Skip to main content

Magnetic Resonance Imaging-Guided Breast Intervention and Surgery

  • Chapter
  • First Online:
Intraoperative Imaging and Image-Guided Therapy

Abstract

The use of contrast-enhanced breast magnetic resonance imaging (MRI) as an important adjunctive modality for screening and diagnosis of breast cancer is rapidly increasing. Breast MRI is highly sensitive for detection of malignancy and may reveal suspicious breast lesions that are occult to physical examination and by conventional imaging modalities (mammography and ultrasound). In these cases MR-guided breast interventions are essential for tissue sampling to determine the histology of abnormalities detected by only MRI.

Presently there is no satisfactory method of margin evaluation during surgery. The use of MRI guidance and evaluation of the margins intraoperatively is expected to reduce the need for re-excision (current rates of 2nd operations to obtain clear margins are approximately 40 %). This chapter will describe appropriate peer-reviewed data of established methods for MR-guided tissue sampling and currently accepted MR-guided therapeutic methods for benign and malignant breast diseases, including intraoperative imaging. Emerging techniques for margin assessment, including non-MR-based methods, are also surveyed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saslow D, Boetes C, Burke W, et al. American Cancer Society guidelines for breast screening with MRI as an adjunct to mammography. CA Cancer J Clin. 2007;57:75–89.

    PubMed  Google Scholar 

  2. Solin LJ, Orel SG, Hwang WT, Harris EE, Schnall MD. Relationship of breast magnetic resonance imaging to outcome after breast-conservation treatment with radiation for women with early-stage invasive breast carcinoma or ductal carcinoma in situ. J Clin Oncol. 2008;26:386–91.

    PubMed  Google Scholar 

  3. Meissnitzer M, Dershaw DD, Lee CH, Morris EA. Targeted ultrasound of the breast in women with abnormal MRI findings for whom biopsy has been recommended. AJR Am J Roentgenol. 2009;193(4):1025–9.

    PubMed  Google Scholar 

  4. Noroozian M, Gombos EC, Chikarmane S, Georgian-Smith D, Raza S, Denison CM, Frost EP, Birdwell RL. Factors that impact the duration of MRI-guided core needle biopsy. AJR Am J Roentgenol. 2010;194(2):W150–7.

    PubMed  Google Scholar 

  5. Schrading S, Simon B, Braun M, Wardelmann E, Schild HH, Kuhl CK. MRI-guided breast biopsy: influence of choice of vacuum biopsy system on the mode of biopsy of MRI-only suspicious breast lesions. AJR Am J Roentgenol. 2010;194(6):1650–7.

    PubMed  Google Scholar 

  6. Li J, Dershaw DD, Lee CH, Kaplan J, Morris EA. MRI follow-up after concordant, histologically benign diagnosis of breast lesions sampled by MRI-guided biopsy. AJR Am J Roentgenol. 2009;193(3):850–5.

    PubMed  Google Scholar 

  7. Han BK, Schnall MD, Orel SG, Rosen M. Outcome of MRI-guided breast biopsy. AJR Am J Roentgenol. 2008;191(6):1798–804.

    PubMed  Google Scholar 

  8. Ghate SV, Rosen EL, Soo MS, Baker JA. MRI-guided vacuum-assisted breast biopsy with a handheld portable biopsy system. AJR Am J Roentgenol. 2006;186(6):1733–6.

    PubMed  Google Scholar 

  9. Van den Bosch MA, Daniel BL, Pal S, Nowels KW, Birdwell RL, Jeffrey SS, Ikeda DM. MRI-guided needle localization of suspicious breast lesions: results of a freehand technique. Eur Radiol. 2006;16(8):1811–7.

    PubMed  Google Scholar 

  10. Liberman L, Bracero N, Morris E, Thornton C, Dershaw DD. MRI-guided 9-gauge vacuum-assisted breast biopsy: initial clinical experience. AJR Am J Roentgenol. 2005;185(1):183–93.

    PubMed  Google Scholar 

  11. Lehman CD, Deperi ER, Peacock S, McDonough MD, DeMartini WB, Shook J. Clinical experience with MRI-guided vacuum-assisted breast biopsy. AJR Am J Roentgenol. 2005;184:1782–7.

    PubMed  Google Scholar 

  12. Liberman L. Percutaneous imaging-guided core breast biopsy: state of the art at the millennium. AJR Am J Roentgenol. 2000;174:1191–9.

    CAS  PubMed  Google Scholar 

  13. Lee JM, Kaplan JB, Murray MP, Bartella L, Morris EA, Joo S, Dershaw DD, Liberman L. Imaging histologic discordance at MRI-guided 9-gauge vacuum-assisted breast biopsy. AJR Am J Roentgenol. 2007;189:852–9.

    PubMed  Google Scholar 

  14. Lee JM, Kaplan JB, Murray MP, Mazur-Grbec M, Tadic T, Stimac D, Liberman L. Underestimation of DCIS at MRI-guided vacuum-assisted breast biopsy. AJR Am J Roentgenol. 2007;189:468–74.

    PubMed  Google Scholar 

  15. Liberman L, Holland AE, Marjan D, Murray MP, Bartella L, Morris EA, Dershaw DD, Wynn RT. Underestimation of atypical ductal hyperplasia at MRI-guided 9-gauge vacuum-assisted breast biopsy. AJR Am J Roentgenol. 2007;188:684–90.

    PubMed  Google Scholar 

  16. Fischer U, Kopka L, Grabbe E. Breast carcinoma: effect of preoperative contrast-enhanced MR imaging on the therapeutic approach. Radiology. 1999;213:881–8.

    CAS  PubMed  Google Scholar 

  17. Liberman L, Morris EA, Dershaw DD, Abramson AF, Tan LK. MR imaging of the ipsilateral breast in women with percutaneously proven breast cancer. AJR Am J Roentgenol. 2003;180:901–10.

    PubMed  Google Scholar 

  18. Godinez J, Gombos EC, Chikarmane SA, Griffin GK, Birdwell RL. Breast MRI in the evaluation of eligibility for accelerated partial breast irradiation. AJR Am J Roentgenol. 2008;191(1):272–7.

    PubMed  Google Scholar 

  19. Morris EA, Liberman L, Dershaw DD, Kaplan JB, LaTrenta LR, Abramson AF, Ballon DJ. Preoperative MR imaging-guided needle localization of breast lesions. AJR Am J Roentgenol. 2002;178(5):1211–20.

    PubMed  Google Scholar 

  20. Carlson JW, Birdwell RL, Gombos EC, Golshan M, Smith DN, Lester SC. MRI-directed, wire-localized breast excisions: incidence of malignancy and recommendations for pathologic evaluation. Hum Pathol. 2007;38(12):1754–9.

    PubMed  Google Scholar 

  21. Kriege M, Brekelmans CT, Boetes C, et al. Efficacy of MRI and mammography for breast-cancer screening in women with a familial or genetic predisposition. N Engl J Med. 2004;351:427–37.

    CAS  PubMed  Google Scholar 

  22. Warner E, Causer PA. MRI surveillance for hereditary breast-cancer risk. Lancet. 2005;365:1747–9.

    PubMed  Google Scholar 

  23. Warner E, Plewes DB, Shumak RS, et al. Comparison of breast magnetic resonance imaging, mammography, and ultrasound for surveillance of women at high risk for hereditary breast cancer. J Clin Oncol. 2001;19:3524–31.

    CAS  PubMed  Google Scholar 

  24. Lee CH, Smith RC, Levine JA, et al. Clinical usefulness of MR imaging of the breast in the evaluation of the problematic mammogram. AJR Am J Roentgenol. 1999;173:1323–9.

    CAS  PubMed  Google Scholar 

  25. Bedrosian I, Mick R, Orel SG, et al. Changes in the surgical management of patients with breast carcinoma based on Preoperative Magnetic Resonance Imaging. Cancer. 2003;98:468–73.

    PubMed  Google Scholar 

  26. Deurloo EE, Peterse JL, Rutgers EJ, et al. Additional breast lesions in patients eligible for breast-conserving therapy by MRI: impact on preoperative management and potential benefit of computerised analysis. Eur J Cancer. 2005;41:1393–401.

    PubMed  Google Scholar 

  27. Esserman L, Hylton N, Yassa L, et al. Utility of magnetic resonance imaging in the management of breast cancer: evidence for improved preoperative staging. J Clin Oncol. 1999;17:110–9.

    CAS  PubMed  Google Scholar 

  28. Houssami N, Ciatto S, Macaskill P, et al. Accuracy and surgical impact of magnetic resonance imaging in breast cancer staging: systematic review and meta-analysis in detection of multifocal and multicentric cancer. J Clin Oncol. 2008;26:3248–58.

    PubMed  Google Scholar 

  29. Veronesi U, Cascinelli N, Mariani L, et al. Twenty-year follow-up of a randomized study comparing breast-conserving surgery with radical mastectomy for early breast cancer. N Eng J Med. 2002;347:1227–32.

    Google Scholar 

  30. Fisher B, Anderson S, Bryant J, et al. Twenty-year follow-up of a randomized trial comparing total mastectomy, lumpectomy, and lumpectomy plus irradiation for the treatment of invasive breast cancer. N Engl J Med. 2002;347:1233–41.

    PubMed  Google Scholar 

  31. Bilimoria KY, Cambic A, Hansen NM, et al. Evaluating the impact of preoperative breast magnetic resonance imaging on the surgical management of newly diagnosed breast cancers. Arch Surg. 2007;142(5):441–5; discussion 445–7.

    PubMed  Google Scholar 

  32. Schelfout K, Van Goethem M, Kersschot E, et al. Contrast-enhanced MR imaging of breast lesions and effect on treatment. Eur J Surg Oncol. 2004;30:501–7.

    CAS  PubMed  Google Scholar 

  33. Braun M, Polcher M, Schrading S, et al. Influence of pre-operative MRI on the surgical management of patients with operable breast cancer. Breast Cancer Res Treat. 2008;111:179–87.

    PubMed  Google Scholar 

  34. Sanchez C, Brem RF, McSwain AP, et al. Factors associated with re-excision with early-stage breast cancer treated with breast conservation therapy. Am Surg. 2010;76:331–4.

    PubMed  Google Scholar 

  35. Mullenix PS, Cuadrado DG, Steele SR, et al. Secondary operations are frequently required to complete the surgical phase of therapy in the era of breast conservation and sentinel lymph node biopsy. Am J Surg. 2004;187:643–6.

    PubMed  Google Scholar 

  36. Boughey JC, Peintinger F, Meric-Bernstam F, et al. Impact of preoperative versus postoperative chemotherapy on the extent and number of surgical procedures in patients treated in randomized clinical trials for breast cancer. Ann Surg. 2006;244:464–70.

    PubMed  Google Scholar 

  37. Fleming FJ, Hill AD, Mc Dermott EW, O’Doherty A, O’Higgins NJ, Quinn CM. Intraoperative margin assessment and re-excision rate in breast conserving surgery. Eur J Surg Oncol. 2004;30:233–7.

    CAS  PubMed  Google Scholar 

  38. Bani MR, Lux MP, Heusinger K, et al. Factors correlating with reexcision after breast-conserving therapy. Eur J Surg Oncol. 2009;35:32–7.

    CAS  PubMed  Google Scholar 

  39. O’Sullivan MJ, Li T, Freedman G, Morrow M. The effects of multiple re-excisions on the risk of local recurrence after breast conserving therapy. Ann Surg Oncol. 2007;14:3133–40.

    PubMed  Google Scholar 

  40. Camp ER, McAuliffe PF, Gilroy JS, et al. Minimizing local recurrence after breast conserving therapy using intraoperative shaved margins to determine pathologic tumor clearance. J Am Coll Surg. 2005;201:855–61.

    PubMed  Google Scholar 

  41. Kobbermann A, Unzeitig A, Xie XJ, Yan J, et al. Impact of routine cavity shave margins on breast cancer re-excision rates. Ann Surg Oncol. 2011;18:1349–55.

    PubMed  Google Scholar 

  42. Sabel MS, Rogers K, Griffith K, et al. Residual disease after re-excision lumpectomy for close margins. J Surg Oncol. 2009;99:99–103.

    PubMed  Google Scholar 

  43. Deutsch M, Flickinger JC. Patient characteristics and treatment factors affecting cosmesis following lumpectomy and breast irradiation. Am J Clin Oncol. 2003;26:350–3.

    PubMed  Google Scholar 

  44. Cochrane RA, Valasiadou P, Wilson AR, et al. Cosmesis and satisfaction after breast-conserving surgery correlates with the percentage of breast volume excised. Br J Surg. 2003;90:1505–9.

    CAS  PubMed  Google Scholar 

  45. Heil J, Breitkreuz K, Golatta M, et al. Do re-excisions impair aesthetic outcome in breast conservation surgery? Exploratory analysis of a prospective cohort study. Ann Surg Oncol. 2011;19(2):541–7.

    PubMed  Google Scholar 

  46. Cowen D, Houvenaeghel G, Bardon V, et al. Local and distant failures after limited surgery with positive margins and radiotherapy for node-negative breast cancer. Int J Rad Oncol Biol Phys. 2000;47(2):305–12.

    CAS  Google Scholar 

  47. Clarke M, Collins R, Darby S, et al. Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival. An overview of the randomized trials. Lancet. 2005;366:2087–106.

    CAS  PubMed  Google Scholar 

  48. Wapnir IL, Anderson SJ, Mamounas EP, et al. Prognosis after ipsilateral breast tumor recurrence and local regional recurrence in five National Surgery Adjuvant Breast and Bowel Project node-positive adjuvant breast cancer trials. J Clin Oncol. 2006;24(13):2028–37.

    PubMed  Google Scholar 

  49. Holland R, Veling SH, Mravunac M, et al. Histological multifocality of Tis, T1-T2 breast carcinomas. Implications for clinical trials of breast-conserving surgery. Cancer. 1985;56(5):979–90.

    CAS  PubMed  Google Scholar 

  50. Hwang N, Schiller D, Crystal P, et al. Magnetic resonance imaging in the planning of initial lumpectomy for invasive breast carcinoma: its effect on ipsilateral breast tumor recurrence after breast-conservation therapy. Ann Surg Oncol. 2009;11:3000–9.

    Google Scholar 

  51. King T, Sakr R, Patil S, et al. Clinical management factors contribute to the decision for contralateral prophylactic mastectomy. J Clin Oncol. 2011;29:2158–64.

    PubMed  Google Scholar 

  52. Turnbull L, Brown S, Harvey I, et al. Comparative effectiveness of MRI in breast cancer (COMICE) trial: a randomized control trial. Lancet. 2010;275:563–71.

    Google Scholar 

  53. Bleicher RJ, Ciocca RM, Egleston BL, et al. Association of routine pretreatment magnetic resonance imaging with time to surgery, mastectomy rate, and margin status. J Am Coll Surg. 2009;209:180–7.

    PubMed Central  PubMed  Google Scholar 

  54. McGhan L, Wasif N, Gray R, et al. Use of preoperative magnetic resonance imaging for invasive lobular carcinoma: good, better, but maybe not the best? Ann Surg Oncol. 2010;17:255–62.

    PubMed  Google Scholar 

  55. Behjatnia B, Sim J, Bassett LW, et al. Does size matter between MRI, gross, and microscopic tumor in breast cancer lumpectomy specimens. Int J Clin Exp Pathol. 2010;3(3):303–9.

    PubMed Central  PubMed  Google Scholar 

  56. Yamashiro N, Tozaki M, Ogawa T, et al. Preoperative MRI marking technique for the planning of breast-conserving surgery. Breast Cancer. 2009;16:223–8.

    PubMed  Google Scholar 

  57. Tozaki M, Fukuda K. Supine MR mammography using VIBE with parallel acquisition technique for the planning of breast-conserving surgery: clinical feasibility. Breast. 2006;15:137–40.

    PubMed  Google Scholar 

  58. Sakakibara M, Nagashima T, Sangai T, et al. Breast-conserving surgery using projection and reproduction techniques of surgical-position breast MRI in patients with ductal carcinoma in situ of the breast. J Am Coll Surg. 2008;207:62–8.

    PubMed  Google Scholar 

  59. Abe M, Kiryu T, Sonoda K, et al. Magnetic resonance imaging-guided navigation with a thermoplastic shell for breast-conserving surgery. Eur J Surg Oncol. 2011;37(11):950–5.

    CAS  PubMed  Google Scholar 

  60. Tomikawa M, Hong J, Shiotani S, et al. Real-time 3-dimensional virtual reality navigation system with open MRI for breast-conserving surgery. J Am Coll Surg. 2010;210(6):927–33.

    PubMed  Google Scholar 

  61. Alderliesten T, Loo C, Paape A, et al. On the feasibility of MRI guided navigation to demarcate breast cancer for breast-conserving surgery. Med Phys. 2010;37:2617–26.

    PubMed  Google Scholar 

  62. Risholm P, Golby AJ, Wells III WM. Multimodal Image Registration for Preoperative Planning and Image-guided Neurosurgical Procedures. Neurosurg Clin N Am. 2011;22(2):197–206.

    PubMed Central  PubMed  Google Scholar 

  63. Gould SWT, Larmb G, Lomax D, Gedroyc W, Darzi A. Interventional MR-guided excision biopsy of breast lesions. J Magn Reson Imaging. 1998;8:26–30.

    CAS  PubMed  Google Scholar 

  64. Hirose M, Kacher DF, Smith DN, Kaelin CM, Jolesz FA. Feasibility of MR imaging-guided breast lumpectomy for malignant tumors in a 0.5-T open-configuration MR imaging system. Acad Radiol. 2002;9:933–41.

    PubMed  Google Scholar 

  65. Jayender J, Gombos E, Chikarmane S, Dabydeen D, Jolesz FA, Vosburgh KG. Statistical Learning Algorithm for in situ and invasive breast carcinoma segmentation. Comput Med Imaging Graph. 2013;37(4):281–92.

    PubMed  Google Scholar 

  66. Jayender J, Chikarmane S, Jolesz FA, Gombos EG. Automatic segmentation of invasive breast carcinomas from DCE-MRI using time series analysis. J MRI 2013.

    Google Scholar 

  67. Gombos E, Jayender J, Golshan M, Vosburgh K, Caragacianu D, Kacher DF, Kanan AR, Fairhurst J, Jolesz FA. Intraprocedural high field MRI imaging in breast conserving surgery: initial clinical experience. Abstract 129, Proceedings of the 9 Interventional MRI Symposium, Boston, 22–23 Sep 2012.

    Google Scholar 

  68. Kuhl CK, Schrading S, Leutner CC, Morakkabati-Spitz N, Wardelmann E, Fimmers R, Kuhn W, Schild HH. Mammography, breast ultrasound, and magnetic resonance imaging for surveillance of women at high familial risk for breast cancer. J Clin Oncol. 2005;23(33):8469–76.

    PubMed  Google Scholar 

  69. Rifkin MD, Schwartz GF, Pasto ME, et al. Ultrasound for guidance of breast mass removal. J Ultrasound Med. 1988;7:261–3.

    CAS  PubMed  Google Scholar 

  70. Fornage BD, Ross MI, Singletary SE, Paulus DD. Localization of impalpable breast masses: value of sonography in the operating room and scanning of excised specimens. AJR Am J Roentgenol. 1994;163(3):569–73.

    CAS  PubMed  Google Scholar 

  71. Harlow SP, Krag DN, Ames SE, Weaver DL. Intraoperative ultrasound localization to guide surgical excision of nonpalpable breast carcinoma. J Am Coll Surg. 1999;189:241–6.

    CAS  PubMed  Google Scholar 

  72. Rahusen FD, Taets van Amerongen AH, van Diest PJ, Borgstein PJ, Bleichrodt RP, Meijer S. Ultrasound-guided lumpectomy of nonpalpable breast cancers: a feasibility study looking at the accuracy of obtained margins. J Surg Oncol. 1999;72:72–6.

    CAS  PubMed  Google Scholar 

  73. Snider HCJ, Morrison DG. Intraoperative ultrasound localization of nonpalpable breast lesions. Ann Surg Oncol. 1999;6:308–14.

    PubMed  Google Scholar 

  74. Moore MM, Whitney LA, Cerilli L, Imbrie JZ, Bunch M, Simpson VB, et al. Intraoperative ultrasound is associated with clear lumpectomy margins for palpable infiltrating ductal breast cancer. Ann Surg. 2001;233:761–8.

    CAS  PubMed  Google Scholar 

  75. Rahusen FD, Bremers AJA, Fabry HFJ, van Amerongen AHMT, Boom RPA, Meijer S. Ultrasound-guided lumpectomy of nonpalpable breast cancer versus wire-guided resection: a randomized clinical trial. Ann Surg Oncol. 2002;9:994–8.

    PubMed  Google Scholar 

  76. Kaufman CS, Jacobson L, Bachman B, Kaufman LB. Intraoperative ultrasound facilitates surgery for early breast cancer. Ann Surg Oncol. 2002;9(10):988–93.

    PubMed  Google Scholar 

  77. Kaufman CS, Jacobson L, Bachman B, Kaufman LB. Intraoperative ultrasonography guidance is accurate and efficient according to results in 100 breast cancer patients. Am J Surg. 2003;186:378–82.

    PubMed  Google Scholar 

  78. Ngô C, Pollet AG, Laperrelle J, et al. Intraoperative ultrasound localization of nonpalpable breast cancers. Ann Surg Oncol. 2007;14(9):2485–9; Epub 2007 May 31.

    PubMed  Google Scholar 

  79. James TA, Harlow S, Sheehey-Jones J, et al. Intraoperative ultrasound versus mammographic needle localization for ductal carcinoma in situ. Ann Surg Oncol. 2009;16(5):1164–9; Epub 2009 Mar 7.

    CAS  PubMed  Google Scholar 

  80. Krekel NMA, Zonderhuis BM, Stockmann HBAC, Schreurs WH, van der Veen H, de Lange de Klerk ESM, et al. A comparison of three methods for nonpalpable breast cancer excision. Eur J Surg Oncol. 2011;37:109–15.

    CAS  PubMed  Google Scholar 

  81. Krekel NMA, Zonderhuis BM, Schreurs HW, et al. Ultrasound-guided breast-sparing surgery to improve cosmetic outcomes and quality of life. A prospective multicentre randomised controlled clinical trial comparing ultrasound-guided surgery to traditional palpation-guided surgery (COBALT trial). BMC Surg. 2011;11:8; Epub 201.

    PubMed Central  PubMed  Google Scholar 

  82. Olsha O, Shemesh D, Carmon M, et al. Resection margins in ultrasound-guided breast-conserving surgery. Ann Surg Oncol. 2011;18(2):447–52; Epub 2010 Aug 24.

    PubMed  Google Scholar 

  83. Inoue T, Tamaki Y, Sato Y, et al. Three-dimensional ultrasound imaging of breast cancer by a real-time intraoperative navigation system. Breast Cancer. 2005;12(2):122–9.

    PubMed  Google Scholar 

  84. Klimberg VS. Advances in the diagnosis and excision of breast cancer. Am Surg. 2003;69:11–4.

    PubMed  Google Scholar 

  85. Smith LF, Rubio IT, Henry-Tillman R, et al. Intraoperative ultrasound-guided breast biopsy. Am J Surg. 2000;180:419–23.

    CAS  PubMed  Google Scholar 

  86. Brem RF, Floerke AC, Rapelyea JA, Teal C, Kelly T, Mathur V. Breast-specific gamma imaging as an adjunct imaging modality for the diagnosis of breast cancer. Radiology. 2008;247(3):651–7; Erratum in: Radiology. 2009 Apr;251(1):308.

    PubMed  Google Scholar 

  87. Luini A, Zurrida S, Paganelli G, Galimberti V, Sacchini V, Monti S, Veronesi P, Viale G, Veronesi U. Comparison of radioguided excision with wire localization of occult breast lesions. Br J Surg. 1999;86(4):522–5.

    CAS  PubMed  Google Scholar 

  88. Chow MP, Hung WK, Chu T, Lui CY, Ying M, Mak KL, Chan M. Isotope-guided surgery for nonpalpable breast cancer. World J Surg. 2011;35:165–9.

    PubMed  Google Scholar 

  89. Duarte GM, Cabello C, Torresan RZ, Alvarenga M, Telles GH, Bianchessi ST, Caserta N, Segala SR, de Lima MC, Etchebehere EC, Camargo EE. Radioguided Intraoperative Margins Evaluation (RIME): preliminary results of a new technique to aid breast cancer resection. Eur J Surg Oncol. 2007;33(10):1150–7.

    CAS  PubMed  Google Scholar 

  90. Duarte GM, dos Santos CC, Torresan RZ, Alvarenga M, Telles GH, Bianchessi ST, Caserta N, Segala SR, Lopes de Lima Mda C, de Camargo Etchebehere EC, Camargo EE. Radioguided surgery using intravenous 99mTc sestamibi associated with breast magnetic resonance imaging for guidance of breast cancer resection. Breast J. 2006;12(3):202–7.

    PubMed  Google Scholar 

  91. Gray RJ, Salud C, Nguyen K, et al. Randomized prospective evaluation of a novel technique for biopsy or lumpectomy of nonpalpable breast lesions: radioactive seed versus wire localization. Ann Surg Oncol. 2001;8:711–5.

    CAS  PubMed  Google Scholar 

  92. Jakub JW, Gray RJ, Degnim AC, Boughey JC, Gardner M, Cox CE. Current status of radioactive seed for localization of non palpable breast lesions. Am J Surg. 2010;199(4):522–8.

    PubMed  Google Scholar 

  93. González SJ, González L, Wong J, Brader P, Zakowski M, Gönen M, Daghighian F, Fong Y, Strong VE. An analysis of the utility of handheld PET probes for the intraoperative localization of malignant tissue. J Gastrointest Surg. 2011;15(2):358–66; Epub 2010 Nov 25.

    PubMed Central  PubMed  Google Scholar 

  94. Wendler T, Feuerstein M, Traub J, Lasser T, Vogel J, Daghighian F, Ziegler SI, Navab N. Real-time fusion of ultrasound and gamma probe for navigated localization of liver metastases. Med Image Comput Comput Assist Interv. 2007;10(Pt 2):252–60.

    PubMed  Google Scholar 

  95. Wendler T, Hartl A, Lasser T, Traub J, Daghighian F, Ziegler SI, Navab N. Towards intra-operative 3D nuclear imaging: reconstruction of 3D radioactive distributions using tracked gamma probes. Med Image Comput Comput Assist Interv. 2007;10(Pt 2):909–17.

    PubMed  Google Scholar 

  96. Berg WA, Madsen KS, Schilling K, Tartar M, Pisano ED, Larsen LH, Narayanan D, Ozonoff A, Miller JP, Kalinyak JE. Breast cancer: comparative effectiveness of positron emission mammography and MR imaging in presurgical planning for the ipsilateral breast. Radiology. 2011;258(1):59–72.

    PubMed  Google Scholar 

  97. Backer MV, Levashova Z, Patel V, et al. Molecular imaging of VEGF receptors in angiogenic vasculature with single-chain VEGF-based probes. Nat Med. 2007;13:504–9.

    CAS  PubMed  Google Scholar 

  98. Chen K, Li ZB, Wang H, et al. Dual-modality optical and positron emission tomography imaging of vascular endothelial growth factor receptor on tumor vasculature using quantum dots. Eur J Nucl Med Mol Imaging. 2008;35:2235–44.

    CAS  PubMed  Google Scholar 

  99. Sampath L, Kwon S, Ke S, et al. Dual-labeled trastuzumab-based imaging agent for the detection of human epidermal growth factor receptor 2 overexpression in breast cancer. J Nucl Med. 2007;48:1501–10.

    CAS  PubMed  Google Scholar 

  100. Ke S, Wen X, Gurfinkel M, et al. Near-infrared optical imaging of epidermal growth factor receptor in breast cancer xenografts. Cancer Res. 2003;63:7870–5.

    CAS  PubMed  Google Scholar 

  101. Lee SB, Hassan M, Fisher R, et al. Affibody molecules for in vivo characterization of HER2-positive tumors by near-infrared imaging. Clin Cancer Res. 2008;14:3840–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Gee MS, Upadhyay R, Bergquist H, et al. Human breast cancer tumor models: molecular imaging of drug susceptibility and dosing during HER2/neu-targeted therapy. Radiology. 2008;248:925–35.

    PubMed  Google Scholar 

  103. Ntziachristos V. Fluorescence molecular imaging. Annu Rev Biomed Eng. 2006;8:1–33.

    CAS  PubMed  Google Scholar 

  104. Kirsch DG, Dinulescu DM, Miller JB, et al. A spatially and temporally restricted mouse model of soft tissue sarcoma. Nat Med. 2007;13:992–7.

    CAS  PubMed  Google Scholar 

  105. Weissleder R. Molecular imaging: exploring the next frontier. Radiology. 1999;212:609–14.

    CAS  PubMed  Google Scholar 

  106. Bremer C, Ntziachristos V, Weitkamp B, et al. Optical imaging of spontaneous breast tumors using protease sensing ‘smart’ optical probes. Invest Radiol. 2005;40:321–7.

    CAS  PubMed  Google Scholar 

  107. Tung CH, Mahmood U, Bredow S, et al. In vivo imaging of proteolytic enzyme activity using a novel molecular reporter. Cancer Res. 2000;60:4953–8.

    CAS  PubMed  Google Scholar 

  108. Bremer C, Ntziachristos V, Weissleder R. Optical-based molecular imaging: contrast agents and potential medical applications. Eur Radiol. 2003;13:231–43.

    PubMed  Google Scholar 

  109. Stanciute D, Didziapetriene J, Kadziauskas J. Expression of matrix metalloproteinases in patients with malignant tumors. Medicina (Kaunas). 2004;40:1143–50.

    Google Scholar 

  110. Bremer C, Tung CH, Weissleder R. In vivo molecular target assessment of matrix metalloproteinase inhibition. Nat Med. 2001;7:743–8.

    CAS  PubMed  Google Scholar 

  111. Bornhop DJ, Contag CH, Licha K, et al. Advance in contrast agents, reporters, and detection. J Biomed Opt. 2001;6:106–10.

    CAS  PubMed  Google Scholar 

  112. Tagaya N, Yamazaki R, Nakagawa A, et al. Intraoperative identification of sentinel lymph nodes by near-infrared fluorescence imaging in patients with breast cancer. Am J Surg. 2008;195:850–3.

    PubMed  Google Scholar 

  113. Frangioni JV. New technologies for human cancer imaging. J Clin Oncol. 2008;26:4012–21.

    PubMed  Google Scholar 

  114. Zhu Q, Hegde PU, Ricci A, et al. Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis. Radiology. 2010;256(2):367–78.

    PubMed  Google Scholar 

  115. You SS, Jiang YX, Zhu QL, et al. US-guided diffused optical tomography: a promising functional imaging technique in breast lesions. Eur Radiol. 2010;20(2):309–17.

    PubMed  Google Scholar 

  116. Kim MJ, Kim JY, Youn JH. US-guided diffuse optical tomography for breast lesions: the reliability of clinical experience. Eur Radiol. 2011;21:1353–63.

    PubMed  Google Scholar 

  117. White Jr RL. Cryoablative therapy in breast cancer: no. J Surg Oncol. 2008;97(6):483–4.

    PubMed  Google Scholar 

  118. Littrup PJ, Jallad B, Chandiwala-Mody P, et al. Cryotherapy for breast cancer: a feasibility study without excision. J Vasc Interv Radiol. 2009;20(10):1329–41.

    PubMed  Google Scholar 

  119. Rabin Y, Coleman R, Mordohovich D, Ber R, Shitzer A. A new Cryosurgical device for controlled freezing. Cryobiology. 1996;33:93–105.

    CAS  PubMed  Google Scholar 

  120. Sabel MS. Cryoablation as a replacement for surgical resection in early stage breast cancer. Curr Breast Cancer Rep. 2011;3(2):109–16.

    Google Scholar 

  121. Pfleiderer SOR, Freesmeyer MG, Marx C, et al. Cryotherapy of breast cancer under ultrasound uidance: initial results and limitations. Eur Radiol. 2003;12:3009–14.

    Google Scholar 

  122. Gilbert JC, Rubinsky B, Wong ST, Brennan KM, Pease GR, Leung PP. Temperature determination in the frozen region during cryosurgery of rabbit liver using MR image analysis. Magn Reson Imaging. 1997;15:657–67.

    CAS  PubMed  Google Scholar 

  123. Lu A, Daniel BL, Kaye E, Butts Pauly K. MRI of frozen tissue demonstrates a phase shift. Magn Reson Med. 2011;66(6):1582–9.

    PubMed Central  PubMed  Google Scholar 

  124. Morrison PR, Silverman SG, Tuncali K, et al. MRI-guided cryotherapy. J Magn Reson Imaging. 2008;27(2):410–20.

    PubMed  Google Scholar 

  125. Morin J, Traore A, Dionne G, et al. Magnetic resonance-guided percutaneous cryosurgery of breast carcinoma: technique and early clinical results. Can J Surg. 2004;47(5):347–51.

    PubMed Central  PubMed  Google Scholar 

  126. Pusztaszeri M, Vlastos G, Kinkel K, Pelte MF. Histopathological study of breast cancer and normal breast tissue after magnetic resonance-guided cryotherapy ablation. Cryobiology. 2007;55(1):44–51.

    PubMed  Google Scholar 

  127. Rui J, Tatsutani KN, Dahiya R, Rubinsky B. Effect of thermal variables on human breast cancer in cryosurgery. Breast Cancer Res Treat. 1999;53(2):185–92.

    CAS  PubMed  Google Scholar 

  128. Tatli S, Acar M, Tuncali K, Morrison PR, Silverman S. Percutaneous cryoablation techniques and clinical applications. Diagn Interv Radiol. 2010;16(1):90–5.

    PubMed  Google Scholar 

  129. Littrup PJ, Jallad B, Vorugu V, et al. Lethal isotherms of cryoablation in a phantom study: effects of heat load, probe size, and number. J Vasc Interv Radiol. 2009;20(10):1343–51.

    PubMed Central  PubMed  Google Scholar 

  130. Tuncali K, Morrison PR, Winalski CS, et al. MRI-guided percutaneous cryotherapy for soft-tissue and bone metastases: initial experience. AJR Am J Roentgenol. 2007;189:232–9.

    PubMed  Google Scholar 

  131. Tozaki M, Fukuma E, Suzuki T, Hoshi K. Ultrasound-guided cryoablation of invasive ductal carcinoma inside the MR room. Magn Reson Med Sci. 2010;9(1):31–6.

    PubMed  Google Scholar 

  132. Edwards MJ, Broadwater R, Tafra L, et al. Progressive adoption of cryoablative therapy for breast fibroadenoma in community practice. Am J Surg. 2004;188:221–4.

    PubMed  Google Scholar 

  133. Littrup PJ, Freeman-Gibb L, Andea A, et al. Cryotherapy for breast fibroadenomas. Radiology. 2005;234:63–72.

    PubMed  Google Scholar 

  134. Kaufman CS, Littrup PJ, Freeman-Gibb LA, Smith JS, Francescatti D, Simmons R, Stocks LH, Bailey L, Harness JK, Bachman BA, Henry CA. Office-based cryoablation of breast fibroadenomas with long-term follow-up. Breast J. 2005;11(5):344–50.

    PubMed  Google Scholar 

  135. Le Pivert P. Basic considerations of the cryolesion. In: Ablin RJ, editor. Handbook of cryosurgery. New York: Marcel Dekker, Inc; 1980. p. 15–68.

    Google Scholar 

  136. Tafra L, Fine R, Whitworth P, et al. Prospective randomized study comparing cryo-assisted and needle-wire localization of ultrasound-visible breast tumors. Am J Surg. 2006;192:462–70.

    PubMed  Google Scholar 

  137. Z1072: A phase II trial exploring the success of cryoablation therapy in the treatment of invasive breast carcinoma. http://clinicaltrials.gov/ct2/show/NCT00723294?term=ACOSOG+Z1072&rank=1.

  138. Sabel MS, Kaufman CS, Whitworth P, et al. Cryoablation of early-stage breast cancer: work-in-progress report of a multi-institutional trial. Ann Surg Oncol. 2004;11(5):542–9.

    PubMed  Google Scholar 

  139. Pfleiderer SO, Freesmeyer MG, Marx C, et al. Cryotherapy of breast cancer under ultrasound guidance: initial results and limitations. Eur Radiol. 2002;12(12):3009–14.

    PubMed  Google Scholar 

  140. Pfleiderer SOR, Marx C, Camara O, et al. Ultrasound-guided, percutaneous cryotherapy of small (<15 mm) breast cancers. Investig Radiol. 2005;40(7):472–7.

    Google Scholar 

  141. Niu L, Xu K, He W, et al. Efficacy of percutaneous cryoablation for small solitary breast cancer in term pathologic evidence (abstract). Technol Cancer Res Treat. 2007;6:460–1.

    Google Scholar 

  142. Roubidoux MA, Sabel MS, Bailey JE, et al. Small (<2.0-cm) breast cancers: mammographic and US findings at US-guided cryoablation – initial experience. Radiology. 2004;233(3):857–67.

    PubMed  Google Scholar 

  143. Manenti G, Perretta T, Gaspari E, et al. Percutaneous local ablation of unifocal subclinical breast cancer: clinical experience and preliminary results of cryotherapy. Eur Radiol. 2011;21(11):2344–53.

    PubMed  Google Scholar 

  144. Hong JS, Rubinsky B. Patterns of ice formation in normal and malignant breast tissue. Cryobiology. 1994;31:109–20.

    CAS  PubMed  Google Scholar 

  145. Staren ED, Sabel MS, Gianakakis LM, et al. Cryosurgery of breast cancer. Arch Surg. 1997;132:28–33, discussion 34.

    CAS  PubMed  Google Scholar 

  146. Sabel MS, Su G, Griffith KA, et al. Rate of freeze alters the immunologic response after cryoablation of breast cancer. Ann Surg Oncol. 2009;17(4):1187–93.

    PubMed  Google Scholar 

  147. Rieke V, Butts PK. MR thermometry. J Magn Reson Imaging. 2008;27(2):376–90.

    PubMed Central  PubMed  Google Scholar 

  148. Thrall DE, Rosner GL, Azuma C, et al. Using units of CEM 438C T90, local hyperthermia thermal dose can be delivered as prescribed. Int J Hyperthermia. 2000;16(5):415–28.

    CAS  PubMed  Google Scholar 

  149. Hynynen K, McDannold N, Mulkern RV, Jolesz FA. Temperature monitoring in fat with MRI. Magn Reson Med. 2000;43:901–4.

    CAS  PubMed  Google Scholar 

  150. Sprinkhuizen S, Konings M, Bakker C, Bartels L. Heating of fat leads to significant temperature errors in PRFS based MR thermometry. Proceedings 17th scientific meeting, international society for magnetic resonance in medicine, Honolulu; 2009. p. 2532.

    Google Scholar 

  151. Mei CS, Panych LP, Yuan J, McDannold NJ, Treat LH, Jing Y, Madore B. Combining two-dimensional spatially selective RF excitation, parallel imaging, and UNFOLD for accelerated MR thermometry imaging. Magn Reson Med. 2011;66(1):112–22.

    PubMed Central  PubMed  Google Scholar 

  152. Rieke V, Vigen KK, Sommer G, Daniel BL, Pauly JM, Butts K. Referenceless PRF shift thermometry. Magn Reson Med. 2004;51:1223–31.

    PubMed  Google Scholar 

  153. Sprinkhuizen SM, Bakker CJG, Ippel JH, et al. Temperature dependence of the magnetic volume susceptibility of human breast fat tissue: an NMR study. MAGMA. 2012;25(1):33–9.

    PubMed  Google Scholar 

  154. Zhang Q, Chung YC, Lewin JS, Duerk JL. A method for simultaneous RF ablation and MRI. J Magn Reson Imaging. 1998;8:110–4.

    CAS  PubMed  Google Scholar 

  155. van den Bosch M, Daniel B, Rieke V, Butts-Pauly K, et al. MRI-guided radiofrequency ablation of breast cancer: preliminary clinical experience. J Magn Reson Imaging. 2008;27(1):204–8.

    PubMed  Google Scholar 

  156. Daniel BL, Butts-Pauly RK. The use of view angle tilting to reduce distortions in magnetic resonance imaging of cryosurgery. Magn Reson Imaging. 2000;18:281–6.

    CAS  PubMed  Google Scholar 

  157. Lewin JS, Nour SG, Connell CF, et al. Phase II clinical trial of interactive MR imaging guided interstitial radiofrequency thermal ablation of primary kidney tumors: initial experience. Radiology. 2004;232:835–45.

    PubMed  Google Scholar 

  158. Susini T, Nori J, Olivieri S, Livi L, Bianchi S, Mangialavori G, et al. Radiofrequency ablation for minimally invasive treatment of breast carcinoma, a pilot study in elderly inoperable patients. Gynecol Oncol. 2007;104(2):304–10.

    PubMed  Google Scholar 

  159. Marcy PY, Magné N, Castadot P, Bailet C, Namer M. Ultrasound-guided percutaneous radiofrequency ablation in elderly breast cancer patients: preliminary institutional experience. Br J Radiol. 2007;80:267–73.

    PubMed  Google Scholar 

  160. Garbay JR, Mathieu MC, Lamuraglia M, Lassau N, Balleyguier C, Rouzier R. Radiofrequency thermal ablation of breast cancer local recurrence: a phase II clinical trial. Ann Surg Oncol. 2008;15(11):3222–6.

    PubMed  Google Scholar 

  161. Boehm T, Malich A, Nahum Goldberg S, Reichenbach JR, Hilger I, Fleck M, Kaiser WA. Vacuum-assisted resection of malignant tumors with and without subsequent radiofrequency ablation: feasibility of complete tumor treatment tested in an animal model. J Vasc Interv Radiol. 2001;12(9):1086–93.

    CAS  PubMed  Google Scholar 

  162. Noguchi M, Earashi M, Fujii H. Radiofrequency ablation of small breast cancer followed by surgical resection. J Surg Oncol. 2006;93:120–8.

    PubMed  Google Scholar 

  163. Khatri VP, McGahan JP, Ramsamooj R, et al. A phase II trial of image-guided radiofrequency ablation of small invasive breast carcinomas: use of saline-cooled tip electrode. Ann Surg Oncol. 2007;14:1644–52.

    PubMed  Google Scholar 

  164. Earashi M, Noguchi M, Motoyoshi A, Fujii H. Radiofrequency ablation therapy for small breast cancer followed by immediate surgical resection or delayed mammotome excision. Breast Cancer. 2007;14:39–47.

    PubMed  Google Scholar 

  165. Manenti G, Bolacchi F, Perretta T, et al. Small breast cancers: in vivo percutaneous US-guided radiofrequency ablation with dedicated cool-tip radiofrequency system. Radiology. 2009;251:339–46.

    PubMed  Google Scholar 

  166. Oura S, Tamaki T, Hirai I, Yoshimasu T, Ohta F, Nakamura R, et al. Radiofrequency ablation therapy in patients with breast cancers two centimeters or less in size. Breast Cancer. 2007;14:48–54.

    PubMed  Google Scholar 

  167. Fornage BD, Sneige N, Ross MI, Mirza AN, Kuerer HM, Edeiken BS, et al. Small (< or = 2 cm) breast cancer treated with US-guided radiofrequency ablation: feasibility study. Radiology. 2004;231(1):215–24.

    PubMed  Google Scholar 

  168. Soukup B, Bismohun S, Reefy S. The evolving role of radiofrequency ablation therapy of breast lesions. Anticancer Res. 2010;30(9):3693–7 (Review).

    CAS  PubMed  Google Scholar 

  169. van der Ploeg IM, van Esser S, van den Bosch MA, et al. Radiofrequency ablation for breast cancer: a review of the literature. Eur J Surg Oncol. 2007;33(6):673–7 (Review).

    PubMed  Google Scholar 

  170. Zhao Z, Wu F. Minimally-invasive thermal ablation of early-stage breast cancer: a systemic review. Eur J Surg Oncol. 2010;36(12):1149–55 (Review).

    CAS  PubMed  Google Scholar 

  171. Bleier AR, Jolesz FA, Cohen MS, Weisskoff RM, Dalcanton JJ, Higuchi N, et al. Real-time magnetic resonance imaging of laser heat deposition in tissue. Magn Reson Med. 1991;21(1):132–7.

    CAS  PubMed  Google Scholar 

  172. Roggan A, Handke A, Miller K, Muller G. Laser induced interstitial thermotherapy of benign prostatic hyperplasia. Minim Invasive Med. 1994;5:55–63.

    Google Scholar 

  173. van Hillegersberg R, van Staveren HJ, Kort WJ, Zondervan PE, Terpstra OT. Interstitial Nd: YAG laser coagulation with a cylindrical diffusing fiber tip in experimental liver metastases. Lasers Surg Med. 1994;14:124–38.

    PubMed  Google Scholar 

  174. Vogl TJ, Mack MG, Straub R, Eichler K, Zangos S, Engelmann K, Hochmuth K, Ballenberger S, Jacobi V, Diebold T. MR-guided laser-induced thermotherapy with a cooled power laser system: a case report of a patient with a recurrent carcinoid metastasis in the breast. Eur Radiol. 2002;12 Suppl 3:S101–4.

    PubMed  Google Scholar 

  175. Hall-Craggs MA. Interstitial laser therapy of breast lesions. In: Debatin JF, Adams G, editors. Interventional magnetic resonance imaging (Medical radiology: diagnostic imaging and radiation oncology). Berlin: Springer; 1988. p. 243–9.

    Google Scholar 

  176. Hall-Craggs MA, Mumtaz H, Paley M, Kissin M, Bown S. Dynamic MR guidance of laser therapy to breast cancer. Radiology. 1996;201(P):177.

    Google Scholar 

  177. Mumtaz H, Hall-Craggs MA, Wotherspoon A, Paley M, Buonaccorsi G, Amin Z, et al. Laser therapy for breast cancer: magnetic resonance imaging and histopathological correlation. Radiology. 1996;200:651–8.

    CAS  PubMed  Google Scholar 

  178. Lai LM, Hall-Craggs MA, Mumtaz H, Ripley PM, Kissin M, Davidson TI, et al. Interstitial laser photocoagulation for fibroadenomas of the breast. Breast. 1999;8:89–94.

    Google Scholar 

  179. Harms S, Mumtaz H, Hronas T, Cowan C, Khmberg S, Hyslop B, et al. MRI directed interstitial thermal ablation of breast fibroadenomas. [abstract 362]. In: 7th proceedings of the international society for magnetic resonance in medicine, Denver, CO. Hoboken: Wiley; 1999.

    Google Scholar 

  180. Dowlatshahi K, Fan M, Gould VE, Bloom KJ, Ali A. Stereotactically guided laser therapy of occult breast tumors: work in progress report. Arch Surg. 2000;135:1345–52.

    CAS  PubMed  Google Scholar 

  181. Dowlatshahi K, Francescatti DS, Bloom KJ. Laser therapy for small breast cancers. Am J Surg. 2002;184:359–63.

    PubMed  Google Scholar 

  182. Akimov AB, Seregin VE, Rusanov KV, Tyurina EG, Glushko TA, Nevzorov VP, Nevzorova OF, Akimova EV. Nd: YAG interstitial laser thermotherapy in the treatment of breast cancer. Lasers Surg Med. 1998;22:257–67.

    CAS  PubMed  Google Scholar 

  183. Harms SE. Percutaneous ablation of breast lesions by radiologists and surgeons. Breast Dis. 2001;13:67–75.

    CAS  PubMed  Google Scholar 

  184. Gombos EC, Kacher DF, Furusawa H, Namba K. Breast focused ultrasound surgery with magnetic resonance guidance. Top Magn Reson Imaging. 2006;17(3):181–8 (Review).

    PubMed  Google Scholar 

  185. Hynynen K, Freund W, Cline HE, Chung AH, Wakins RD, Vetro JP, et al. A clinical noninvasive MRI monitored ultrasound surgery method. Radiographics. 1996;16:185–95.

    CAS  PubMed  Google Scholar 

  186. Cline HE, Schenck JF, Watkins RD, Hynynen K, Jolesz FA. Magnetic resonance-guided thermal surgery. Magn Reson Med. 1993;30(1):98–106.

    CAS  PubMed  Google Scholar 

  187. Hynynen K, Pomeroy O, Smith DN, et al. MR imaging-guided focused ultrasound surgery of fibroadenomas in the breast: a feasibility study. Radiology. 2001;219:176–85.

    CAS  PubMed  Google Scholar 

  188. Huber PE, Jenne JW, Rastert R, et al. A new noninvasive approach in breast cancer therapy using magnetic resonance imaging-guided focused ultrasound surgery. Cancer Res. 2001;61:8441–7.

    CAS  PubMed  Google Scholar 

  189. Gianfelice D, Khiat A, Boulanger Y, et al. Feasibility of magnetic resonance imaging-guided focused ultrasound surgery as an adjunct to tamoxifen therapy in high-risk surgical patients with breast carcinoma. J Vasc Interv Radiol. 2003;14:1275–82.

    PubMed  Google Scholar 

  190. Gianfelice D, Khiat A, Amara M, et al. MR imaging-guided focused ultrasound surgery of breast cancer: correlation of dynamic contrast-enhanced MRI with histopathologic findings. Breast Cancer Res Treat. 2003;82:93–101.

    PubMed  Google Scholar 

  191. Gianfelice D, Khiat A, Amara M, et al. MR imaging-guided focused US ablation of breast cancer: histopathologic assessment of effectiveness – initial experience. Radiology. 2003;227:849–55.

    PubMed  Google Scholar 

  192. Zippel DB, Papa MZ. The use of MR imaging guided focused ultrasound in breast cancer patients; a preliminary phase one study and review. Breast Cancer. 2005;12:32–8.

    PubMed  Google Scholar 

  193. Furusawa H, Namba K, Thomsen S, et al. Magnetic resonance-guided focused ultrasound surgery of breast cancer: reliability and effectiveness. J Am Coll Surg. 2006;203:54–63.

    PubMed  Google Scholar 

  194. Furusawa H, Yasuda Y, Shidooka J, et al. Magnetic resonance image guided focused ultrasound surgery of early breast cancer: efficacy and safety in excisionless study. Cancer Res. 2009;69 Suppl 3:4126.

    Google Scholar 

  195. Wu F, Wang ZB, Cao YD, et al. A randomised clinical trial of high-intensity focused ultrasound ablation for the treatment of patients with localised breast cancer. Br J Cancer. 2003;89:2227–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  196. McCahill LE, Single RM, Aiello Bowles EJ, et al. Variability in reexcision following breast conservation surgery. JAMA. 2012;307(5):467–75.

    PubMed  Google Scholar 

  197. McLaughlin SA, Ochoa-Frongia LM, Patil SM, Cody III HS, Sclafani LM. Influence of frozen-section analysis of sentinel lymph node and lumpectomy margin status on reoperation rates in patients undergoing breast-conservation therapy. J Am Coll Surg. 2008;206:76–82.

    PubMed  Google Scholar 

  198. Valdes EK, Boolbol SK, Cohen JM, Feldman SM. Intra-operative touch preparation cytology; does it have a role in re-excision lumpectomy? Ann Surg Oncol. 2007;14:1045–50.

    PubMed  Google Scholar 

  199. Dill AL, Eberlin LS, Costa AB, Zheng C, Ifa DR, Cheng L, Masterson TA, Koch MO, Vitek O, Cooks RG. Multivariate statistical identification of human bladder carcinomas using ambient ionization imaging mass spectrometry. Chemistry. 2011;17(10):2897–902.

    CAS  PubMed Central  PubMed  Google Scholar 

  200. Eberlin LS, Dill AL, Costa AB, Ifa DR, Cheng L, Masterson T, Koch M, Ratliff TL, Cooks RG. Cholesterol sulfate imaging in human prostate cancer tissue by desorption electrospray ionization mass spectrometry. Anal Chem. 2010;82(9):3430–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  201. Wiseman JM, Puolitaival SM, Takáts Z, Cooks RG, Caprioli RM. Mass spectrometric profiling of intact biological tissue by using desorption electrospray ionization. Angew Chem Int Ed Engl. 2005;44(43):7094–7.

    CAS  PubMed  Google Scholar 

  202. Agar NY, Golby AJ, Ligon KL, Norton I, Mohan V, Wiseman JM, Tannenbaum A, Jolesz FA. Development of Stereotactic mass spectrometry for brain tumor surgery. Neurosurgery. 2011;68(2):280–9.

    PubMed Central  PubMed  Google Scholar 

  203. Chagpar A, Yen T, Sahin A, Hunt KK, et al. Intraoperative margin assessment reduces reexcision rates in patients with ductal carcinoma in situ treated with breast-conserving surgery. Am J Surg. 2003;186(4):371–7.

    PubMed  Google Scholar 

  204. McCormick JT, Keleher AJ, Tikhomirov VB, Budway RJ, Caushaj PF. Analysis of the use of specimen mammography in breast conservation therapy. Am J Surg. 2004;188:433–6.

    PubMed  Google Scholar 

  205. Goldfeder S, Davis D, Cullinan J. Breast specimen radiography: can it predict margin status of excised breast carcinoma? Acad Radiol. 2006;13:1453–9.

    PubMed  Google Scholar 

  206. Erguvan-Dogan B, Whitman GJ, Nguyen VA, et al. Specimen radiography in confirmation of MRI-guided needle localization and surgical excision of breast lesions. AJR Am J Roentgenol. 2006;187:339–44.

    PubMed  Google Scholar 

  207. Joines WT, Zhang Y, Li C, et al. The measured electrical properties of normal and malignant human tissues from 50 to 900 MHz. Med Phys. 1994;21:547.

    CAS  PubMed  Google Scholar 

  208. Karni T, Pappo I, Sandbank J, et al. A device for real-time, intraoperative margin assessment in breast-conservation surgery. Am J Surg. 2007;194:467–73.

    PubMed  Google Scholar 

  209. Pappo I, Spector R, Schindel A. Diagnostic performance of a novel device for real-time margin assessment in lumpectomy specimens. J Surg Res. 2010;160:277–81.

    PubMed  Google Scholar 

  210. Allweis TM, Kaufman Z, Lelcuk S, et al. A prospective, randomized, controlled, multicenter study of a real-time, intraoperative probe for positive margin detection in breast-conserving surgery. Am J Surg. 2008;196:483–9.

    PubMed  Google Scholar 

  211. Haka AS, Volynskaya Z, Gardecki JA, et al. In vivo margin assessment during partial mastectomy breast surgery using Raman spectroscopy. Cancer Res. 2006;66:3317–22.

    CAS  PubMed  Google Scholar 

  212. Ramanujam N, Brown J, Bydlon TM, et al. Quantitative spectral reflectance imaging device for intraoperative breast tumor margin assessment. Conf Proc IEEE Eng Med Biol Soc. 2009;2009:6554–6.

    PubMed  Google Scholar 

  213. Kennedy S, Geradts J, Bydlon T, et al. Optical breast cancer margin assessment: an observational study of the effects of tissue heterogeneity on optical contrast. Breast Cancer Res. 2010;12(6):R91; Epub 2010 Nov 5.

    PubMed Central  PubMed  Google Scholar 

  214. Keller MD, Majumder SK, Kelley MC, et al. Autofluorescence and diffuse reflectance spectroscopy and spectral imaging for breast surgical margin analysis. Lasers Surg Med. 2010;42(1):15–23.

    PubMed  Google Scholar 

  215. Volynskaya Z, Haka AS, Bechtel KL, et al. Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy. J Biomed Opt. 2008;13(2):024012.

    PubMed  Google Scholar 

  216. Bigio IJ, Bown SG, Briggs G, et al. Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results. J Biomed Opt. 2000;5(2):221–8.

    CAS  PubMed  Google Scholar 

  217. Bydlon TM, Kennedy SA, Richards LM, Brown JQ, Yu B, Junker MK, Gallagher J, Geradts J, Wilke LG, Ramanujam N. Performance metrics of an optical spectral imaging system for intra-operative assessment of breast tumor margins. Opt Express. 2010;18(8):8058–76.

    CAS  PubMed  Google Scholar 

  218. Hsiung PL, Phatak DR, Chen Y, et al. Benign and malignant lesions in the human breast depicted with ultrahigh resolution and three-dimensional optical coherence tomography. Radiology. 2007;244:865–74.

    PubMed  Google Scholar 

  219. Boppart SA, Luo W, Marks DL, Singletary KW. Optical coherence tomography: feasibility for basic research and image-guided surgery of breast cancer. Breast Cancer Res Treat. 2004;84(2):85–97.

    PubMed  Google Scholar 

  220. Nguyen FT, Zysk AM, Chaney EJ, et al. Intraoperative evaluation of breast tumor margins with optical coherence tomography. Cancer Res. 2009;69(22):8790–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  221. Yang C, Choma MA, Lamb LE, et al. Protein-based molecular contrast optical coherence tomography with phytochrome as the contrast agent. Opt Lett. 2004;29:1396–8.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva C. Gombos MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gombos, E.C., Kacher, D.F., Caragacianu, D.L., Jayender, J., Golshan, M. (2014). Magnetic Resonance Imaging-Guided Breast Intervention and Surgery. In: Jolesz, F. (eds) Intraoperative Imaging and Image-Guided Therapy. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7657-3_62

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7657-3_62

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7656-6

  • Online ISBN: 978-1-4614-7657-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics