Skip to main content

Application of a New Mapping Algorithm to Reevaluate Evidence of Interdomain Lateral Gene Transfer in the Genome of Thermotoga maritima

  • Chapter
  • First Online:
Lateral Gene Transfer in Evolution

Abstract

Publication of the genome sequence of Thermotoga maritima highlighted its extensive sharing of genes with archaea. Subsequent analyses have shown that the amount of gene exchange is less than first estimated and the addition of new genome sequences to databases is likely to make future enumerations of archaeal gene exchanges more difficult. We present a preliminary use of a new algorithm that maps the relationships between genes to reveal communities of organisms that have shared genes through either vertical or horizontal acquisitions. This method is evaluated by examinations of the evolutionary histories of oligosaccharide ABC transporter genes and genes encoding a putative membrane bound oxidoreductase (mbx). Although further refinements are necessary, this method promises to provide a better picture of evolutionary relationships than conventional phylogenetic trees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nelson KE, Clayton RA, Gill SR, Gwinn ML, Dodson RJ, Haft DH et al (1999) Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima. Nature 399(6734):323–329

    Article  PubMed  CAS  Google Scholar 

  2. Zhaxybayeva O, Swithers KS, Lapierre P, Fournier GP, Bickhart DM, Deboy RT et al (2009) On the chimeric nature, thermophilic origin, and phylogenetic placement of the Thermotogales. Proc Nat Acad Sci U S A 106(14):5865–5870

    Article  CAS  Google Scholar 

  3. Koski LB, Golding GB (2001) The closest BLAST hit is often not the nearest neighbor. J Mol Evol 52(6):540–542

    PubMed  CAS  Google Scholar 

  4. Koonin EV, Makarova KS, Aravind L (2001) Horizontal gene transfer in prokaryotes: quantification and classification. Annu Rev Microbiol 55:709–742

    Article  PubMed  CAS  Google Scholar 

  5. Hsiao W, Wan I, Jones SJ, Brinkman FS (2003) IslandPath: aiding detection of genomic islands in prokaryotes. Bioinformatics 19(3):418–420

    Article  PubMed  CAS  Google Scholar 

  6. Podell S, Gaasterland T (2007) DarkHorse: a method for genome-wide prediction of horizontal gene transfer. Genome Biol 8(2):R16

    Article  PubMed  Google Scholar 

  7. Podell S, Gaasterland T, Allen EE (2008) A database of phylogenetically atypical genes in archaeal and bacterial genomes, identified using the DarkHorse algorithm. BMC Bioinformatics 9:419

    Article  PubMed  Google Scholar 

  8. Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, Ward NL et al (2005) Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”. Proc Natl Acad Sci U S A 102(39):13950–13955

    Article  PubMed  CAS  Google Scholar 

  9. Lapierre P, Gogarten JP (2009) Estimating the size of the bacterial pan-genome. Trends Genet 25(3):107–110

    Article  PubMed  CAS  Google Scholar 

  10. Sicheritz-Pontén T, Andersson SGE (2001) A phylogenetic approach to microbial evolution. Nucl Acids Res 29(2):545–552

    Article  PubMed  Google Scholar 

  11. Frickey T, Lupas AN (2004) PhyloGenie: automated phylome generation and analysis. Nucleic Acids Res 32(17):5231–5238

    Article  PubMed  CAS  Google Scholar 

  12. Noll KM, Thirangoon K (2009) Interdomain transfers of sugar transporters overcome barriers to gene expression. Methods Mol Biol 532:309–322

    Article  PubMed  CAS  Google Scholar 

  13. Nanavati DM, Thirangoon K, Noll KM (2006) Several archaeal homologs of putative oligopeptide-binding proteins encoded by Thermotoga maritima bind sugars. Appl Environ Microbiol 72(2):1336–1345

    Article  PubMed  CAS  Google Scholar 

  14. Silva PJ, van den Ban EC, Wassink H, Haaker H, de Castro B, Robb FT et al (2000) Enzymes of hydrogen metabolism in Pyrococcus furiosus. Eur J Biochem 267(22):6541–6551

    Article  PubMed  CAS  Google Scholar 

  15. Calteau A, Gouy M, Perriere G (2005) Horizontal transfer of two operons coding for hydrogenases between bacteria and archaea. J Mol Evol 60(5):557–565

    Article  PubMed  CAS  Google Scholar 

  16. Price MN, Dehal PS, Arkin AP (2010) FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS One 5(3):e9490

    Article  PubMed  Google Scholar 

  17. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52(5):696–704

    Article  PubMed  Google Scholar 

  18. Bridger SL, Clarkson SM, Stirrett K, DeBarry MB, Lipscomb GL, Schut GJ et al (2011) Deletion strains reveal metabolic roles for key elemental sulfur-responsive proteins in Pyrococcus furiosus. J Bacteriol 193(23):6498–6504

    Article  PubMed  CAS  Google Scholar 

  19. Schut GJ, Bridger SL, Adams MWW (2007) Insights into the metabolism of elemental sulfur by the hyperthermophilic archaeon Pyrococcus furiosus: characterization of a coenzyme A-dependent NAD(P)H sulfur oxidoreductase. J Bacteriol 189(12):4431–4441

    Article  PubMed  CAS  Google Scholar 

  20. Schut GJ, Boyd ES, Peters JW, Adams MW (2013) The modular respiratory complexes involved in hydrogen and sulfur metabolism by heterotrophic hyperthermophilic archaea and their evolutionary implications. FEMS Microbiol Rev 37(2):182–203

    PubMed  CAS  Google Scholar 

  21. Nguyen TN, Ejaz AD, Brancieri MA, Mikula AM, Nelson KE, Gill SR et al (2004) Whole-genome expression profiling of Thermotoga maritima in response to growth on sugars in a chemostat. J Bacteriol 186(14):4824–4828

    Article  Google Scholar 

  22. Felsenstein J (2004) Inferring phylogenies. Sinauer Associates, Sunderland

    Google Scholar 

  23. Dagan T, Martin W (2009) Getting a better picture of microbial evolution en route to a network of genomes. Phil Trans R Soc B 364:2187–2196

    Article  PubMed  CAS  Google Scholar 

  24. Case RJ, Boucher Y (2011) Molecular musings in microbial ecology and evolution. Biol Direct 6:58

    Article  PubMed  Google Scholar 

  25. Koonin EV, Wolf YI (2012) Evolution of microbes and viruses: a paradigm shift in evolutionary biology? Front Cell Infect Microbiol 2:119

    Article  PubMed  Google Scholar 

  26. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by funds from the NASA Exobiology program (NNX08AQ10G) and the National Science Foundation Assembling the Tree of Life program (DEB0830024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth M. Noll .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lapierre, P., Butzin, N., Noll, K. (2013). Application of a New Mapping Algorithm to Reevaluate Evidence of Interdomain Lateral Gene Transfer in the Genome of Thermotoga maritima . In: Gophna, U. (eds) Lateral Gene Transfer in Evolution. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7780-8_12

Download citation

Publish with us

Policies and ethics