Skip to main content

On-/Off-the-Run Yield Spread Puzzle: Evidence from Chinese Treasury Markets

  • Reference work entry
  • First Online:
Handbook of Financial Econometrics and Statistics
  • 9127 Accesses

Abstract

In this chapter, we document a negative on-/off-the-run yield spread in Chinese Treasury markets. This is in contrast with a positive on-/off-the-run yield spread in most other countries and could be called an “on-/off-the-run yield spread puzzle.” To explain this puzzle, we introduce a latent factor in the pricing of Chinese off-the-run government bonds and use this factor to model the yield difference between Chinese on-the-run and off-the-run issues. We use the nonlinear Kalman filter approach to estimate the model. Regressions results suggest that liquidity difference, market-wide liquidity condition, and disposition effect (unwillingness to sell old bonds) could help explain the dynamics of a latent factor in Chinese Treasury markets. The empirical results of this chapter show evidence of phenomena that are quite specific in emerging markets such as China.

The Kalman filter is a mathematical method named after Rudolf E. Kalman. It is a set of mathematical equations that provides an efficient computational (recursive) means to estimate the state of a process, in a way that minimizes the mean of the squared error. The nonlinear Kalman filter is the nonlinear version of the Kalman filter which linearizes about the current mean and covariance. The filter is very powerful in several aspects: it supports estimations of past, present, and even future states, and it can do so even when the precise nature of the modeled system is unknown.

We thank the National Natural Science Foundation of China (Grant No. 71101121 and No. 70971114) for financial support.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Specialness refers to the phenomenon that loans collateralized by on-the-run bonds offer lower interest rates than their off-the-run counterparts in repo markets.

  2. 2.

    The main reason for the data selection comes from the concern of trading activity. Trading in Chinese Treasury markets is not active, especially in the earlier period.

  3. 3.

    See Hamilton (1994) for an explanation of Kalman filter.

  4. 4.

    We also estimate the parameters of r and l jointly using the on-the-run and off-the-run data together and find the results are quite similar.

References

  • Amihud, Y., & Mendelson, H. (1986). Asset pricing and the bid-ask spread. Journal of Financial Economics, 17, 223–249.

    Article  Google Scholar 

  • Amihud, Y., & Mendelson, H. (1991). Liquidity, maturity, and the yields on US treasury securities. The Journal of Finance, 46, 1411–1425.

    Article  Google Scholar 

  • Boudoukh, J., & Whitelaw, R. (1991). The benchmark effect in the Japanese government bond market. The Journal of Fixed Income, 1, 52–59.

    Article  Google Scholar 

  • Boudoukh, J., & Whitelaw, R. (1993). Liquidity as a choice variable: A lesson from the Japanese government bond market. Review of Financial Studies, 6, 265–292.

    Article  Google Scholar 

  • Cox, J., Ingersoll, J. E., & Ross, S. A. (1985). A theory of the term structure of interest rates. Econometrica, 53, 385–407.

    Article  Google Scholar 

  • Furfine, C., & Remolona, E. (2002). What’s behind the liquidity spread? On-the-run and off-the-run US treasuries in autumn 1998, BIS Quarterly Review, 6, 51–58.

    Google Scholar 

  • Goldreich, D., Hanke, B., & Nath, P. (2005). The price of future liquidity: Time-varying liquidity in the US treasury market. Review of Finance, 9, 1–32.

    Article  Google Scholar 

  • Guo, H., & Wu, K. (2006). Liquidity premium analysis of treasury bonds market in Shanghai stock exchange. Finance and Economics (In Chinese), 217, 23–29.

    Google Scholar 

  • Hamilton, J. D. (1994). Time series analysis. Princeton: Princeton University Press.

    Google Scholar 

  • Hong, Y., Lin, H., & Wang, S. (2010). Modeling the dynamics of Chinese spot interest rates. Journal of Banking and Finance, 34, 1047–1061.

    Article  Google Scholar 

  • Kamara, A. (1994). Liquidity, taxes, and short-term treasury yields. Journal of Financial and Quantitative Analysis, 29, 403–417.

    Article  Google Scholar 

  • Krishnamurthy, A. (2002). The bond/old-bond spread. Journal of Financial Economics, 66, 463–506.

    Article  Google Scholar 

  • Li, D., & He, Y. (2008). Study on the price gap between on-the-run and off-the-run treasury securities of Shanghai stock exchange. Journal of Shanxi Finance and Economics University (In Chinese), 30, 80–85.

