Skip to main content

Sperm DNA Fragmentation and Base Oxidation

  • Chapter
  • First Online:
Genetic Damage in Human Spermatozoa

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 791))

Abstract

Sperm DNA damage has been shown to be a valuable diagnostic and prognostic biomarker for male infertility and assisted reproductive treatment (ART) outcome. It is linked to every fertility checkpoint from reduced fertilization rates, lower embryo quality and pregnancy rates to higher rates of spontaneous miscarriage and childhood diseases. It is more robust than conventional semen parameters.

The aim of this chapter is to provide an overview of current laboratory tests and relationships between sperm DNA damage and clinical outcomes. The conclusion is that sperm DNA damage is an important indicator of semen quality, and its routine use in the fertility clinic would improve ART success rates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adler ID (2000) Spermatogenesis and mutagenicity of environmental hazards: extrapolation of genetic risk from mouse to man. Andrologia 32(4):233–237

    Article  CAS  PubMed  Google Scholar 

  • Agbaje IM, McVicar CM, Schock BC et al (2008) Increased levels of the oxidative DNA adduct 7, 8-dihydro-8-oxo-2′-deoxoguanosine in the germ-line of men with type-1 diabetes. Reprod Biomed Online 16(3):401–409

    Article  CAS  PubMed  Google Scholar 

  • Aitken RJ, De Iuliis GN (2007) Origins and consequences of DNA damage in male germ cells. Reprod Biomed Online 14(6):727–733

    Article  CAS  PubMed  Google Scholar 

  • Aitken RJ, Clarkson JS, Fishel S (1989) Generation of reactive oxygen species, lipid peroxidation, and human sperm function. Biol Reprod 41(1):183–197

    Article  CAS  PubMed  Google Scholar 

  • Aitken RJ, De Iuliis GN, Finnie JM et al (2010) Analysis of the relationships between oxidative stress, DNA damage and sperm vitality in a patient population: development of diagnostic criteria. Hum Reprod 25:2415–2426

    Article  CAS  PubMed  Google Scholar 

  • Aitken RJ, Jones KT, Robertson SA (2012) Reactive oxygen species and sperm function–in sickness and in health. J Androl 33(6):1096–1106

    Article  CAS  PubMed  Google Scholar 

  • Anderson D (2001) Genetic and reproductive toxicity of butadiene and isoprene. Chem Biol Interact 135–136:65–80

    Article  PubMed  Google Scholar 

  • Barratt CLR, Bjoerndahl L, Menkveld R et al (2011) ESHRE special interest group for andrology basic semen analysis course: a continued focus on accuracy, quality, efficiency and clinical relevance. In Hum Reprod 26(12)3207–3212

    Google Scholar 

  • Bungum M, Humaidan P, Axmon A et al (2007) Sperm DNA integrity assessment in prediction of assisted reproduction technology outcome. Hum Reprod 22:174–179

    Article  CAS  PubMed  Google Scholar 

  • Bungum M, Bungum L, Giwercman A (2011) Sperm chromatin structure assay (SCSA): a tool in diagnosis and treatment of infertility. Asian J Androl 13:69–75

    Article  CAS  PubMed  Google Scholar 

  • Cates W, Farley TM, Rowe PJ (1985) Worldwide patterns of infertility: is Africa different? Lancet 326:596–598

    Article  Google Scholar 

  • Darzynkiewicz Z, Traganos F, Sharpless T et al (1975) Thermal denaturation of DNA in situ as studied by acridine orange staining and automated cytofluorometry. Exp Cell Res 90:411

    Article  CAS  PubMed  Google Scholar 

  • Davies MJ, Moore VM, Willson KJ et al (2012) Reproductive technologies and the risk of birth defects. N Engl J Med 366:1803–1813. doi:10.1056/NEJMoa1008095

    Article  CAS  PubMed  Google Scholar 

  • De Iuliis GN, Thomson LK, Mitchell LA et al (2009) DNA damage in human spermatozoa is highly correlated with the efficiency of chromatin remodelling and the formation of 8-Hydroxy-2′ – deoxyguanosine, a marker of oxidative stress. Biol Reprod 81(3):517–524

    Article  PubMed  Google Scholar 

  • De Mouzon J, Goossens V, Bhattacharya S et al (2010) Andersen, and the European IVF-monitoring (EIM) consortium, for the European society of human reproduction and embryology (ESHRE). Hum Reprod 25(8):1851–1862

    Article  PubMed  Google Scholar 

  • Dumoulin JC, Land JA, Van Montfoort AP et al (2010) Effect of in vitro culture of human embryos on birthweight of newborns. Hum Reprod 25(3):605–612

    Article  PubMed  Google Scholar 

  • Dupas C, Christine-Maitre S (2008) What are the factors affecting fertility in 2008? Ann Endocrinol 69:57–61

    Article  Google Scholar 

  • Ebner T, Shebl O, Moser M et al (2011) Easy sperm processing technique allowing exclusive accumulation and later usage of ANA-strandbreak-free spermatozoa. Reprod Biomed Online 22:37–43

    Article  CAS  PubMed  Google Scholar 

  • Evenson D, Wixon R (2006a) Meta-analysis of sperm DNA fragmentation using the sperm chromatin structure assay. Reprod Biomed Online 12:466–472

    Article  CAS  PubMed  Google Scholar 

  • Evenson DP, Wixon R (2006b) Clinical aspects of sperm DNA fragmentation detection and male infertility. Theriogenology 65:979–991

    Article  CAS  PubMed  Google Scholar 

  • Evenson DP, Jost LK, Baer RK et al (1991) Individuality of DNA denaturation patterns in human sperm as measured by the sperm chromatin structure assay. Reprod Toxicol 5:115–125

    Article  CAS  PubMed  Google Scholar 

  • Evenson DP, Jost LK, Marshall D et al (1999) Utility of the sperm chromatin structure assay as a diagnostic and prognostic tool in the human fertility clinic. Hum Reprod 14:1039–1049

    Article  CAS  PubMed  Google Scholar 

  • Evenson DP, Larson K, Jost LK (2002) The sperm chromatin structure assay (SCSATM): clinical use for detecting sperm DNA fragmentation related to male infertility and comparisons with other techniques. Andrology Lab Corner J Androl 23:25–43

    Google Scholar 

  • Fernández-Gonzalez R, Moreira PN, Pérez-Crespo M et al (2008) Long-term effects of mouse intracytoplasmic sperm injection with DNA-fragmented sperm on health and behavior of adult offspring. Biol Reprod 78:761–772

    Article  PubMed  Google Scholar 

  • Ferraretti AP, Goossens V, de Mouzon J et al (2012) The European IVF-monitoring (EIM), and consortium, for the European society of human reproduction and embryology (ESHRE). Hum Reprod 27(9):1–14

    Article  Google Scholar 

  • Fraga CG, Motchnik PA, Wyrobek AJ et al (1996) Smoking and low antioxidant levels increase oxidative damage to DNA. Mutat Res 351:199–203

    Article  PubMed  Google Scholar 

  • Frans EM, Sandin S, Reichenberg A et al (2008) Advancing paternal age and bipolar disorder. Arch Gen Psychiatry 65:1034–1040

    Article  PubMed  Google Scholar 

  • Freour T, Delvigne A, Barriere P (2010) Evaluation of the male of the infertile couple. J Gynecol Obstet Biol Reprod 32:S45–S52

    Article  Google Scholar 

  • Gharagozloo P, Aitken RJ (2011) The role of sperm oxidative stress in male infertility and the significance of oral antioxidant therapy. Hum Reprod 26(7):1628–1640

    Article  PubMed  Google Scholar 

  • Giwercman A, Lindstedt L, Larsson M et al (2010) Sperm chromatin structure assay as an independent predictor of fertility in vivo: a case-control study. Int J Androl 33(1):221–227

    Article  Google Scholar 

  • Greco E, Iacobelli M, Rienzi L et al (2005) Reduction of the incidence of sperm DNA fragmentation by oral antioxidant treatment. J Androl 3:349–353

    Article  Google Scholar 

  • Green RF, Devine O, Crider KS et al (2010) National birth defects prevention study. Association of paternal age and risk for major congenital anomalies from the National birth defects prevention study, 1997 to 2004. Ann Epidemiol 20:241–249

    Article  PubMed  Google Scholar 

  • Gu LG, Chen ZW, Lu WH et al (2011) Effects of abnormal structure of sperm chromatin on the outcome of in vitro fertilization and embryo transfer. Zhonghua Yi Xue Yi Chuan Xue Za Zhi (article in Chinese) 28:156–159

    Google Scholar 

  • Guzick DS, Overstreet JW, Factor-Litvak P et al (2001) National cooperative reproductive medicine network. Sperm morphology, motility, and concentration in fertile and infertile men. N Engl J Med 345(19):1388–1393

    Article  CAS  PubMed  Google Scholar 

  • Hemminki K, Kyyrönen P, Vaittinen P (1999) Parental age as a risk factor of childhood leukemia and brain cancer in offspring. Epidemiology 10:271–275

    Article  CAS  PubMed  Google Scholar 

  • Henkel Ralf R (2011) Leukocytes and oxidative stress: dilemma for sperm function and male fertility. Asian J Androl 13(1):43–52

    Article  CAS  PubMed  Google Scholar 

  • HFEA (2008) A long term analysis of the HFEA register data (1991–2006). Human fertilisation and embryology authority

    Google Scholar 

  • Hull MG, Glazener CM, Kelly NJ et al (1985) Population study of causes, treatment and outcome of infertility. BMJ 291:1693–1697

    Article  CAS  PubMed  Google Scholar 

  • Irvine SD (1998) Epidemiology and aetiology of male infertility. Hum Reprod 13:33–44

    Article  PubMed  Google Scholar 

  • Irvine SD, Twigg JP, Gordon EL et al (2000) DNA integrity in human spermatozoa: relationships with semen quality. J Androl 21:33–44

    CAS  PubMed  Google Scholar 

  • Ji BT, Shu XO, Linet MS et al (1997) Paternal cigarette smoking and the risk of childhood cancer among offspring of nonsmoking mothers. J Natl Cancer Inst 89:238–244

    Article  CAS  PubMed  Google Scholar 

  • Johnson KJ, Carozza SE, Chow EJ et al (2011) Birth characteristics and childhood carcinomas. Br J Cancer 105:1396–1401

    Article  CAS  PubMed  Google Scholar 

  • Jørgensen N, Auger J, Giwercman A et al (1997) Semen analysis performed by different laboratory teams: an intervariation study. Int J Androl 20(4):201–208

    Article  PubMed  Google Scholar 

  • Klein EA, Thompson IM Jr, Tangen CM et al (2011) Vitamin E and the risk of prostate cancer: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA 306(14):1549–1556

    Article  CAS  PubMed  Google Scholar 

  • Kols A, Nguyen T (1997) Infertility in developing countries. Outlook 15

    Google Scholar 

  • Koskimies AI, Savander M, Ann-Marie N et al (2010) Sperm DNA damage and male infertility. Duodecim 126:2837–2842

    PubMed  Google Scholar 

  • Lanzafame FM, La Vignera S, Vicari E et al (2009) Oxidative stress and medical antioxidant treatment in male infertility. Reprod Biomed Online 19:638–659

    Article  CAS  PubMed  Google Scholar 

  • Lee KM, Ward MH, Han S et al (2009) Paternal smoking, genetic polymorphisms in CYP1A1 and childhood leukemia risk. Leuk Res 33:250–258

    Article  CAS  PubMed  Google Scholar 

  • Lefièvre L, Bedu-Addo K, Conner SJ et al (2007) Counting sperm does not add up any more: time for a new equation? Reproduction 133(4):675–684

    Article  PubMed  Google Scholar 

  • Lewis S (2007) Is sperm evaluation useful in predicting human fertility? Reproduction 134:1–11, Reproduction 133(4):675–684

    Article  Google Scholar 

  • Lewis SEM, Boyle PM, McKinney K et al (1995) Total antioxidant capacity of seminal plasma is different in fertile and infertile men. Fertil Steril 64(4):868–870

    CAS  PubMed  Google Scholar 

  • Makker K, Agarwal A, Sharma R (2009) Oxidative stress & male infertility. Indian J Med Res 129(4):357–367

    CAS  PubMed  Google Scholar 

  • Meseguer M, Martinez-Conejero JA, O’Connor JE et al (2008) The significance of sperm DNA oxidation in embryo development and reproductive outcome in an oocyte donation program: a new model to study a male infertility prognostic factor. Fertil Steril 89(5):1191–1199

    Article  PubMed  Google Scholar 

  • Meseguer M, Stantiso R, Garrido N et al (2011) Effect of sperm DNA fragmentation on pregnancy outcome depends on oocyte quality. Fertil Steril 95(1):124–128

    Article  CAS  PubMed  Google Scholar 

  • Meseguer M, Santiso R, Garrido N et al (2009) Sperm DNA fragmentation levels in testicular sperm samples from azoospermic males as assessed by the sperm chromatin dispersion (SCD) test. Fertil Steril 29(5)1638–1645

    Google Scholar 

  • Mitchell LA, De luliis GN, Aitken RJ (2010) The TUNEL assay consistently underestimates DNA damage in human spermatozoa and is influenced by DNA compaction and cell vitality: development of an improved methodology. Int J Androl 33:1–12

    Google Scholar 

  • Nallella KP, Sharma RK, Aziz N et al (2006) Significance of sperm characteristics in the evaluation of male infertility. Fertil Steril 85(3):629–634

    Article  PubMed  Google Scholar 

  • Niederberger C, Joyce GF, Wise M et al (2007) Male infertility. In: Litwin MS, Saigal CS (eds) Urologic diseases in America. US Government Printing Office, Washington, DC

    Google Scholar 

  • Park JH, Gelhaus S, Vedantam S et al (2008) The pattern of p53 mutations caused by PAH o-quinones is driven by 8-oxo-dGuo formation while the spectrum of mutations is determined by biological selection for dominance. Chem Res Toxicol 21(5):1039–1049

    Article  CAS  PubMed  Google Scholar 

  • Povey AC, Stocks SJ (2010) Epidemiology and trends in male subfertility. Hum Fertil (Camb) 13:182–188

    Article  CAS  Google Scholar 

  • Reichenberg A, Gross R, Weiser M et al (2006) Advancing paternal age and autism. Arch Gen Psychiatry 63:1026–1032

    Article  PubMed  Google Scholar 

  • Robinson L, Gallos ID, Conner SJ et al (2012) The effect of sperm DNA fragmentation on miscarriage rates: a systematic review and meta-analysis. Hum Reprod 27(10):2908–2917. doi:10.1093/humrep/des261

    Google Scholar 

  • Ross C, Morriss A, Khairy M et al (2010) A systematic review of the effect of oral antioxidants on male infertility. Reprod Biomed Online 20:711–723

    Article  CAS  PubMed  Google Scholar 

  • Rutstein SO, Shah IH 2004 (1997) Infecundity, infertility, and childlessness. DHS comparative reports, no. 9, DHS

    Google Scholar 

  • Schmid TE, Eskenazi B, Baumgartner A et al (2007) The effects of male age on sperm DNA damage in healthy non-smokers. Hum Reprod 22:180–187

    Article  CAS  PubMed  Google Scholar 

  • Schulte RT, Ohl DA, Sigman M et al (2009) Sperm DNA damage in male infertility: etiologies, assays and outcomes. Published online 2009 December 12. doi: 10.1007/s10815-009-9359-x PMCID: PMC282662 Assist Reprod Genet. 2010 27(1):3–12

    Google Scholar 

  • Sharma RK, Sabanegh E, Mahfouz R et al (2010) TUNEL as a test for sperm DNA damage in the evaluation of male infertility. Urology 76:1380–1386

    Article  PubMed  Google Scholar 

  • Showell MG, Brown J, Yazdani A et al (2011) Antioxidants for male subfertility. Cochrane Database Syst Rev 1, CD007411

    PubMed  Google Scholar 

  • Simon L, Lewis SE (2011) Sperm DNA damage or progressive motility: which one is the better predictor of fertilization in vitro? Syst Biol Reprod Med 57(3):133–138

    PubMed  Google Scholar 

  • Simon L, Brunborg G, Stevenson M et al (2010) Clinical significance of sperm DNA damage in assisted reproduction outcome. Hum Reprod 25:1594–1608

    Article  CAS  PubMed  Google Scholar 

  • Simon L, Lutton D, McManus J et al (2011) Sperm DNA damage measured by the alkaline Comet assay as an independent predictor of male infertility and in vitro fertilization success. Fertil Steril 95:652–657

    Article  PubMed  Google Scholar 

  • Simon L, Proutski I, Stevenson M et al (2013) Sperm DNA damage has negative association with live birth rates after IVF. Reprod Biomed Online 26:68–78

    Article  CAS  PubMed  Google Scholar 

  • Singh NP, Muller CH, Berger RE (2003) Effects of age on DNA double-strand breaks and apoptosis in human sperm. Fertil Steril 80:1420–1430

    Article  PubMed  Google Scholar 

  • Sipos A, Rasmussen F, Harrison G et al (2004) Paternal age and schizophrenia: a population based cohort study. BMJ 329:1070

    Article  PubMed  Google Scholar 

  • Spano M, Bonde J, Hjollund HI et al (2000) Sperm chromatin damage impairs human fertility. Fertil Steril 73:43–50

    Article  CAS  PubMed  Google Scholar 

  • Thomson LK, Zieschang JA, Clark AM (2011) Oxidative deoxyribonucleic acid damage in sperm has a negative impact on clinical pregnancy rate in intrauterine insemination but not intracytoplasmic sperm injection cycles. Fertil Steril 96(4):843–847

    Article  CAS  PubMed  Google Scholar 

  • Trisini AT, Singh NP, Duty SM et al (2004) Relationship between human semen parameters and deoxyribonucleic acid damage assessed by the neutral comet assay. Fertil Steril 82: 1623–1632

    Article  PubMed  Google Scholar 

  • Van der Steeg JW, Steures P, Eijkemans MJ et al (2011) Collaborative effort for clinical evaluation in reproductive medicine study group. Role of semen analysis in subfertile couples. Fertil Steril 95(3):1013–1019

    Article  PubMed  Google Scholar 

  • Varshini J, Srinag BS, Kalthur G et al (2012) Poor sperm quality and advancing age are associated with increased sperm DNA damage in infertile men. Andrologia 44(1):642–549

    Article  PubMed  Google Scholar 

  • Vela G, Luna M, Sandler B et al (2009) Advances and controversies in assisted reproductive technology. Mt Sinai J Med 76:506–520

    Article  PubMed  Google Scholar 

  • Wen J, Jiang J, Ding C et al (2012) Birth defects in children conceived by in vitro fertilization and intracytoplasmic sperm injection: a meta-analysis. Fertil Steril 97(6):1331–1337.e1-4. doi:10.1016/j.fertnstert.2012.02.053, Epub

    Google Scholar 

  • Williams M, Barratt CL, Hill CJ et al (1992) Recovery of artificially inseminated spermatozoa from the fallopian tubes of a woman undergoing total abdominal hysterectomy. Hum Reprod 7(4):506–509

    CAS  PubMed  Google Scholar 

  • World Health Organisation (1999) WHO laboratory manual for the examination and processing of human semen, 4th edn. World Health Organisation, Geneva

    Google Scholar 

  • World Health Organisation (2010) WHO laboratory manual for the examination and processing of human semen, 5th edn. Department of Reproductive Health and Research/World Health Organisation, Geneva

    Google Scholar 

  • Zenes MT (2000) Smoking and reproduction: gene damage to human gametes and embryos. Hum Reprod Update 6(2):122–131

    Article  Google Scholar 

  • Zini A (2011) Are sperm chromatin and DNA defects relevant in the clinic? Syst Biol Reprod Med 57:78–85

    Article  PubMed  Google Scholar 

  • Zini A, Sigman M (2009) Are tests of sperm DNA damage clinically useful? Pros and cons. J Androl 30(3):219–229

    Article  CAS  PubMed  Google Scholar 

  • Zini A, Boman JM, Belzile E et al (2008) Sperm DNA damage is associated with an increased risk of pregnancy loss after IVF and ICSI: systematic review and meta-analysis. Hum Reprod 23(12):2663–2668

    Article  CAS  PubMed  Google Scholar 

  • Zini A, San Gabriel M, Baazeem A (2009) Antioxidants and sperm DNA damage: a clinical perspective. J Assist Reprod Genet 26:427–432

    Article  PubMed  Google Scholar 

  • Zribi N, Chakroun NF, Elleuch H et al (2011) Sperm DNA fragmentation and oxidation are independent of malondialdheyde. Reprod Biol Endocrinol 9:1–8

    Article  Google Scholar 

Download references

Acknowledgments

Thanks to Ms Eveline Burns for preparing the manuscript and Mr. Kishlay Kumar for designing the summary diagram.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheena E. M. Lewis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lewis, S.E.M. (2014). Sperm DNA Fragmentation and Base Oxidation. In: Baldi, E., Muratori, M. (eds) Genetic Damage in Human Spermatozoa. Advances in Experimental Medicine and Biology, vol 791. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7783-9_7

Download citation

Publish with us

Policies and ethics