–126

    Google Scholar 

  • Schnerr RS, Spruit HC (2011) The Total Solar Irradiance and Small Scale Magnetic Fields. ASP Conf Ser, vol 437:167–175

    Google Scholar 

  • Shirley EL (1998) Revised formulas for diffraction effects with point and extended sources. Appl Opt 37:6581–6590

    Google Scholar 

  • Tapping KF, Boteler D, Charbonneau P (plus three authors) (2007) Solar Magnetic Activity and Total Irradiance Since the Maunder Minimum. Solar Phys 246:309–326

    Google Scholar 

  • Wilhelm K, Fröhlich C (2013) Photons—from source to detector. ISSI SR-009:21–53

    Google Scholar 

  • Willson RC (1972) Experimental comparisons of the International Pyrheliometric Scale with the absolute radiation scale. Nature 239:208–209

    Google Scholar 

  • Willson RC (1979) Active cavity radiometer type iv. Appl Opt 18:179–188

    Google Scholar 

  • Willson RC (2001) The ACRIMSAT/ACRIM III Experiment: Extending the precision, long-term total solar irradiance climate database. The Earth Observer 13:14–17

    Google Scholar 

  • Willson RC, Hudson HS (1991) The Sun’s luminosity over a complete solar cycle. Nature 351:42–44

    Google Scholar 

  • Willson R, Helizon R (2005) Active cavity radiometer irradiance monitors: S.I. measurements uncertainties, presented at the “Total Solar Irradiance Workshop” at NIST, Gaithersberg, Md, USA, 18–20 July 2005

    Google Scholar 

  • Willson RC, Mordvinov AV (2003) Secular total solar irradiance trend during solar cycles 21–23. Geophys Res Lett 30:1199

    Google Scholar 

Download references

Acknowledgements

The author would like to thank Greg Kopp, LASP at University of Colorodo, Steven Dewitte and Andre Chevalier, Institut Royale Météorologique de Belgique, Richard Willson, Columbus University, for many helpful discussions about their radiometers. And last but not least all these results would not have possible without the continuing support of the Swiss National Science Foundation, and the SOHO and VIRGO Teams, which is gratefully acknowledged. SOHO is a cooperative mission of ESA and NASA.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fröhlich, C. (2013). Solar radiometry. In: Huber, M.C.E., Pauluhn, A., Culhane, J.L., Timothy, J.G., Wilhelm, K., Zehnder, A. (eds) Observing Photons in Space. ISSI Scientific Report Series, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7804-1_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7804-1_32

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7803-4

  • Online ISBN: 978-1-4614-7804-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics