Skip to main content

Functional Neurosurgery with MR-Guided HIFU

  • Chapter
  • First Online:
Intraoperative Imaging and Image-Guided Therapy

Abstract

Transcranial magnetic resonance imaging-guided focused ultrasound (TcMRgFUS) has recently entered clinical trials for functional neurosurgery. This novel methodology is noninvasive and does not use radioactivity or ionizing radiation. TcMRgFUS integrates advanced MR image acquisition modes for precise anatomical information, local temperature maps, and tissue stiffness, with complex computer-controlled large phased array ultrasound transducers. It provides treatment monitoring and closed-loop therapy control by precisely focusing ultrasound energy to a desired target deep inside the brain while leaving collateral structures unaltered. As a noninvasive alternative to traditional neurosurgery, TcMRgFUS has the potential of treating a variety of chronic therapy-resistant neurological diseases, such as neuropathic pain, movement disorders, tinnitus, and epilepsy, which makes it certainly attractive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spiegel EA, Wycis HT, Marks M, Lee AJ. Stereotaxic apparatus for operations on the human brain. Science. 1947;106(2754):349–50.

    Article  CAS  PubMed  Google Scholar 

  2. Mark VH, Ervin FR, Yakovlev PI. Correlation of pain relief, sensory loss, and anatomical lesion sites in pain patients treated with stereotactic thalamotomy. Trans Am Neurol Assoc. 1961;86:86–90.

    CAS  PubMed  Google Scholar 

  3. Mark VH, Ervin FR. Role of thalamotomy in treatment of chronic severe pain. Postgrad Med. 1965;37:563–71.

    CAS  PubMed  Google Scholar 

  4. Tasker RR. Thalamotomy for pain: lesion localization by detailed thalamic mapping. Can J Surg. 1969;12(1):62–74.

    CAS  PubMed  Google Scholar 

  5. Laitinen L. Mesencephalotomy and thalamotomy for chronic pain. In: Lundsford L, editor. Modern stereotactic neurosurgery. Boston: Martinus Nijhoff; 1988. p. 269–76.

    Chapter  Google Scholar 

  6. Tasker R. Stereotactic surgery. In: Wall P, Melzack R, editors. Textbook of pain. 2nd ed. Edinburgh: Churchill Livingstone; 1989. p. 840–55.

    Google Scholar 

  7. Lynn JG, Zwemer RL, Chick AJ. The biological application of focused ultrasonic waves. Science. 1942;96(2483):119–20.

    Article  CAS  PubMed  Google Scholar 

  8. Lynn JG, Putnam TJ. Histology of cerebral lesions produced by focused ultrasound. Am J Pathol. 1944;20(3):637–49.

    CAS  PubMed  Google Scholar 

  9. Fry WJ, Mosberg Jr WH, Barnard JW, Fry FJ. Production of focal destructive lesions in the central nervous system with ultrasound. J Neurosurg. 1954;11(5):471–8.

    Article  CAS  PubMed  Google Scholar 

  10. Lele PP. A simple method for production of trackless focal lesions with focused ultrasound: physical factors. J Physiol. 1962;160:494–512.

    CAS  PubMed  Google Scholar 

  11. Fry WJ, Barnard JW, Fry EJ, Krumins RF, Brennan JF. Ultrasonic lesions in the mammalian central nervous system. Science. 1955;122(3168):517–8.

    Article  CAS  PubMed  Google Scholar 

  12. Fry WJ. Intense ultrasound in investigations of the central nervous system. Adv Biol Med Phys. 1958;6:281–348.

    Article  CAS  PubMed  Google Scholar 

  13. Meyers R, Fry WJ, Fry FJ, Dreyer LL, Schultz DF, Noyes RF. Early experiences with ultrasonic irradiation of the pallidofugal and nigral complexes in hyperkinetic and hypertonic disorders. J Neurosurg. 1959;16(1):32–54.

    Article  CAS  PubMed  Google Scholar 

  14. Heimburger RF. Ultrasound augmentation of central nervous system tumor therapy. Indiana Med. 1985;78(6):469–76.

    CAS  PubMed  Google Scholar 

  15. Meyers R, Fry FJ, Fry WJ, Eggleton RC, Schultz DF. Determination of topological human brain representations and modifications of signs and symptoms of some neurologic disorders by the use of high level ultrasound. Neurology. 1960;10(3):271–7.

    Article  Google Scholar 

  16. Chen HR, Heimburger RF, Lu CS, Cheng CS. The stereotactic thalamotomy in parkinsonism. Taiwan Yi Xue Hui Za Zhi. 1985;84(3):423–8.

    CAS  PubMed  Google Scholar 

  17. Ishihara Y, Calderon A, Watanabe H, Okamoto K, Suzuki Y, Kuroda K. A precise and fast temperature mapping using water proton chemical shift. Magn Reson Med. 1995;34(6):814–23.

    Article  CAS  PubMed  Google Scholar 

  18. McDannold, Hynynen K, Wolf D, Wolf G, Jolesz F. MRI evaluation of thermal ablation of tumors with focused ultrasound. J Magn Reson Imaging. 1998;8(1):91–100.

    Article  CAS  PubMed  Google Scholar 

  19. Jolesz FA, Hynynen K, McDannold N, Tempany C. MR imaging-controlled focused ultrasound ablation: a noninvasive image-guided surgery. Magn Reson Imaging Clin N Am. 2005;13(3):545–60.

    Article  PubMed  Google Scholar 

  20. Fennessy FM, Tempany CM, McDannold NJ, et al. Uterine leiomyomas: MR imaging-guided focused ultrasound surgery – results of different treatment protocols. Radiology. 2007;243(3):885–93.

    Article  PubMed  Google Scholar 

  21. Hynynen K, Jolesz FA. Demonstration of potential noninvasive ultrasound brain therapy through an intact skull. Ultrasound Med Biol. 1998;24(2):275–83.

    Article  CAS  PubMed  Google Scholar 

  22. Tanter M, Thomas JL, Fink M. Focusing and steering through absorbing and aberrating layers: application to ultrasonic propagation through the skull. J Acoust Soc Am. 1998;103(5 Pt 1):2403–10.

    Article  CAS  PubMed  Google Scholar 

  23. Pernot M, Aubry JF, Tanter M, Thomas JL, Fink M. High power transcranial beam steering for ultrasonic brain therapy. Phys Med Biol. 2003;48(16):2577–89.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Clement GT, Hynynen K. A non-invasive method for focusing ultrasound through the human skull. Phys Med Biol. 2002;47(8):1219–36.

    Article  CAS  PubMed  Google Scholar 

  25. Aubry JF, Tanter M, Pernot M, Thomas JL, Fink M. Experimental demonstration of noninvasive transskull adaptive focusing based on prior computed tomography scans. J Acoust Soc Am. 2003;113(1):84–93.

    Article  CAS  PubMed  Google Scholar 

  26. Hynynen K, Clement GT, McDannold N, et al. 500-element ultrasound phased array system for noninvasive focal surgery of the brain: a preliminary rabbit study with ex vivo human skulls. Magn Reson Med. 2004;52(1):100–7.

    Article  PubMed  Google Scholar 

  27. Hynynen K, McDannold N, Clement G, et al. Pre-clinical testing of a phased array ultrasound system for MRI-guided noninvasive surgery of the brain – a primate study. Eur J Radiol. 2006;59(2):149–56.

    Article  PubMed  Google Scholar 

  28. McDannold N, Clement GT, Black P, Jolesz F, Hynynen K. Transcranial magnetic resonance imaging- guided focused ultrasound surgery of brain tumors: initial findings in 3 patients. Neurosurgery. 2010;66(2):323–32; discussion 332.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Jeanmonod D, Morel A. The central lateral thalamotomy for neuropathic pain. In: Lozano AM, Gildenberg PL, Tasker RR, editors. Textbook of stereotactic and functional neurosurgery. 2nd ed. Berlin: Springer; 2009. p. 2081–96.

    Chapter  Google Scholar 

  30. Martin E, Jeanmonod D, Morel A, Zadicario E, Werner B. High-intensity focused ultrasound for noninvasive functional neurosurgery. Ann Neurol. 2009;66(6):858–61.

    Article  PubMed  Google Scholar 

  31. Jeanmonod D, Magnin M, Morel A. Thalamus and neurogenic pain: physiological, anatomical and clinical data. Neuroreport. 1993;4(5):475–8.

    Article  CAS  PubMed  Google Scholar 

  32. Jeanmonod D, Magnin M, Morel A. Low-threshold calcium spike bursts in the human thalamus. Common physiopathology for sensory, motor and limbic positive symptoms. Brain. 1996;119(Pt 2):363–75.

    Article  PubMed  Google Scholar 

  33. Llinas RR, Ribary U, Jeanmonod D, Kronberg E, Mitra PP. Thalamocortical dysrhythmia: a neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc Natl Acad Sci U S A. 1999;96(26):15222–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Morel A. Stereotactic atlas of the human thalamus and basal ganglia. New York: Informa Healthcare; 2007.

    Book  Google Scholar 

  35. Hynynen K, Vykhodtseva NI, Chung AH, Sorrentino V, Colucci V, Jolesz FA. Thermal effects of focused ultrasound on the brain: determination with MR imaging. Radiology. 1997;204(1):247–53.

    CAS  PubMed  Google Scholar 

  36. Foley JL, Little JW, Starr 3rd FL, Frantz C, Vaezy S. Image-guided HIFU neurolysis of peripheral nerves to treat spasticity and pain. Ultrasound Med Biol. 2004;30(9):1199–207.

    Article  PubMed  Google Scholar 

  37. Vykhodtseva NI, Hynynen K, Damianou C. Pulse duration and peak intensity during focused ultrasound surgery: theoretical and experimental effects in rabbit brain in vivo. Ultrasound Med Biol. 1994;20(9):987–1000.

    Article  CAS  PubMed  Google Scholar 

  38. Sapareto SA, Dewey WC. Thermal dose determination in cancer therapy. Int J Radiat Oncol Biol Phys. 1984;10(6):787–800.

    Article  CAS  PubMed  Google Scholar 

  39. Chung AH, Jolesz FA, Hynynen K. Thermal dosimetry of a focused ultrasound beam in vivo by magnetic resonance imaging. Med Phys. 1999;26(9):2017–26.

    Article  CAS  PubMed  Google Scholar 

  40. McDannold N, King RL, Hynynen K. MRI monitoring of heating produced by ultrasound absorption in the skull: in vivo study in pigs. Magn Reson Med. 2004;51(5):1061–5.

    Article  PubMed  Google Scholar 

  41. McDannold NJ, King RL, Jolesz FA, Hynynen KH. Usefulness of MR imaging-derived thermometry and dosimetry in determining the threshold for tissue damage induced by thermal surgery in rabbits. Radiology. 2000;216(2):517–23.

    Article  CAS  PubMed  Google Scholar 

  42. Heimburger RF. An encounter with stereotactic brain surgery. Neurosurgery. 2005;56(6):1367–73; discussion 1373–4.

    Article  PubMed  Google Scholar 

  43. Hynynen K, McDannold N, Vykhodtseva N, Jolesz FA. Noninvasive MR imaging-guided focal opening of the blood–brain barrier in rabbits. Radiology. 2001;220(3):640–6.

    Article  CAS  PubMed  Google Scholar 

  44. Kinoshita M, McDannold N, Jolesz FA, Hynynen K. Noninvasive localized delivery of Herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood–brain barrier disruption. Proc Natl Acad Sci U S A. 2006;103(31):11719–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Treat LH, McDannold N, Vykhodtseva N, Zhang Y, Tam K, Hynynen K. Targeted delivery of doxorubicin to the rat brain at therapeutic levels using MRI-guided focused ultrasound. Int J Cancer. 2007;121(4):901–7.

    Article  CAS  PubMed  Google Scholar 

  46. Liu HL, Hua MY, Chen PY, et al. Blood–brain barrier disruption with focused ultrasound enhances delivery of chemotherapeutic drugs for glioblastoma treatment. Radiology. 2010;255(2):415–25.

    Article  PubMed  Google Scholar 

  47. Medel R, Crowley RW, McKisic MS, Dumont AS, Kassell NF. Sonothrombolysis: an emerging modality for the management of stroke. Neurosurgery. 2009;65(5):979–93; discussion 993.

    Article  PubMed  Google Scholar 

  48. Datta S, Coussios CC, Ammi AY, Mast TD, de Courten-Myers GM, Holland CK. Ultrasound-enhanced thrombolysis using definity as a cavitation nucleation agent. Ultrasound Med Biol. 2008;34(9):1421–33.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Hwang JH, Zhou Y, Warren C, Brayman AA, Crum LA. Targeted venous occlusion using pulsed high-intensity focused ultrasound. IEEE Trans Biomed Eng. 2011;57(1):37–40.

    Article  Google Scholar 

  50. Tyler WJ, Tufail Y, Finsterwald M, Tauchmann ML, Olson EJ, Majestic C. Remote excitation of neuronal circuits using low-intensity, low-frequency ultrasound. PLoS One. 2008;3(10):e3511.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Yang T, Chen J, Yan B, Zhou D. Transcranial ultrasound stimulation: a possible therapeutic approach to epilepsy. Med Hypotheses. 2011;76(3):381–3.

    Article  PubMed  Google Scholar 

  52. Tyler WJ. Noninvasive neuromodulation with ultrasound? A continuum mechanics hypothesis. Neuroscientist. 2011;17:25–36.

    Article  PubMed  Google Scholar 

  53. Yoo SS, Bystritsky A, Lee JH, et al. Focused ultrasound modulates region-specific brain activity. Neuroimage. 2011;56(3):1267–75.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Min BK, Bystritsky A, Jung KI, et al. Focused ultrasound-mediated suppression of chemically-induced acute epileptic EEG activity. BMC Neurosci. 2011;12:23.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernst Martin-Fiori MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Martin-Fiori, E., Werner, B. (2014). Functional Neurosurgery with MR-Guided HIFU. In: Jolesz, F. (eds) Intraoperative Imaging and Image-Guided Therapy. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7657-3_45

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7657-3_45

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7656-6

  • Online ISBN: 978-1-4614-7657-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics