Skip to main content

HIV-1 Budding

  • Chapter
  • First Online:
Advances in HIV-1 Assembly and Release
  • 968 Accesses

Abstract

HIV-1 exits infected cells by budding from the plasma membrane, which generates membranous bud necks that must be cleaved in order to yield extracellular virions. To facilitate the fission of the bud necks, HIV-1 engages the cellular endosomal sorting complex required for transport (ESCRT) machinery through so-called late assembly domains in Gag. The viral late domains serve as docking sites for upstream components of the ESCRT pathway. These components are TSG101/ESCRT-I, which binds to the primary HIV-1 late domain, and ALIX, which plays an auxiliary role in HIV-1 budding. The recruitment of upstream ESCRT components to HIV-1 budding sites ultimately leads to the transient assembly of the late-acting ESCRT-III complex. ESCRT-III constitutes the main engine for HIV-1 bud neck cleavage, and for membrane cleavage events during cytokinesis and the budding of intralumenal vesicles into multivesicular bodies. However, surprisingly few ESCRT-III components are essential for HIV-1 release, indicating that the mechanism of HIV-1 bud neck cleavage differs in crucial aspects from the manner in which ESCRT-III carries out cellular abscission events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gottlinger HG, Dorfman T, Sodroski JG, Haseltine WA (1991) Effect of mutations affecting the p6 gag protein on human immunodeficiency virus particle release. Proc Natl Acad Sci U S A 88:3195–3199

    Article  PubMed  CAS  Google Scholar 

  2. Gheysen D, Jacobs E, de Foresta F, Thiriart C, Francotte M, Thines D, De Wilde M (1989) Assembly and release of HIV-1 precursor Pr55gag virus-like particles from recombinant baculovirus-infected insect cells. Cell 59:103–112

    Article  PubMed  CAS  Google Scholar 

  3. Lingappa JR, Hill RL, Wong ML, Hegde RS (1997) A multistep, ATP-dependent pathway for assembly of human immunodeficiency virus capsids in a cell-free system. J Cell Biol 136:567–581

    Article  PubMed  CAS  Google Scholar 

  4. Lee YM, Liu B, Yu XF (1999) Formation of virus assembly intermediate complexes in the cytoplasm by wild-type and assembly-defective mutant human immunodeficiency virus type 1 and their association with membranes. J Virol 73:5654–5662

    PubMed  CAS  Google Scholar 

  5. Tritel M, Resh MD (2000) Kinetic analysis of human immunodeficiency virus type 1 assembly reveals the presence of sequential intermediates. J Virol 74:5845–5855

    Article  PubMed  CAS  Google Scholar 

  6. Accola MA, Ohagen A, Gottlinger HG (2000) Isolation of human immunodeficiency virus type 1 cores: retention of Vpr in the absence of p6(gag). J Virol 74:6198–6202

    Article  PubMed  CAS  Google Scholar 

  7. Bolognesi DP, Montelaro RC, Frank H, Schafer W (1978) Assembly of type C oncornaviruses: a model. Science 199:183–186

    Article  PubMed  CAS  Google Scholar 

  8. Gottlinger HG, Sodroski JG, Haseltine WA (1989) Role of capsid precursor processing and myristoylation in morphogenesis and infectivity of human immunodeficiency virus type 1. Proc Natl Acad Sci U S A 86:5781–5785

    Article  PubMed  CAS  Google Scholar 

  9. Bryant M, Ratner L (1990) Myristoylation-dependent replication and assembly of human immunodeficiency virus 1. Proc Natl Acad Sci U S A 87:523–527

    Article  PubMed  CAS  Google Scholar 

  10. Reil H, Bukovsky AA, Gelderblom HR, Gottlinger HG (1998) Efficient HIV-1 replication can occur in the absence of the viral matrix protein. EMBO J 17:2699–2708

    Article  PubMed  CAS  Google Scholar 

  11. Yu X, Yuan X, Matsuda Z, Lee TH, Essex M (1992) The matrix protein of human immunodeficiency virus type 1 is required for incorporation of viral envelope protein into mature virions. J Virol 66:4966–4971

    PubMed  CAS  Google Scholar 

  12. Dorfman T, Mammano F, Haseltine WA, Gottlinger HG (1994) Role of the matrix protein in the virion association of the human immunodeficiency virus type 1 envelope glycoprotein. J Virol 68:1689–1696

    PubMed  CAS  Google Scholar 

  13. Gitti RK, Lee BM, Walker J, Summers MF, Yoo S, Sundquist WI (1996) Structure of the amino-terminal core domain of the HIV-1 capsid protein. Science 273:231–235

    Article  PubMed  CAS  Google Scholar 

  14. Gamble TR, Yoo S, Vajdos FF, von Schwedler UK, Worthylake DK, Wang H, McCutcheon JP, Sundquist WI, Hill CP (1997) Structure of the carboxyl-terminal dimerization domain of the HIV-1 capsid protein. Science 278:849–853

    Article  PubMed  CAS  Google Scholar 

  15. Wang CT, Barklis E (1993) Assembly, processing, and infectivity of human immunodeficiency virus type 1 gag mutants. J Virol 67:4264–4273

    PubMed  CAS  Google Scholar 

  16. Dorfman T, Bukovsky A, Ohagen A, Hoglund S, Gottlinger HG (1994) Functional domains of the capsid protein of human immunodeficiency virus type 1. J Virol 68:8180–8187

    PubMed  CAS  Google Scholar 

  17. Borsetti A, Ohagen A, Gottlinger HG (1998) The C-terminal half of the human immunodeficiency virus type 1 Gag precursor is sufficient for efficient particle assembly. J Virol 72:9313–9317

    PubMed  CAS  Google Scholar 

  18. Reicin AS, Paik S, Berkowitz RD, Luban J, Lowy I, Goff SP (1995) Linker insertion mutations in the human immunodeficiency virus type 1 gag gene: effects on virion particle assembly, release, and infectivity. J Virol 69:642–650

    PubMed  CAS  Google Scholar 

  19. McDermott J, Farrell L, Ross R, Barklis E (1996) Structural analysis of human immunodeficiency virus type 1 Gag protein interactions, using cysteine-specific reagents. J Virol 70:5106–5114

    PubMed  CAS  Google Scholar 

  20. Accola MA, Hoglund S, Gottlinger HG (1998) A putative alpha-helical structure which overlaps the capsid-p2 boundary in the human immunodeficiency virus type 1 Gag precursor is crucial for viral particle assembly. J Virol 72:2072–2078

    PubMed  CAS  Google Scholar 

  21. Krausslich HG, Facke M, Heuser AM, Konvalinka J, Zentgraf H (1995) The spacer peptide between human immunodeficiency virus capsid and nucleocapsid proteins is essential for ordered assembly and viral infectivity. J Virol 69:3407–3419

    PubMed  CAS  Google Scholar 

  22. Gross I, Hohenberg H, Wilk T, Wiegers K, Grattinger M, Muller B, Fuller S, Krausslich HG (2000) A conformational switch controlling HIV-1 morphogenesis. EMBO J 19:103–113

    Article  PubMed  CAS  Google Scholar 

  23. Summers MF, Henderson LE, Chance MR, Bess JW Jr, South TL, Blake PR, Sagi I, Perez-Alvarado G, Sowder RC 3rd, Hare DR et al (1992) Nucleocapsid zinc fingers detected in retroviruses: EXAFS studies of intact viruses and the solution-state structure of the nucleocapsid protein from HIV-1. Protein Sci 1:563–574

    Article  PubMed  CAS  Google Scholar 

  24. Dorfman T, Luban J, Goff SP, Haseltine WA, Gottlinger HG (1993) Mapping of functionally important residues of a cysteine-histidine box in the human immunodeficiency virus type 1 nucleocapsid protein. J Virol 67:6159–6169

    PubMed  CAS  Google Scholar 

  25. Dawson L, Yu XF (1998) The role of nucleocapsid of HIV-1 in virus assembly. Virology 251:141–157

    Article  PubMed  CAS  Google Scholar 

  26. Sandefur S, Smith RM, Varthakavi V, Spearman P (2000) Mapping and characterization of the N-terminal I domain of human immunodeficiency virus type 1 Pr55(Gag). J Virol 74:7238–7249

    Article  PubMed  CAS  Google Scholar 

  27. Ma YM, Vogt VM (2002) Rous sarcoma virus Gag protein-oligonucleotide interaction suggests a critical role for protein dimer formation in assembly. J Virol 76:5452–5462

    Article  PubMed  CAS  Google Scholar 

  28. Zhang Y, Qian H, Love Z, Barklis E (1998) Analysis of the assembly function of the human immunodeficiency virus type 1 gag protein nucleocapsid domain. J Virol 72:1782–1789

    PubMed  CAS  Google Scholar 

  29. Accola MA, Strack B, Gottlinger HG (2000) Efficient particle production by minimal gag constructs which retain the carboxy-terminal domain of human immunodeficiency virus type 1 capsid-p2 and a late assembly domain. J Virol 74:5395–5402

    Article  PubMed  CAS  Google Scholar 

  30. Klimkait T, Strebel K, Hoggan MD, Martin MA, Orenstein JM (1990) The human immunodeficiency virus type 1-specific protein vpu is required for efficient virus maturation and release. J Virol 64:621–629

    PubMed  CAS  Google Scholar 

  31. Poli G, Orenstein JM, Kinter A, Folks TM, Fauci AS (1989) Interferon-alpha but not AZT suppresses HIV expression in chronically infected cell lines. Science 244:575–577

    Article  PubMed  CAS  Google Scholar 

  32. Neil SJ, Zang T, Bieniasz PD (2008) Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature 451:425–430

    Article  PubMed  CAS  Google Scholar 

  33. Malim MH, Bieniasz PD (2012) HIV restriction factors and mechanisms of evasion. Cold Spring Harb Perspect Med 2:a006940

    Article  PubMed  CAS  Google Scholar 

  34. Huang M, Orenstein JM, Martin MA, Freed EO (1995) p6Gag is required for particle production from full-length human immunodeficiency virus type 1 molecular clones expressing protease. J Virol 69:6810–6818

    PubMed  CAS  Google Scholar 

  35. Demirov DG, Orenstein JM, Freed EO (2002) The late domain of human immunodeficiency virus type 1 p6 promotes virus release in a cell type-dependent manner. J Virol 76:105–117

    Article  PubMed  CAS  Google Scholar 

  36. Wills JW, Cameron CE, Wilson CB, Xiang Y, Bennett RP, Leis J (1994) An assembly domain of the Rous sarcoma virus Gag protein required late in budding. J Virol 68:6605–6618

    PubMed  CAS  Google Scholar 

  37. Parent LJ, Bennett RP, Craven RC, Nelle TD, Krishna NK, Bowzard JB, Wilson CB, Puffer BA, Montelaro RC, Wills JW (1995) Positionally independent and exchangeable late budding functions of the Rous sarcoma virus and human immunodeficiency virus Gag proteins. J Virol 69:5455–5460

    PubMed  CAS  Google Scholar 

  38. Le Blanc I, Prevost MC, Dokhelar MC, Rosenberg AR (2002) The PPPY motif of human T-cell leukemia virus type 1 Gag protein is required early in the budding process. J Virol 76:10024–10029

    Article  PubMed  CAS  Google Scholar 

  39. Wang H, Norris KM, Mansky LM (2002) Analysis of bovine leukemia virus gag membrane targeting and late domain function. J Virol 76:8485–8493

    Article  PubMed  CAS  Google Scholar 

  40. Yasuda J, Hunter E (1998) A proline-rich motif (PPPY) in the Gag polyprotein of Mason-Pfizer monkey virus plays a maturation-independent role in virion release. J Virol 72:4095–4103

    PubMed  CAS  Google Scholar 

  41. Yuan B, Li X, Goff SP (1999) Mutations altering the moloney murine leukemia virus p12 Gag protein affect virion production and early events of the virus life cycle. EMBO J 18:4700–4710

    Article  PubMed  CAS  Google Scholar 

  42. Craven RC, Harty RN, Paragas J, Palese P, Wills JW (1999) Late domain function identified in the vesicular stomatitis virus M protein by use of rhabdovirus-retrovirus chimeras. J Virol 73:3359–3365

    PubMed  CAS  Google Scholar 

  43. Harty RN, Brown ME, Wang G, Huibregtse J, Hayes FP (2000) A PPxY motif within the VP40 protein of Ebola virus interacts physically and functionally with a ubiquitin ligase: implications for filovirus budding. Proc Natl Acad Sci U S A 97:13871–13876

    Article  PubMed  CAS  Google Scholar 

  44. Puffer BA, Parent LJ, Wills JW, Montelaro RC (1997) Equine infectious anemia virus utilizes a YXXL motif within the late assembly domain of the Gag p9 protein. J Virol 71:6541–6546

    PubMed  CAS  Google Scholar 

  45. Strack B, Calistri A, Craig S, Popova E, Gottlinger HG (2003) AIP1/ALIX is a binding partner for HIV-1 p6 and EIAV p9 functioning in virus budding. Cell 114:689–699

    Article  PubMed  CAS  Google Scholar 

  46. Martin-Serrano J, Bieniasz PD (2003) A bipartite late-budding domain in human immunodeficiency virus type 1. J Virol 77:12373–12377

    Article  PubMed  CAS  Google Scholar 

  47. Strack B, Calistri A, Gottlinger HG (2002) Late assembly domain function can exhibit context dependence and involves ubiquitin residues implicated in endocytosis. J Virol 76:5472–5479

    Article  PubMed  CAS  Google Scholar 

  48. Martin-Serrano J, Perez-Caballero D, Bieniasz PD (2004) Context-dependent effects of L domains and ubiquitination on viral budding. J Virol 78:5554–5563

    Article  PubMed  CAS  Google Scholar 

  49. Ott DE, Coren LV, Gagliardi TD, Nagashima K (2005) Heterologous late-domain sequences have various abilities to promote budding of human immunodeficiency virus type 1. J Virol 79:9038–9045

    Article  PubMed  CAS  Google Scholar 

  50. Schubert U, Ott DE, Chertova EN, Welker R, Tessmer U, Princiotta MF, Bennink JR, Krausslich HG, Yewdell JW (2000) Proteasome inhibition interferes with gag polyprotein processing, release, and maturation of HIV-1 and HIV-2. Proc Natl Acad Sci U S A 97:13057–13062

    Article  PubMed  CAS  Google Scholar 

  51. Patnaik A, Chau V, Wills JW (2000) Ubiquitin is part of the retrovirus budding machinery. Proc Natl Acad Sci U S A 97:13069–13074

    Article  PubMed  CAS  Google Scholar 

  52. Strack B, Calistri A, Accola MA, Palu G, Gottlinger HG (2000) A role for ubiquitin ligase recruitment in retrovirus release. Proc Natl Acad Sci U S A 97:13063–13068

    Article  PubMed  CAS  Google Scholar 

  53. VerPlank L, Bouamr F, LaGrassa TJ, Agresta B, Kikonyogo A, Leis J, Carter CA (2001) Tsg101, a homologue of ubiquitin-conjugating (E2) enzymes, binds the L domain in HIV type 1 Pr55(Gag). Proc Natl Acad Sci U S A 98:7724–7729

    Article  PubMed  CAS  Google Scholar 

  54. Doyotte A, Russell MR, Hopkins CR, Woodman PG (2005) Depletion of TSG101 forms a mammalian “class E” compartment: a multicisternal early endosome with multiple sorting defects. J Cell Sci 118:3003–3017

    Article  PubMed  CAS  Google Scholar 

  55. Razi M, Futter CE (2006) Distinct roles for Tsg101 and Hrs in multivesicular body formation and inward vesiculation. Mol Biol Cell 17:3469–3483

    Article  PubMed  CAS  Google Scholar 

  56. Garrus JE, von Schwedler UK, Pornillos OW, Morham SG, Zavitz KH, Wang HE, Wettstein DA, Stray KM, Cote M, Rich RL, Myszka DG, Sundquist WI (2001) Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell 107:55–65

    Article  PubMed  CAS  Google Scholar 

  57. Martin-Serrano J, Eastman SW, Chung W, Bieniasz PD (2005) HECT ubiquitin ligases link viral and cellular PPXY motifs to the vacuolar protein-sorting pathway. J Cell Biol 168:89–101

    Article  PubMed  CAS  Google Scholar 

  58. von Schwedler UK, Stuchell M, Muller B, Ward DM, Chung HY, Morita E, Wang HE, Davis T, He GP, Cimbora DM, Scott A, Krausslich HG, Kaplan J, Morham SG, Sundquist WI (2003) The protein network of HIV budding. Cell 114:701–713

    Article  Google Scholar 

  59. Martin-Serrano J, Yarovoy A, Perez-Caballero D, Bieniasz PD (2003) Divergent retroviral late-budding domains recruit vacuolar protein sorting factors by using alternative adaptor proteins. Proc Natl Acad Sci U S A 100:12414–12419

    Article  PubMed  CAS  Google Scholar 

  60. Raymond CK, Howald-Stevenson I, Vater CA, Stevens TH (1992) Morphological classification of the yeast vacuolar protein sorting mutants: evidence for a prevacuolar compartment in class E vps mutants. Mol Biol Cell 3:1389–1402

    PubMed  CAS  Google Scholar 

  61. Piper RC, Cooper AA, Yang H, Stevens TH (1995) VPS27 controls vacuolar and endocytic traffic through a prevacuolar compartment in Saccharomyces cerevisiae. J Cell Biol 131:603–617

    Article  PubMed  CAS  Google Scholar 

  62. Rieder SE, Banta LM, Kohrer K, McCaffery JM, Emr SD (1996) Multilamellar endosome-like compartment accumulates in the yeast vps28 vacuolar protein sorting mutant. Mol Biol Cell 7:985–999

    PubMed  CAS  Google Scholar 

  63. Odorizzi G, Babst M, Emr SD (1998) Fab1p PtdIns(3)P 5-kinase function essential for protein sorting in the multivesicular body. Cell 95:847–858

    Article  PubMed  CAS  Google Scholar 

  64. Henne WM, Buchkovich NJ, Emr SD (2011) The ESCRT pathway. Dev Cell 21:77–91

    Article  PubMed  CAS  Google Scholar 

  65. Babst M, Katzmann DJ, Snyder WB, Wendland B, Emr SD (2002) Endosome-associated complex, ESCRT-II, recruits transport machinery for protein sorting at the multivesicular body. Dev Cell 3:283–289

    Article  PubMed  CAS  Google Scholar 

  66. Bowers K, Piper SC, Edeling MA, Gray SR, Owen DJ, Lehner PJ, Luzio JP (2006) Degradation of endocytosed epidermal growth factor and virally ubiquitinated major histocompatibility complex class I is independent of mammalian ESCRTII. J Biol Chem 281:5094–5105

    Article  PubMed  CAS  Google Scholar 

  67. Babst M, Wendland B, Estepa EJ, Emr SD (1998) The Vps4p AAA ATPase regulates membrane association of a Vps protein complex required for normal endosome function. EMBO J 17:2982–2993

    Article  PubMed  CAS  Google Scholar 

  68. Yu Z, Gonciarz MD, Sundquist WI, Hill CP, Jensen GJ (2008) Cryo-EM structure of dodecameric Vps4p and its 2:1 complex with Vta1p. J Mol Biol 377:364–377

    Article  PubMed  CAS  Google Scholar 

  69. Wollert T, Hurley JH (2010) Molecular mechanism of multivesicular body biogenesis by ESCRT complexes. Nature 464:864–869

    Article  PubMed  CAS  Google Scholar 

  70. Wollert T, Wunder C, Lippincott-Schwartz J, Hurley JH (2009) Membrane scission by the ESCRT-III complex. Nature 458:172–177

    Article  PubMed  CAS  Google Scholar 

  71. McDonald B, Martin-Serrano J (2009) No strings attached: the ESCRT machinery in viral budding and cytokinesis. J Cell Sci 122:2167–2177

    Article  PubMed  CAS  Google Scholar 

  72. Carlton JG, Martin-Serrano J (2007) Parallels between cytokinesis and retroviral budding: a role for the ESCRT machinery. Science 316:1908–1912

    Article  PubMed  CAS  Google Scholar 

  73. Morita E, Sandrin V, Chung HY, Morham SG, Gygi SP, Rodesch CK, Sundquist WI (2007) Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis. EMBO J 26:4215–4227

    Article  PubMed  CAS  Google Scholar 

  74. Samson RY, Obita T, Freund SM, Williams RL, Bell SD (2008) A role for the ESCRT system in cell division in archaea. Science 322:1710–1713

    Article  PubMed  CAS  Google Scholar 

  75. Lindas AC, Karlsson EA, Lindgren MT, Ettema TJ, Bernander R (2008) A unique cell division machinery in the Archaea. Proc Natl Acad Sci U S A 105:18942–18946

    Article  PubMed  CAS  Google Scholar 

  76. Morita E, Sandrin V, Alam SL, Eckert DM, Gygi SP, Sundquist WI (2007) Identification of human MVB12 proteins as ESCRT-I subunits that function in HIV budding. Cell Host Microbe 2:41–53

    Article  PubMed  CAS  Google Scholar 

  77. Agromayor M, Soler N, Caballe A, Kueck T, Freund SM, Allen MD, Bycroft M, Perisic O, Ye Y, McDonald B, Scheel H, Hofmann K, Neil SJ, Martin-Serrano J, Williams RL (2012) The UBAP1 subunit of ESCRT-I interacts with ubiquitin via a SOUBA domain. Structure 20:414–428

    Article  PubMed  CAS  Google Scholar 

  78. Kostelansky MS, Schluter C, Tam YY, Lee S, Ghirlando R, Beach B, Conibear E, Hurley JH (2007) Molecular architecture and functional model of the complete yeast ESCRT-I heterotetramer. Cell 129:485–498

    Article  PubMed  CAS  Google Scholar 

  79. Pornillos O, Higginson DS, Stray KM, Fisher RD, Garrus JE, Payne M, He GP, Wang HE, Morham SG, Sundquist WI (2003) HIV Gag mimics the Tsg101-recruiting activity of the human Hrs protein. J Cell Biol 162:425–434

    Article  PubMed  CAS  Google Scholar 

  80. Bouamr F, Houck-Loomis BR, De Los Santos M, Casaday RJ, Johnson MC, Goff SP (2007) The C-terminal portion of the Hrs protein interacts with Tsg101 and interferes with human immunodeficiency virus type 1 Gag particle production. J Virol 81:2909–2922

    Article  PubMed  CAS  Google Scholar 

  81. Ren X, Hurley JH (2011) Proline-rich regions and motifs in trafficking: from ESCRT interaction to viral exploitation. Traffic 12:1282–1290

    Article  PubMed  CAS  Google Scholar 

  82. Martin-Serrano J, Zang T, Bieniasz PD (2001) HIV-1 and Ebola virus encode small peptide motifs that recruit Tsg101 to sites of particle assembly to facilitate egress. Nat Med 7:1313–1319

    Article  PubMed  CAS  Google Scholar 

  83. Welsch S, Habermann A, Jager S, Muller B, Krijnse-Locker J, Krausslich HG (2006) Ultrastructural analysis of ESCRT proteins suggests a role for endosome-associated tubular-vesicular membranes in ESCRT function. Traffic 7:1551–1566

    Article  PubMed  CAS  Google Scholar 

  84. Pornillos O, Alam SL, Davis DR, Sundquist WI (2002) Structure of the Tsg101 UEV domain in complex with the PTAP motif of the HIV-1 p6 protein. Nat Struct Biol 9:812–817

    PubMed  CAS  Google Scholar 

  85. Stuchell MD, Garrus JE, Muller B, Stray KM, Ghaffarian S, McKinnon R, Krausslich HG, Morham SG, Sundquist WI (2004) The human endosomal sorting complex required for transport (ESCRT-I) and its role in HIV-1 budding. J Biol Chem 279:36059–36071

    Article  PubMed  CAS  Google Scholar 

  86. Im YJ, Kuo L, Ren X, Burgos PV, Zhao XZ, Liu F, Burke TR Jr, Bonifacino JS, Freed EO, Hurley JH (2010) Crystallographic and functional analysis of the ESCRT-I /HIV-1 Gag PTAP interaction. Structure 18:1536–1547

    Article  PubMed  CAS  Google Scholar 

  87. Demirov DG, Ono A, Orenstein JM, Freed EO (2002) Overexpression of the N-terminal domain of TSG101 inhibits HIV-1 budding by blocking late domain function. Proc Natl Acad Sci U S A 99:955–960

    Article  PubMed  CAS  Google Scholar 

  88. Goila-Gaur R, Demirov DG, Orenstein JM, Ono A, Freed EO (2003) Defects in human immunodeficiency virus budding and endosomal sorting induced by TSG101 overexpression. J Virol 77:6507–6519

    Article  PubMed  CAS  Google Scholar 

  89. Schlundt A, Sticht J, Piotukh K, Kosslick D, Jahnke N, Keller S, Schuemann M, Krause E, Freund C (2009) Proline-rich sequence recognition: II. Proteomics analysis of Tsg101 ubiquitin-E2-like variant (UEV) interactions. Mol Cell Proteomics 8:2474–2486

    Article  PubMed  CAS  Google Scholar 

  90. Sundquist WI, Schubert HL, Kelly BN, Hill GC, Holton JM, Hill CP (2004) Ubiquitin recognition by the human TSG101 protein. Mol Cell 13:783–789

    Article  PubMed  CAS  Google Scholar 

  91. Shields SB, Piper RC (2011) How ubiquitin functions with ESCRTs. Traffic 12:1306–1317

    Article  PubMed  CAS  Google Scholar 

  92. Ott DE, Coren LV, Chertova EN, Gagliardi TD, Schubert U (2000) Ubiquitination of HIV-1 and MuLV Gag. Virology 278:111–121

    Article  PubMed  CAS  Google Scholar 

  93. Goff A, Ehrlich LS, Cohen SN, Carter CA (2003) Tsg101 control of human immunodeficiency virus type 1 Gag trafficking and release. J Virol 77:9173–9182

    Article  PubMed  CAS  Google Scholar 

  94. Gottwein E, Krausslich HG (2005) Analysis of human immunodeficiency virus type 1 Gag ubiquitination. J Virol 79:9134–9144

    Article  PubMed  CAS  Google Scholar 

  95. Gottwein E, Jager S, Habermann A, Krausslich HG (2006) Cumulative mutations of ubiquitin acceptor sites in human immunodeficiency virus type 1 gag cause a late budding defect. J Virol 80:6267–6275

    Article  PubMed  CAS  Google Scholar 

  96. Martin-Serrano J, Zang T, Bieniasz PD (2003) Role of ESCRT-I in retroviral budding. J Virol 77:4794–4804

    Article  PubMed  CAS  Google Scholar 

  97. Kostelansky MS, Sun J, Lee S, Kim J, Ghirlando R, Hierro A, Emr SD, Hurley JH (2006) Structural and functional organization of the ESCRT-I trafficking complex. Cell 125:113–126

    Article  PubMed  CAS  Google Scholar 

  98. Pineda-Molina E, Belrhali H, Piefer AJ, Akula I, Bates P, Weissenhorn W (2006) The crystal structure of the C-terminal domain of Vps28 reveals a conserved surface required for Vps20 recruitment. Traffic 7:1007–1016

    Article  PubMed  CAS  Google Scholar 

  99. Tanzi GO, Piefer AJ, Bates P (2003) Equine infectious anemia virus utilizes host vesicular protein sorting machinery during particle release. J Virol 77:8440–8447

    Article  PubMed  CAS  Google Scholar 

  100. Eastman SW, Martin-Serrano J, Chung W, Zang T, Bieniasz PD (2005) Identification of human VPS37C, a component of endosomal sorting complex required for transport-I important for viral budding. J Biol Chem 280:628–636

    Article  PubMed  CAS  Google Scholar 

  101. Bache KG, Slagsvold T, Cabezas A, Rosendal KR, Raiborg C, Stenmark H (2004) The growth-regulatory protein HCRP1/hVps37A is a subunit of mammalian ESCRT-I and mediates receptor down-regulation. Mol Biol Cell 15:4337–4346

    Article  PubMed  CAS  Google Scholar 

  102. de Souza RF, Aravind L (2010) UMA and MABP domains throw light on receptor endocytosis and selection of endosomal cargoes. Bioinformatics 26:1477–1480

    Article  PubMed  CAS  Google Scholar 

  103. Boura E, Hurley JH (2012) Structural basis for membrane targeting by the MVB12-associated beta-prism domain of the human ESCRT-I MVB12 subunit. Proc Natl Acad Sci U S A 109:1901–1906

    Article  PubMed  CAS  Google Scholar 

  104. Stefani F, Zhang L, Taylor S, Donovan J, Rollinson S, Doyotte A, Brownhill K, Bennion J, Pickering-Brown S, Woodman P (2011) UBAP1 is a component of an endosome-specific ESCRT-I complex that is essential for MVB sorting. Curr Biol 21:1245–1250

    Article  PubMed  CAS  Google Scholar 

  105. Im YJ, Hurley JH (2008) Integrated structural model and membrane targeting mechanism of the human ESCRT-II complex. Dev Cell 14:902–913

    Article  PubMed  CAS  Google Scholar 

  106. Teo H, Gill DJ, Sun J, Perisic O, Veprintsev DB, Vallis Y, Emr SD, Williams RL (2006) ESCRT-I core and ESCRT-II GLUE domain structures reveal role for GLUE in linking to ESCRT-I and membranes. Cell 125:99–111

    Article  PubMed  CAS  Google Scholar 

  107. Boura E, Rozycki B, Chung HS, Herrick DZ, Canagarajah B, Cafiso DS, Eaton WA, Hummer G, Hurley JH (2012) Solution structure of the ESCRT-I and -II supercomplex: implications for membrane budding and scission. Structure 20:874–886

    Article  PubMed  CAS  Google Scholar 

  108. Teis D, Saksena S, Judson BL, Emr SD (2010) ESCRT-II coordinates the assembly of ESCRT-III filaments for cargo sorting and multivesicular body vesicle formation. EMBO J 29:871–883

    Article  PubMed  CAS  Google Scholar 

  109. Im YJ, Wollert T, Boura E, Hurley JH (2009) Structure and function of the ESCRT-II-III interface in multivesicular body biogenesis. Dev Cell 17:234–243

    Article  PubMed  CAS  Google Scholar 

  110. Henne WM, Buchkovich NJ, Zhao Y, Emr SD (2012) The endosomal sorting complex ESCRT-II mediates the assembly and architecture of ESCRT-III helices. Cell 151:356–371

    Article  PubMed  CAS  Google Scholar 

  111. Langelier C, von Schwedler UK, Fisher RD, De Domenico I, White PL, Hill CP, Kaplan J, Ward D, Sundquist WI (2006) Human ESCRT-II complex and its role in human immunodeficiency virus type 1 release. J Virol 80:9465–9480

    Article  PubMed  CAS  Google Scholar 

  112. Hewitt EW, Duncan L, Mufti D, Baker J, Stevenson PG, Lehner PJ (2002) Ubiquitylation of MHC class I by the K3 viral protein signals internalization and TSG101-dependent degradation. EMBO J 21:2418–2429

    Article  PubMed  CAS  Google Scholar 

  113. Saksena S, Sun J, Chu T, Emr SD (2007) ESCRTing proteins in the endocytic pathway. Trends Biochem Sci 32:561–573

    Article  PubMed  CAS  Google Scholar 

  114. Babst M, Katzmann DJ, Estepa-Sabal EJ, Meerloo T, Emr SD (2002) Escrt-III: an endosome-associated heterooligomeric protein complex required for mvb sorting. Dev Cell 3:271–282

    Article  PubMed  CAS  Google Scholar 

  115. Muziol T, Pineda-Molina E, Ravelli RB, Zamborlini A, Usami Y, Gottlinger H, Weissenhorn W (2006) Structural basis for budding by the ESCRT-III factor CHMP3. Dev Cell 10:821–830

    Article  PubMed  CAS  Google Scholar 

  116. Bajorek M, Schubert HL, McCullough J, Langelier C, Eckert DM, Stubblefield WM, Uter NT, Myszka DG, Hill CP, Sundquist WI (2009) Structural basis for ESCRT-III protein autoinhibition. Nat Struct Mol Biol 16:754–762

    Article  PubMed  CAS  Google Scholar 

  117. Shim S, Kimpler LA, Hanson PI (2007) Structure/function analysis of four core ESCRT-III proteins reveals common regulatory role for extreme C-terminal domain. Traffic 8:1068–1079

    Article  PubMed  CAS  Google Scholar 

  118. Zamborlini A, Usami Y, Radoshitzky SR, Popova E, Palu G, Gottlinger H (2006) Release of autoinhibition converts ESCRT-III components into potent inhibitors of HIV-1 budding. Proc Natl Acad Sci U S A 103:19140–19145

    Article  PubMed  CAS  Google Scholar 

  119. Teis D, Saksena S, Emr SD (2008) Ordered assembly of the ESCRT-III complex on endosomes is required to sequester cargo during MVB formation. Dev Cell 15:578–589

    Article  PubMed  CAS  Google Scholar 

  120. Saksena S, Wahlman J, Teis D, Johnson AE, Emr SD (2009) Functional reconstitution of ESCRT-III assembly and disassembly. Cell 136:97–109

    Article  PubMed  CAS  Google Scholar 

  121. Yorikawa C, Shibata H, Waguri S, Hatta K, Horii M, Katoh K, Kobayashi T, Uchiyama Y, Maki M (2005) Human CHMP6, a myristoylated ESCRT-III protein, interacts directly with an ESCRT-II component EAP20 and regulates endosomal cargo sorting. Biochem J 387:17–26

    Article  PubMed  CAS  Google Scholar 

  122. Azmi I, Davies B, Dimaano C, Payne J, Eckert D, Babst M, Katzmann DJ (2006) Recycling of ESCRTs by the AAA-ATPase Vps4 is regulated by a conserved VSL region in Vta1. J Cell Biol 172:705–717

    Article  PubMed  CAS  Google Scholar 

  123. Stuchell-Brereton MD, Skalicky JJ, Kieffer C, Karren MA, Ghaffarian S, Sundquist WI (2007) ESCRT-III recognition by VPS4 ATPases. Nature 449:740–744

    Article  PubMed  CAS  Google Scholar 

  124. Obita T, Saksena S, Ghazi-Tabatabai S, Gill DJ, Perisic O, Emr SD, Williams RL (2007) Structural basis for selective recognition of ESCRT-III by the AAA ATPase Vps4. Nature 449:735–739

    Article  PubMed  CAS  Google Scholar 

  125. Kieffer C, Skalicky JJ, Morita E, De Domenico I, Ward DM, Kaplan J, Sundquist WI (2008) Two distinct modes of ESCRT-III recognition are required for VPS4 functions in lysosomal protein targeting and HIV-1 budding. Dev Cell 15:62–73

    Article  PubMed  CAS  Google Scholar 

  126. Xiao J, Xia H, Zhou J, Azmi IF, Davies BA, Katzmann DJ, Xu Z (2008) Structural basis of Vta1 function in the multivesicular body sorting pathway. Dev Cell 14:37–49

    Article  PubMed  CAS  Google Scholar 

  127. Azmi IF, Davies BA, Xiao J, Babst M, Xu Z, Katzmann DJ (2008) ESCRT-III family members stimulate Vps4 ATPase activity directly or via Vta1. Dev Cell 14:50–61

    Article  PubMed  CAS  Google Scholar 

  128. Davies BA, Azmi IF, Katzmann DJ (2009) Regulation of Vps4 ATPase activity by ESCRT-III. Biochem Soc Trans 37:143–145

    Article  PubMed  CAS  Google Scholar 

  129. Hanson PI, Roth R, Lin Y, Heuser JE (2008) Plasma membrane deformation by circular arrays of ESCRT-III protein filaments. J Cell Biol 180:389–402

    Article  PubMed  CAS  Google Scholar 

  130. Usami Y, Popov S, Weiss ER, Vriesema-Magnuson C, Calistri A, Gottlinger HG (2012) Regulation of CHMP4/ESCRT-III function in human immunodeficiency virus type 1 budding by CC2D1A. J Virol 86:3746–3756

    Article  PubMed  CAS  Google Scholar 

  131. Martinelli N, Hartlieb B, Usami Y, Sabin C, Dordor A, Miguet N, Avilov SV, Ribeiro EA Jr, Gottlinger H, Weissenhorn W (2012) CC2D1A is a regulator of ESCRT-III CHMP4B. J Mol Biol 419:75–88

    Article  PubMed  CAS  Google Scholar 

  132. Ward DM, Vaughn MB, Shiflett SL, White PL, Pollock AL, Hill J, Schnegelberger R, Sundquist WI, Kaplan J (2005) The role of LIP5 and CHMP5 in multivesicular body formation and HIV-1 budding in mammalian cells. J Biol Chem 280:10548–10555

    Article  PubMed  CAS  Google Scholar 

  133. Agromayor M, Carlton JG, Phelan JP, Matthews DR, Carlin LM, Ameer-Beg S, Bowers K, Martin-Serrano J (2009) Essential role of hIST1 in cytokinesis. Mol Biol Cell 20:1374–1387

    Article  PubMed  CAS  Google Scholar 

  134. Bajorek M, Morita E, Skalicky JJ, Morham SG, Babst M, Sundquist WI (2009) Biochemical analyses of human IST1 and its function in cytokinesis. Mol Biol Cell 20:1360–1373

    Article  PubMed  CAS  Google Scholar 

  135. Scott A, Chung HY, Gonciarz-Swiatek M, Hill GC, Whitby FG, Gaspar J, Holton JM, Viswanathan R, Ghaffarian S, Hill CP, Sundquist WI (2005) Structural and mechanistic studies of VPS4 proteins. EMBO J 24:3658–3669

    Article  PubMed  CAS  Google Scholar 

  136. Baumgartel V, Ivanchenko S, Dupont A, Sergeev M, Wiseman PW, Krausslich HG, Brauchle C, Muller B, Lamb DC (2011) Live-cell visualization of dynamics of HIV budding site interactions with an ESCRT component. Nat Cell Biol 13:469–474

    Article  PubMed  CAS  Google Scholar 

  137. Jouvenet N, Zhadina M, Bieniasz PD, Simon SM (2011) Dynamics of ESCRT protein recruitment during retroviral assembly. Nat Cell Biol 13:394–401

    Article  PubMed  CAS  Google Scholar 

  138. Lata S, Roessle M, Solomons J, Jamin M, Gottlinger HG, Svergun DI, Weissenhorn W (2008) Structural basis for autoinhibition of ESCRT-III CHMP3. J Mol Biol 378:816–825

    Article  CAS  Google Scholar 

  139. Solomons J, Sabin C, Poudevigne E, Usami Y, Hulsik DL, Macheboeuf P, Hartlieb B, Gottlinger H, Weissenhorn W (2011) Structural basis for ESCRT-III CHMP3 recruitment of AMSH. Structure 19:1149–1159

    Article  PubMed  CAS  Google Scholar 

  140. Weiss ER, Gottlinger H (2011) The role of cellular factors in promoting HIV budding. J Mol Biol 410:525–533

    Article  PubMed  CAS  Google Scholar 

  141. Morita E, Sandrin V, McCullough J, Katsuyama A, Baci Hamilton I, Sundquist WI (2011) ESCRT-III protein requirements for HIV-1 budding. Cell Host Microbe 9:235–242

    Article  PubMed  CAS  Google Scholar 

  142. Carlson LA, Hurley JH (2012) In vitro reconstitution of the ordered assembly of the endosomal sorting complex required for transport at membrane-bound HIV-1 Gag clusters. Proc Natl Acad Sci U S A 109:16928–16933

    Article  PubMed  CAS  Google Scholar 

  143. Lata S, Schoehn G, Jain A, Pires R, Piehler J, Gottlinger HG, Weissenhorn W (2008) Helical structures of ESCRT-III are disassembled by VPS4. Science 321:1354–1357

    Article  PubMed  CAS  Google Scholar 

  144. Bodon G, Chassefeyre R, Pernet-Gallay K, Martinelli N, Effantin G, Hulsik DL, Belly A, Goldberg Y, Chatellard-Causse C, Blot B, Schoehn G, Weissenhorn W, Sadoul R (2011) Charged multivesicular body protein 2B (CHMP2B) of the endosomal sorting complex required for transport-III (ESCRT-III) polymerizes into helical structures deforming the plasma membrane. J Biol Chem 286:40276–40286

    Article  PubMed  CAS  Google Scholar 

  145. Fabrikant G, Lata S, Riches JD, Briggs JA, Weissenhorn W, Kozlov MM (2009) Computational model of membrane fission catalyzed by ESCRT-III. PLoS Comput Biol 5:e1000575

    Article  PubMed  CAS  Google Scholar 

  146. Carlson LA, Briggs JA, Glass B, Riches JD, Simon MN, Johnson MC, Muller B, Grunewald K, Krausslich HG (2008) Three-dimensional analysis of budding sites and released virus suggests a revised model for HIV-1 morphogenesis. Cell Host Microbe 4:592–599

    Article  PubMed  CAS  Google Scholar 

  147. Fisher RD, Chung HY, Zhai Q, Robinson H, Sundquist WI, Hill CP (2007) Structural and biochemical studies of ALIX/AIP1 and its role in retrovirus budding. Cell 128:841–852

    Article  PubMed  CAS  Google Scholar 

  148. Kim J, Sitaraman S, Hierro A, Beach BM, Odorizzi G, Hurley JH (2005) Structural basis for endosomal targeting by the Bro1 domain. Dev Cell 8:937–947

    Article  PubMed  CAS  Google Scholar 

  149. McCullough J, Fisher RD, Whitby FG, Sundquist WI, Hill CP (2008) ALIX-CHMP4 interactions in the human ESCRT pathway. Proc Natl Acad Sci U S A 105:7687–7691

    Article  PubMed  CAS  Google Scholar 

  150. Pires R, Hartlieb B, Signor L, Schoehn G, Lata S, Roessle M, Moriscot C, Popov S, Hinz A, Jamin M, Boyer V, Sadoul R, Forest E, Svergun DI, Gottlinger HG, Weissenhorn W (2009) A crescent-shaped ALIX dimer targets ESCRT-III CHMP4 filaments. Structure 17:843–856

    Article  PubMed  CAS  Google Scholar 

  151. Lee S, Joshi A, Nagashima K, Freed EO, Hurley JH (2007) Structural basis for viral late-domain binding to Alix. Nat Struct Mol Biol 14:194–199

    Article  PubMed  CAS  Google Scholar 

  152. Zhai Q, Fisher RD, Chung HY, Myszka DG, Sundquist WI, Hill CP (2008) Structural and functional studies of ALIX interactions with YPX(n)L late domains of HIV-1 and EIAV. Nat Struct Mol Biol 15:43–49

    Article  PubMed  CAS  Google Scholar 

  153. Zhai Q, Landesman MB, Robinson H, Sundquist WI, Hill CP (2011) Identification and structural characterization of the ALIX-binding late domains of simian immunodeficiency virus SIVmac239 and SIVagmTan-1. J Virol 85:632–637

    Article  PubMed  CAS  Google Scholar 

  154. Fujii K, Munshi UM, Ablan SD, Demirov DG, Soheilian F, Nagashima K, Stephen AG, Fisher RJ, Freed EO (2009) Functional role of Alix in HIV-1 replication. Virology 391:284–292

    Article  PubMed  CAS  Google Scholar 

  155. Munshi UM, Kim J, Nagashima K, Hurley JH, Freed EO (2007) An Alix fragment potently inhibits HIV-1 budding: characterization of binding to retroviral YPXL late domains. J Biol Chem 282:3847–3855

    Article  PubMed  CAS  Google Scholar 

  156. Usami Y, Popov S, Gottlinger HG (2007) Potent rescue of human immunodeficiency virus type 1 late domain mutants by ALIX/AIP1 depends on its CHMP4 binding site. J Virol 81:6614–6622

    Article  PubMed  CAS  Google Scholar 

  157. Zhai Q, Landesman MB, Robinson H, Sundquist WI, Hill CP (2011) Structure of the Bro1 domain protein BROX and functional analyses of the ALIX Bro1 domain in HIV-1 budding. PLoS One 6:e27466

    Article  PubMed  CAS  Google Scholar 

  158. Schmidt MH, Dikic I, Bogler O (2005) Src phosphorylation of Alix/AIP1 modulates its interaction with binding partners and antagonizes its activities. J Biol Chem 280:3414–3425

    Article  PubMed  CAS  Google Scholar 

  159. Che S, El-Hodiri HM, Wu CF, Nelman-Gonzalez M, Weil MM, Etkin LD, Clark RB, Kuang J (1999) Identification and cloning of xp95, a putative signal transduction protein in Xenopus oocytes. J Biol Chem 274:5522–5531

    Article  PubMed  CAS  Google Scholar 

  160. Sette P, Mu R, Dussupt V, Jiang J, Snyder G, Smith P, Xiao TS, Bouamr F (2011) The Phe105 loop of Alix Bro1 domain plays a key role in HIV-1 release. Structure 19:1485–1495

    Article  PubMed  CAS  Google Scholar 

  161. Carlton JG, Agromayor M, Martin-Serrano J (2008) Differential requirements for Alix and ESCRT-III in cytokinesis and HIV-1 release. Proc Natl Acad Sci U S A 105:10541–10546

    Article  PubMed  CAS  Google Scholar 

  162. Zhou X, Pan S, Sun L, Corvera J, Lin SH, Kuang J (2008) The HIV-1 p6/EIAV p9 docking site in Alix is autoinhibited as revealed by a conformation-sensitive anti-Alix monoclonal antibody. Biochem J 414:215–220

    Article  PubMed  CAS  Google Scholar 

  163. Zhai Q, Landesman MB, Chung HY, Dierkers A, Jeffries CM, Trewhella J, Hill CP, Sundquist WI (2011) Activation of the retroviral budding factor ALIX. J Virol 85:9222–9226

    Article  PubMed  CAS  Google Scholar 

  164. Popov S, Popova E, Inoue M, Gottlinger HG (2008) Human immunodeficiency virus type 1 Gag engages the Bro1 domain of ALIX/AIP1 through the nucleocapsid. J Virol 82:1389–1398

    Article  PubMed  CAS  Google Scholar 

  165. Dussupt V, Javid MP, Abou-Jaoude G, Jadwin JA, de La Cruz J, Nagashima K, Bouamr F (2009) The nucleocapsid region of HIV-1 Gag cooperates with the PTAP and LYPXnL late domains to recruit the cellular machinery necessary for viral budding. PLoS Pathog 5:e1000339

    Article  PubMed  CAS  Google Scholar 

  166. Sette P, Dussupt V, Bouamr F (2012) Identification of the HIV-1 NC binding interface in Alix Bro1 reveals a role for RNA. J Virol 86:11608–11615

    Article  PubMed  CAS  Google Scholar 

  167. Popov S, Popova E, Inoue M, Gottlinger HG (2009) Divergent Bro1 domains share the capacity to bind human immunodeficiency virus type 1 nucleocapsid and to enhance virus-like particle production. J Virol 83:7185–7193

    Article  PubMed  CAS  Google Scholar 

  168. Bernassola F, Karin M, Ciechanover A, Melino G (2008) The HECT family of E3 ubiquitin ligases: multiple players in cancer development. Cancer Cell 14:10–21

    Article  PubMed  CAS  Google Scholar 

  169. Zhadina M, McClure MO, Johnson MC, Bieniasz PD (2007) Ubiquitin-dependent virus particle budding without viral protein ubiquitination. Proc Natl Acad Sci U S A 104:20031–20036

    Article  PubMed  CAS  Google Scholar 

  170. Zhadina M, Bieniasz PD (2010) Functional interchangeability of late domains, late domain cofactors and ubiquitin in viral budding. PLoS Pathog 6:e1001153

    Article  PubMed  CAS  Google Scholar 

  171. Usami Y, Popov S, Popova E, Gottlinger HG (2008) Efficient and specific rescue of human immunodeficiency virus type 1 budding defects by a Nedd4-like ubiquitin ligase. J Virol 82:4898–4907

    Article  PubMed  CAS  Google Scholar 

  172. Chung HY, Morita E, von Schwedler U, Muller B, Krausslich HG, Sundquist WI (2008) NEDD4L overexpression rescues the release and infectivity of human immunodeficiency virus type 1 constructs lacking PTAP and YPXL late domains. J Virol 82:4884–4897

    Article  PubMed  CAS  Google Scholar 

  173. Weiss ER, Popova E, Yamanaka H, Kim HC, Huibregtse JM, Gottlinger H (2010) Rescue of HIV-1 release by targeting widely divergent NEDD4-type ubiquitin ligases and isolated catalytic HECT domains to Gag. PLoS Pathog 6:e1001107

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinrich Göttlinger M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Göttlinger, H. (2013). HIV-1 Budding. In: Freed, E. (eds) Advances in HIV-1 Assembly and Release. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7729-7_5

Download citation

Publish with us

Policies and ethics