    Google Scholar 

  • Lin, H., Liu, S., & Wu, C. (2011). Dissecting corporate bond and CDS spreads. The Journal of Fixed Income, 20, 7–39.

    Article  Google Scholar 

  • Longstaff, F., Mithal, S., & Neis, E. (2005). Corporate yield spreads: Default risk or liquidity? New evidence from the credit default swap market. The Journal of Finance, 60, 2213–2253.

    Article  Google Scholar 

  • Mason, R. (1987). The 10-year bond markets. Credit Suisse First Boston, CSFB Research.

    Google Scholar 

  • Pasquariello, P., & Vega, C. (2007). Informed and strategic order flow in the bond markets. Review of Financial Studies, 20, 1975–2019.

    Article  Google Scholar 

  • Pasquariello, P., & Vega, C. (2009). The on-the-run liquidity phenomenon. Journal of Financial Economics, 92, 1–24.

    Article  Google Scholar 

  • Strebulaev, I. (2002). Liquidity and asset pricing: Evidence from the US Treasury securities market (Working paper). London Business School, SSRN.

    Google Scholar 

  • Vayanos, D., & Weill, P. (2008). A search-based theory of the on-the-run phenomenon. The Journal of Finance, 63, 1361–1398.

    Article  Google Scholar 

  • Warga, A. (1992). Bond returns, liquidity, and missing data. Journal of Financial and Quantitative Analysis, 27, 605–617.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Chen .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Nonlinear Kalman Filter

Let y on M,t represent the time t yield of an on-the-run government bond maturing at t M . Equation 22.3 could be written as

$$ {P}_t^{on}={\displaystyle \sum_{m=1}^M{C}_m{A}_{m,t} \exp \left(-{B}_{m,t}{r}_t\right)}={\displaystyle \sum_{m=1}^M{C}_m \exp \left(-{y}_{M,t}^{on}\left({t}_m-t\right)\right)}. $$
(22.8)

As shown, y on M,t is a nonlinear function of r t , which is inconsistent with the requirements of the standard Kalman filter that state functions and measurement functions should be linear. So we use the extended (nonlinear) Kalman filter to linearize nonlinear functions. The idea is to employ the Taylor expansions around the estimate at each step. That is, we express y on M,t as

$$ {y}_{M,t}^{on}\left({r}_t\right)\approx {y}_{M,t}^{on}\left({\widehat{r}}_{t|t-1}\right)+\frac{\partial {y}_{M,t}^{on}}{\partial {r}_t}|{}_{r_t={\widehat{r}}_{t|t-1}}\cdot \left({r}_t-{\widehat{r}}_{t|t-1}\right), $$
(22.9)

where \( {\widehat{r}}_{t|t-1} \) is the estimate of r t at time t–1.

To get \( \frac{\partial {y}_{M,t}^{on}}{\partial {r}_t} \), we calculate the first-order derivative of P on t with respect to r t ,

$$ \frac{\partial {P}_t^{on}}{\partial {r}_t}=-{\displaystyle \sum_{m=1}^M{C}_m{A}_{m,t}{B}_{m,t} \exp \left(-{B}_{m,t}{r}_t\right)}=\frac{\partial {P}_t^{on}}{\partial {y}_{M,t}^{on}}\frac{\partial {y}_{M,t}^{on}}{\partial {r}_t}. $$
(22.10)

Thus, we have

$$ \frac{\partial {y}_{M,t}^{on}}{\partial {r}_t}=\frac{{\displaystyle \sum_{m=1}^M{C}_m{A}_{m,t}{B}_{m,t} \exp \left(-{B}_{m,t}{r}_t\right)}}{{\displaystyle \sum_{m=1}^M{C}_m\left({t}_m-t\right) \exp \left(-{y}_{M,t}^{on}\cdot \left({t}_m-t\right)\right)}}. $$
(22.11)

Given \( {\widehat{r}}_{t|t-1} \), we can use Eq. 22.8 to calculate \( {y}_{M,t}^{on}\left({\widehat{r}}_{t|t-1}\right) \) and then use Eq. 22.11 to get \( \frac{\partial {y}_{M,t}^{on}}{\partial {r}_t} \)

Finally, the linearized measurement model for the on-the-run issues at time t is

$$ {\mathbf{y}}_{\mathbf{t}}^{\mathbf{on}}={\boldsymbol{\upalpha}}_{\mathbf{t}}^{\mathbf{on}}+{\boldsymbol{\upbeta}}_{\mathbf{t}}^{\mathbf{on}}{r}_t+{\boldsymbol{\upomega}}_{\mathbf{t}}^{\mathbf{on}} $$
(22.12)

where

$$ {\mathbf{y}}_{\mathbf{t}}^{\mathbf{on}}=\left[\begin{array}{l}{y}_{1,t}^{on}\\ {}{y}_{3,t}^{on}\end{array}\right], $$
$$ {\boldsymbol{\upalpha}}_{\mathbf{t}}^{\mathbf{on}}=\left[\begin{array}{l}{y}_{1,t}^{on}\left({\widehat{r}}_{t|t-1}\right)-{\widehat{r}}_{t|t-1}\cdot \frac{\partial {y}_{1,t}^{on}}{\partial {r}_t}|{}_{r_t={\widehat{r}}_{t|t-1}}\\ {}\kern0.1em {y}_{3,t}^{on}\left({\widehat{r}}_{t|t-1}\right)-{\widehat{r}}_{t|t-1}\cdot \frac{\partial {y}_{3,t}^{on}}{\partial {r}_{\backslash }}|{}_{r_t={\widehat{r}}_{t|t-1}}\end{array}\right], $$
$$ {\boldsymbol{\upbeta}}_{\mathbf{t}}^{\mathbf{on}}=\left[\begin{array}{l}\frac{\partial {y}_{1,t}^{on}}{\partial {r}_t}|{}_{r_t={\widehat{r}}_{t|t-1}}\\ {}\kern0.1em \frac{\partial {y}_{3,t}^{on}}{\partial {r}_t}|{}_{r_t={\widehat{r}}_{t|t-1}}\end{array}\right], $$

and ω on t is the error term,

$$ {\boldsymbol{\upomega}}_{\mathbf{t}}^{\mathbf{on}}=\left[\begin{array}{l}{\omega}_{1,t}^{on}\\ {}{\omega}_{3,t}^{on}\end{array}\right], $$

where the subscript of 1 and 3 represent the 1-year bonds and 3-year bonds, while the superscript on refers to on-the-run bonds.

After we get the measurement function, the third step is to rewrite (22.1) as a discrete state function,

$$ {r}_t=\gamma +\phi {r}_{t-1}+{\varepsilon}_t, $$
(22.13)

where

$$ \gamma =\theta \left(1- \exp \left(-\kappa \cdot \Delta t\right)\right), $$
$$ \phi = \exp \left(-\kappa \cdot \Delta t\right), $$

and ε t is the error term of r t and Δt is the size of the time interval in the discrete sample. In our study, Δt = 0.0833. The conditional mean and conditional variance of r t are

$$ \begin{array}{l}{\widehat{r}}_{t{|t-1}}=\theta \left(1- \exp \left(-k\Delta t\right)\right)+ \exp \left(-k\Delta t\right)\cdot {r}_{t-1}\\ {}Var\left({r}_{t|t-1}\right)={\sigma}_r^2\left(\frac{1- \exp \left(-k\Delta t\right)}{k}\right)\left(\frac{1}{2}\theta \left(1- \exp \left(-k\Delta t\right)+ \exp \left(-k\Delta t\right)\cdot {r}_{t-1}\right)\right).\end{array} $$
(22.14)

Similarly, the state functions of the off-the-run issues are

$$ \begin{array}{l}{r}_t=\gamma +\phi {r}_{t-1}+{\varepsilon}_t\\ {}{l}_t={l}_{t-1}+{\sigma}_l{e}_t.\end{array} $$
(22.15)

The conditional mean and conditional variance of l t are l t1 and σ 2 l Δt, respectively.

The corresponding measurement function is

$$ {\mathbf{y}}_{\mathbf{t}}^{\mathbf{off}}={\boldsymbol{\upalpha}}_{\mathbf{t}}^{\mathbf{off}}+{\boldsymbol{\upbeta}}_{\mathbf{t}}^{\mathbf{off}}{r}_t+{\boldsymbol{\upxi}}_{\mathbf{t}}^{\mathbf{off}}{l}_t+{\boldsymbol{\upomega}}_{\mathbf{t}}^{\mathbf{off}}, $$
(22.16)

where off refers to off-the-run bonds,

$$ {\mathbf{y}}_{\mathbf{t}}^{\mathbf{off}}=\left[\begin{array}{l}{y}_{1,t}^{off}\\ {}{y}_{3,t}^{off}\end{array}\right], $$
$$ {\boldsymbol{\upalpha}}_{\mathbf{t}}^{\mathbf{off}}=\left[\begin{array}{l}{y}_{1,t}^{off}\left({\widehat{r}}_{t|t-1},{\widehat{l}}_{t|t-1}\right)-{\widehat{r}}_{t|t-1}\cdot \frac{\partial {y}_{1,t}^{off}}{\partial {r}_t}|{}_{r_t={\widehat{r}}_{t|t-1}}-{\widehat{l}}_{t|t-1}\cdot \frac{\partial {y}_{1,t}^{off}}{\partial {l}_t}|{}_{l_t={\widehat{l}}_{t|t-1}}\\ {}{y}_{3,t}^{off}\left({\widehat{r}}_{t|t-1},{\widehat{l}}_{t|t-1}\right)-{\widehat{r}}_{t|t-1}\cdot \frac{\partial {y}_{3,t}^{off}}{\partial {r}_t}|{}_{r_t={\widehat{r}}_{t|t-1}}-{\widehat{l}}_{t|t-1}\cdot \frac{\partial {y}_{3,t}^{off}}{\partial {l}_t}|{}_{l_t={\widehat{l}}_{t|t-1}}\end{array}\right], $$
$$ {\boldsymbol{\upbeta}}_{\mathbf{t}}^{\mathbf{off}}=\left[\begin{array}{l}\frac{\partial {y}_{1,t}^{off}}{\partial {r}_t}|{}_{r_t={\widehat{r}}_{t|t-1}}\\ {}\kern0.1em \frac{\partial {y}_{3,t}^{off}}{\partial {r}_t}|{}_{r_t={\widehat{r}}_{t|t-1}}\end{array}\right], $$
$$ {\boldsymbol{\upxi}}_{\mathbf{t}}^{\mathbf{off}}=\left[\begin{array}{l}\frac{\partial {y}_{1,t}^{off}}{\partial {l}_t}|{}_{l_t={\widehat{l}}_{t|t-1}}\\ {}\frac{\partial {y}_{3,t}^{off}}{\partial {\mathrm{l}}_t}|{}_{l_t={\widehat{l}}_{t|t-1}}\end{array}\right], $$
$$ {\boldsymbol{\upomega}}_{\mathbf{t}}^{\mathbf{off}}=\left[\begin{array}{l}{\omega}_{1,t}^{off}\\ {}{\omega}_{3,t}^{off}\end{array}\right], $$
$$ \frac{\partial {y}_{M,t}^{off}}{\partial {r}_t}=\frac{{\displaystyle \sum_{m=1}^M{C}_m{A}_{m,t}{B}_{m,t} \exp \left({D}_{m,t}-{B}_{m,t}{r}_t-\left({t}_m-t\right){l}_t\right)}}{{\displaystyle \sum_{m=1}^M{C}_m\left({t}_m-t\right) \exp \left(-{y}_{M,t}^{off}\cdot \left({t}_m-t\right)\right)}}, $$
$$ \frac{\partial {y}_{M,t}^{off}}{\partial {l}_t}=\frac{{\displaystyle \sum_{m=1}^M{C}_m{A}_m\left({t}_m-t\right) \exp \left({D}_{m,t}-{B}_{m,t}{r}_t-\left({t}_m-t\right){l}_t\right)}}{{\displaystyle \sum_{m=1}^M{C}_m\left({t}_m-t\right) \exp \left(-{y}_{M,t}^{off}\cdot \left({t}_m-t\right)\right)}}, $$

and \( {\widehat{l}}_{t|t-1} \) is the estimate of l t at time t–1.

Once we get the state functions and the measurement functions, we employ the regular iterative prediction-update procedure and the method of quasi-maximum likelihood to estimate the parameters. When estimating the parameters of the off-the-run issues, we use just the parameters γ and ϕ estimated from the on-the-run issues to identify σ l .

Appendix 2: Matlab Codes

22.2.1 Codes for the On-the-Run Bonds

%*************define the likelihood function***************%

function [logfun v1 zz QQ RR rr]=kalfun(param)

k=param(1);

theta=param(2);

sigm=param(3);

sigm2=param(4);

v1=zeros(63,2);

v=zeros(2,1);

rr=zeros(63,1);

zz=zeros(63,2);

RR=0;

QQ=0;

load data.mat

z1=data(:,1); % YTMs of one-year bonds

z3=data(:,3); % YTMs of three-year bonds

c1=data(:,2); % cash flows of one-year bonds

c3=data(:,4:6); % cash flows of three-year bonds

couponrate=data(:,7); % the coupon rate of three-year bonds

z=[z1,z3];

%gam=sqrt(k^2+2*theta^2);

gam=sqrt(k^2+2*sigm^2);

tao=[1 2 3]';

dt=1/12;

a=zeros(3,1);

b=zeros(3,1);

for j=1:3

     a(j)=log((2*gam*exp(k*j/2+gam*j/2))/((k+gam)*(exp(gam*j)-1)+2*gam)^(2*k*theta/sigm^2));

b(j)=(2*exp(gam*j)-2)/((k+gam)*(exp(gam*j)-1)+2*gam);

end

r_(1)=theta; %the initial value of r

A= exp(-k*dt);

P_=(1/(1-A^2))*

(sigm^2*(1-exp(-k*dt))/k)*(theta*(1-exp(-k*dt))/2+r_(1)*exp(-k*dt)); %the initial value of P

C=theta*(1-exp(-k*dt)); %r(i)=C+A*r(i-1)

zm=zeros(63,2);          %the prediction of YTM

R=sigm2*[1 0;0 sqrt(1/3)]; %the covariance of measurement functions

logfun=0;

for i=1:63

Q=(sigm^2*(1-exp(-k*dt))/k)*(theta*(1-exp(-k*dt))/2+r_(i)*exp(-k*dt)); %the conditional variance of state functions

pz1(i)=(c1(i)*b(1)*exp(a(1)-b(1)*r_(i)))/c1(i)*exp(-z1(i)*1);           %the partial derivative of one year z against r

pz3(i)=sum(c3(i,:)'.*b.*exp(a-b*r_(i)))/sum(c3(i,:)'.*tao.*exp(-z3(i)*tao)); %the partial derivative of three year z against r

P1=c1(i)*exp(a(1)-b(1)*r_(i));     %the prediction price of one-year bond

P3=sum(c3(i,:)'.*exp(a-b*r_(i))); % the prediction price of three-year bond

%zm1=bndyield(P1,c1(i),'20-Jan-1997','20-Jan-1998',1);

zm1=-log(P1/c1(i));   %nonlinear measurement function for one-year bonds

zm3=bndyield(P3,couponrate(i),'20-Jan-1997','20-Jan-2000',1); %nonlinear measurement function for three-year bonds

H=[pz1(i) pz3(i)]';

%C1=[zm1 zm3]'-H*r_(i);

%zm(i,:)= C1+H*r_(i);

%zm(i,:)= C1+H*r(i);

zm(i,:)=[zm1 zm3]';     %the prediction of YTMs

v=z(i,:)'-zm(i,:)'; %the error of measurement functions

v1(i,:)=v';        % the error between the prediction and the real value

F=H*P_*H'+R;          %the kalman gain

if det(F)<=0

          logfun=0;

          return

end

rr(i,:)=r_(i);

zz(i,:)=zm(i,:);

r(i)=r_(i)+P_*H'*inv(F)*v; %update r

P=P_-P_*H'*inv(F)*H*P_;     %update P

ll=-0.5*log(det(F))-0.5*v'*inv(F)*v; %likelihood function

logfun=logfun+ll;

     r_(i+1)=A*r(i)+C;     %predict r

     P_=A*P*A'+Q;               %predict P

end

QQ=Q;

RR=R;

logfun=-logfun;

function covv=covirance(param)

covv=zeros(4,4);

for i=1:4

     for j=1:4

     parama=param;

     paramb=param;

     paramab=param;

     parama(i)=param(i)*1.01;

     paramb(j)=param(j)*0.99;

     paramab(i)=param(i)*1.01;

     paramab(j)=paramab(j)*0.99;

     ua=kalfun(parama);

     db=kalfun(paramb);

     udab=kalfun(paramab);

     kk=kalfun(param);

     covv(i,j)=(ua+db-kk-udab)/((0.01*param(i))*(0.01*param(j)));

end

end

22.2.2 Codes for the Off-the-Run Bonds

%************define the likelihood function *************%

function [logfun LL zz v1 QQ RR]=kalfunL(paramL)

sigm3=paramL(1);

sigm4=paramL(2);

load dataL.mat

z1=dataL(:,1); %YTMs of one-year bonds

z3=dataL(:,3); % YTMs of three-year bonds

c1=dataL(:,2); % cash flows of one-year bonds

c3=dataL(:,4:6); % cash flows of three-year bonds

couponrate=dataL(:,7); %the coupon rate of three-year bonds

r=dataL(:,8); %the estimated r in the CIR model

% the estimated parameters in the CIR model

k=0.08899;

theta=0.022659;

sigm=0.063329;

gam=sqrt(k^2+2*sigm^2);

z=[z1,z3];

tao=[1 2 3]';

dt=1/12;

a=zeros(3,1);

b=zeros(3,1);

e=zeros(3,1);

zz=zeros(63,2);

v1=zeros(63,2);

v=zeros(2,1);

RR=0;

QQ=0;

for j=1:3

     a(j)=log((2*gam*exp(k*j/2+gam*j/2))/((k+gam)*(exp(gam*j)-1)+2*gam)^(2*k*theta/sigm^2));

     b(j)=(2*exp(gam*j)-2)/((k+gam)*(exp(gam*j)-1)+2*gam);

     e(j)=(sigm3^2*tao(j)^3)/6;

end

L_(1)=0;  %the initial value of L

v1=zeros(63,2);

v=zeros(2,1);

P_=0;

zm=zeros(63,2);          %the prediction of YTM

R=sigm4*[1 0;0 sqrt(1/3)];    %the covariance of measurement functions

logfun=0;

for i=1:63

Q=sigm3^2*dt;          %the conditional variance of state functions

pz1(i)=(c1(i)*exp(a(1)-b(1)*r(i)+e(1)-L_(i)*1))/c1(i)*exp(-z1(i)*1); %the partial derivative of one year z against r

pz3(i)=sum(c3(i,:)'.*tao.*exp(a-b*r(i)+e-L_(i)*tao))/sum(c3(i,:)'.*tao.*exp(-z3(i)*tao));         %the partial derivative of three year z against r

P1=c1(i)*exp(a(1)-b(1)*r(i)+e(1)-L_(i)*1);     %the prediction price of one-year bond

P3=sum(c3(i,:)'.*exp(a-b*r(i)+e-L_(i)*tao));     % the prediction price of three-year bond

%zm1=bndyield(P1,c1(i),'20-Jan-1997','20-Jan-1998',1);

zm1=-log(P1/c1(i));         %nonlinear measurement function for one-year bonds

zm3=bndyield(P3,couponrate(i),'20-Jan-1997','20-Jan-2000',1);   %nonlinear measurement function for three-year bonds

H=[pz1(i) pz3(i)]';

%C1=[zm1 zm3]'-H*r_(i);

%zm(i,:)= C1+H*r_(i);

%zm(i,:)= C1+H*r(i);

zm(i,:)=[zm1 zm3]';     %the prediction of YTMs

v=z(i,:)'-zm(i,:)';     %the error of measurement functions

v1(i,:)=v';               % the error between the prediction and the real value

F=H*P_*H'+R;             %the kalman gain

if det(F)<=0

          logfun=0;

          return

end

LL(i,:)=L_(i);

zz(i,:)=zm(i,:);

L(i)=L_(i)+P_*H'*inv(F)*v;   %update r

P=P_-P_*H'*inv(F)*H*P_;         %update P

ll=-0.5*log(det(F))-0.5*v'*inv(F)*v;

   logfun=logfun+ll;

   L_(i+1)=L(i);     %predict r

     P_=P+Q;             %predict P

end

QQ=Q;

RR=R;

logfun=-logfun;

function covvL=coviranceL(paramL)

covvL=zeros(2,2);

for i=1:2

     for j=1:2

     parama=paramL;

     paramb=paramL;

     paramab=paramL;

     parama(i)=paramL(i)*1.0000001;

     paramb(j)=paramL(j)*0.9999999;

     paramab(i)=paramL(i)*1.0000001;

     paramab(j)=paramab(j)*0.9999999;

     ua=kalfunL(parama);

     db=kalfunL(paramb);

     udab=kalfunL(paramab);

     kk=kalfunL(paramL);

    covvL(i,j)=(ua+db-kk-udab)/((0.0000001*paramL(i))*(0.0000001*paramL(j)));

end

end

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Chen, R., Lin, H., Yuan, Q. (2015). On-/Off-the-Run Yield Spread Puzzle: Evidence from Chinese Treasury Markets. In: Lee, CF., Lee, J. (eds) Handbook of Financial Econometrics and Statistics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7750-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7750-1_22

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7749-5

  • Online ISBN: 978-1-4614-7750-1

  • eBook Packages: Business and Economics

Publish with us

Policies and ethics