Skip to main content

Can Time-Varying Copulas Improve the Mean-Variance Portfolio?

  • Reference work entry
  • First Online:
Handbook of Financial Econometrics and Statistics

Abstract

Research in structuring asset return dependence has become an indispensable element of wealth management, particularly after the experience of the recent financial crises. In this paper, we evaluate whether constructing a portfolio using time-varying copulas yields superior returns under various weight updating strategies. Specifically, minimum-risk portfolios are constructed based on various copulas and the Pearson correlation, and a 250-day rolling window technique is adopted to derive a sequence of time-varied dependencies for each dependence model. Using daily data of the G7 countries, our empirical findings suggest that portfolios using time-varying copulas, particularly the Clayton dependence, outperform those constructed using Pearson correlations. The above results still hold under different weight updating strategies and portfolio rebalancing frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See Chan et al. (1999), Dowd (2005), Patton (2006a), Engle and Sheppardy (2008), Chollete et al. (2009), Bauer and Vorkink (2011).

  2. 2.

    For detailed derivations, please refer to Cherubini et al. (2004), Demarta and McNeil (2005), Embrechts et al. (2003), Embrechts et al. (2005), Franke et al. (2008), Nelson (2006), and Patton (2009).

  3. 3.

    Short selling usually involves other service fees, which vary depending on the creditability of the investors. Because the focus of this study is on the effect of the dependence structure on portfolio performance, we assume that short selling is not allowed to simplify the comparison.

  4. 4.

    For example, we use return data from t 1 to t 250 to calculate the optimal portfolio weights with dependencies estimated from the copulas and the Pearson correlation. The optimal portfolio weights are applied to the return data at t 251 to calculate the realized portfolio returns.

  5. 5.

    For detailed derivations and computer codes, please refer to Ledoit and Wolf (2008).

  6. 6.

    Ledoit and Wolf (2008) suggested that 5,000 iterations guarantee a sufficient sample. We adopt a higher standard of 10,000 iterations to strengthen our testing results.

References

  • Aas, K., Czado, C., Frigessi, A., & Bakken, H. (2007). Pair-copula constructions of multiple dependence. Insurance: Mathematics and Economics, 2, 1–25.

    Google Scholar 

  • Ang, A., & Bekaert, G. (2002). International asset allocation with regime shifts. Review of Financial Studies, 15, 1137–1187.

    Article  Google Scholar 

  • Ang, A., & Chen, J. (2002). Asymmetric correlations of equity portfolios. Journal of Financial Economics, 63, 443–494.

    Article  Google Scholar 

  • Aussenegg, W., & Cech, C. (2011, forthcoming). Simple time-varying copula estimation. In A. S. Barczak, E. Dziwok (Ed.), Mathematical econometrical and computational methods in finance and insurance. Katowice: University of Economics in Katowice.

    Google Scholar 

  • Bauer, G. H., & Vorkink, K. (2011). Forecasting multivariate realized stock market volatility. Journal of Econometrics, 160, 93–101.

    Article  Google Scholar 

  • Chan, L. K., Karceski, J., & Lakonishok, J. (1999). On portfolio optimization: Forecasting covariances and choosing the risk model. Review of Financial Studies, 12, 937–974.

    Article  Google Scholar 

  • Cherubini, U., Luciano, E., & Vecchiato, W. (2004). Copula methods in finance. Hoboken: Wiley.

    Book  Google Scholar 

  • Chollete, L., Heinen, A., & Valdesogo, A. (2009). Modeling international financial returns with a multivariate regime-switching copula. Journal of Financial Econometrics, 7, 437–480.

    Article  Google Scholar 

  • Chollete, L., Peña, V., & Lu, C. (2011). International diversification: A copula approach. Journal of Banking and Finance, 35, 403–417.

    Article  Google Scholar 

  • Demarta, S., & McNeil, A. (2005). The t copula and related copulas. International Statistical Review, 73, 111–129.

    Article  Google Scholar 

  • Dowd, K. (2005). Copulas and coherence. Journal of Portfolio Management, Fall, 32(1), 123–127.

    Article  Google Scholar 

  • Embrechts, P., Frey, R., & McNeil, A. (2005). Quantitative risk management. Princeton: Princeton University Press.

    Google Scholar 

  • Embrechts, P., Lindskog, F., & McNeil, A. (2003). Modelling dependence with copulas and applications to risk management. In S. T. Rachev (Ed.), Handbook of heavy tailed distributions in finance (pp. 329–384). Amsterdam: Elsevier/North-Holland.

    Chapter  Google Scholar 

  • Engle, R. F., & Sheppardy K. (2008). Evaluating the specification of covariance models for large portfolios (Working Paper). New York University.

    Google Scholar 

  • Franke, J., Hardle, W., & Hafner, C. (2010). Statistics of financial markets: An introduction. New York: Springer.

    Google Scholar 

  • Hu, L. (2006). Dependence patterns across financial markets: A mixed copula approach. Applied Financial Economics, 16, 717–729.

    Article  Google Scholar 

  • Jobson, J., & Korkie, B. (1981). Performance hypothesis testing with the Sharpe and Treynor measures. Journal of Finance, 36, 889–908.

    Article  Google Scholar 

  • Joe, H. (1997). Multivariate models and dependence concepts. New York: Chapman & Hall/CRC.

    Book  Google Scholar 

  • Joe, H., & Xu, J. J. (1996). The estimation method of inference functions for margins for multivariate models (Technical Report 166). Department of Statistics, University of British Columbia.

    Google Scholar 

  • Kole, E., Koedijk, K., & Verbeek, M. (2007). Selecting copulas for risk management. Journal of Banking and Finance, 31, 2405–2423.

    Article  Google Scholar 

  • Kroner, K. E., & Ng, V. (1998). Modeling asymmetric comovements of asset returns. Review of Financial Studies, 11, 817–844.

    Article  Google Scholar 

  • Ledoit, O., & Wolf, M. (2008). Robust performance hypothesis testing with the Sharpe ratio. Journal of Empirical Finance, 15, 850–859.

    Article  Google Scholar 

  • Longin, F., & Solnik, B. (2001). Extreme correlation of international equity markets. Journal of Finance, 56, 649–676.

    Article  Google Scholar 

  • Markowitz, H. (1952). Portfolio selection. Journal of Finance, 7, 77–91.

    Google Scholar 

  • Memmel, C. (2003). Performance hypothesis testing with the Sharpe ratio. Finance Research Letters, 1, 21–23.

    Google Scholar 

  • Nelson, R. (2006). An introduction to copulas. New York: Springer.

    Google Scholar 

  • Okimoto, T. (2008). New evidence of asymmetric dependence structures in international equity markets. Journal of Financial and Quantitative Analysis, 43, 787–816.

    Article  Google Scholar 

  • Patton, A. (2006a). Modelling asymmetric exchange rate dependence. International Economic Review, 47, 527–556.

    Article  Google Scholar 

  • Patton, A. (2006b). Estimation of multivariate models for time series of possibly different lengths. Journal of Applied Econometrics, 21, 147–173.

    Article  Google Scholar 

  • Patton, A. (2009). Copula-based models for financial time series. In T. Mikosch, J. P. Kreiss, T. G. Andersen, R. A. Davis, J. P. Kreiss, & T. Mikosch (Eds.), Handbook of financial time series. New York: Springer.

    Google Scholar 

  • Rodriguez, J. C. (2007). Measuring financial contagion: A copula approach. Journal of Empirical Finance, 14, 401–423.

    Article  Google Scholar 

  • Sklar, A. (1959) “Fonctions de Répartition à n Dimensions et Leurs Marges,” Publications de l'Institut de Statistique de l'Université de Paris 8, 229–231.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Pin Hsu .

Editor information

Editors and Affiliations

Appendix 1

Appendix 1

Appendix 1 illustrates the dependence of the G7 countries from different dependence models. Note that to ease the comparison between dependencies, we transform Gumbel dependencies by (1 − δ). Therefore, the range for the Clayton and the Gumbel copulas is between 0 and 1, with 0 meaning no dependence and 1 standing for perfect dependence. The range for the Gaussian copula, the Student’s t-copula, and the Pearson correlation is −1 to 1, with 0 meaning no dependence and 1 or −1 standing for complete dependence.

 

CA

FR

DE

IT

JP

UK

USA

Panel A: Gaussian dependence

CA

       

Max

       

Min

       

FR

       

Max

0.7064

      

Min

0.3914

      

DE

       

Max

0.6487

0.9686

     

Min

−0.2016

0.7856

     

IT

       

Max

0.6320

0.9407

0.9274

    

Min

−0.2143

−0.2303

0.7001

    

JP

       

Max

0.1814

0.2761

0.2478

0.4023

   

Min

−0.2115

−0.2238

−0.2229

0.0119

   

UK

       

Max

0.6393

0.9100

0.8665

0.8575

0.4664

  

Min

−0.1945

−0.2384

−0.2008

−0.2050

0.0329

  

USA

       

Max

0.7221

0.5031

0.5231

0.4661

0.5831

0.5671

 

Min

−0.1864

−0.2127

−0.2087

−0.2414

−0.2241

0.1997

 

Panel B: Student’s t dependence

CA

       

Max

       

Min

       

FR

       

Max

0.7509

      

Min

0.3921

      

DE

       

Max

0.4578

0.9810

     

Min

−0.1070

0.7476

     

IT

       

Max

0.4367

0.9810

0.9586

    

Min

−0.1089

0.7476

0.6937

    

JP

       

Max

0.1093

0.1679

0.1522

0.6846

   

Min

−0.1284

−0.1511

−0.1574

0.0093

   

UK

       

Max

0.4478

0.8055

0.7380

0.7316

0.7335

  

Min

−0.1094

−0.1546

−0.1359

−0.1230

0.0284

  

USA

       

Max

0.5733

0.8055

0.3457

0.3176

0.4375

0.6614

 

Min

−0.1107

−0.1546

−0.1343

−0.1360

−0.1519

0.2687

 

Panel C: Gumbel dependence

CA

       

Max

       

Min

       

FR

       

Max

0.5947

      

Min

0.3220

      

DE

       

Max

0.3744

0.9063

     

Min

0.0000

0.5928

     

IT

       

Max

0.3666

0.7286

0.8544

    

Min

0.0000

0.0000

0.5516

    

JP

       

Max

0.0961

0.1384

0.1222

0.5356

   

Min

0.0000

0.0000

0.0000

0.0200

   

UK

       

Max

0.3650

0.6946

0.6156

0.6086

0.5855

  

Min

0.0000

0.0000

0.0000

0.0000

0.0234

  

USA

       

Max

0.4340

0.2816

0.2952

0.2649

0.3261

0.5967

 

Min

0.0000

0.0000

0.0000

0.0000

0.0000

0.2493

 

Panel D: Clayton dependence

CA

       

Max

       

Min

       

FR

       

Max

0.6763

      

Min

0.2899

      

DE

       

Max

0.3585

0.9327

     

Min

0.0000

0.6696

     

IT

       

Max

0.3463

0.7635

0.9004

    

Min

0.0000

0.0000

0.6006

    

JP

       

Max

0.0038

0.0408

0.0287

0.6476

   

Min

0.0000

0.0000

0.0000

0.0000

   

UK

       

Max

0.3657

0.7193

0.6567

0.6506

0.6794

  

Min

0.0000

0.0000

0.0000

0.0000

0.0000

  

USA

       

Max

0.5248

0.2450

0.2476

0.1987

0.3472

0.6622

 

Min

0.0000

0.0000

0.0000

0.0000

0.0000

0.1982

 

Panel E: Pearson correlation

CA

       

Max

       

Min

       

FR

       

Max

0.7002

      

Min

0.3966

      

DE

       

Max

0.6944

0.9726

     

Min

0.3645

0.7890

     

IT

       

Max

0.6833

0.9596

0.9477

    

Min

0.3877

0.8204

0.6965

    

JP

       

Max

0.3549

0.4594

0.4702

0.4073

   

Min

−0.0411

0.0251

0.0170

−0.0072

   

UK

       

Max

0.7080

0.9573

0.9298

0.9181

0.4612

  

Min

0.3676

0.7791

0.6572

0.6990

0.0154

  

USA

       

Max

0.7586

0.6096

0.7443

0.5871

0.2078

0.5480

 

Min

0.3764

0.2647

0.2921

0.2481

−0.1562

0.1913

 

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Huang, CW., Hsu, CP., Chiou, WJ.P. (2015). Can Time-Varying Copulas Improve the Mean-Variance Portfolio?. In: Lee, CF., Lee, J. (eds) Handbook of Financial Econometrics and Statistics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7750-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7750-1_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7749-5

  • Online ISBN: 978-1-4614-7750-1

  • eBook Packages: Business and Economics

Publish with us

Policies and ethics