Skip to main content

Tumor Antigen-Specific Monoclonal Antibody-Based Immunotherapy, Cancer Initiating Cells and Disease Recurrence

  • Chapter
  • First Online:
Resistance to Immunotherapeutic Antibodies in Cancer

Abstract

Immunotherapy with tumor antigen (TA)-specific monoclonal antibody (mAb) has been shown to be effective in the treatment of several types of cancer. However, its efficacy is limited by the lack of response in some of the treated patients and by disease recurrence. In this chapter, following a short description of the characteristics of cancer initiating cells (CICs) and the markers used for their identification in various types of cancer, we will provide in vitro evidence to suggest that disease recurrence is caused by the lack of eradication of CICs by the TA-specific mAb-based immunotherapy. In addition, we will describe potential strategies to overcome this resistance mechanism which is a major obstacle to the successful application of TA-specific mAb-based immunotherapy.

Yangyang Wang and Francesco Sabbatino equally contributed to this manuscript.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADCC:

Antibody-dependent cell-mediated cytotoxicity

ALDH:

Aldeyde dehydrogenase

BAAA:

BODIPYâ„¢-aminoacetaldehyde

CDC:

Complement-dependent cytotoxicity

CICs:

Cancer initiating cells

CSPG4:

Chondroitin sulfate proteoglycan 4

CTL:

Cytotoxic T cells

DEAB:

Diethylaminobenzaldehyde

Grp94:

Glucose-regulated protein of 94 kDa

HSP:

Heat shock protein

mAb:

Monoclonal antibody

MCSP:

Melanoma-associated chondroitin sulfate proteoglycan

MDSC:

Myeloid-derived suppressor cells

MFI:

Mean fluorescence intensity

NG2:

Neuron-glial antigen 2

PDAC:

Pancreas ductal adenocarcinoma

SCID:

Severe combined immunodeficiency

SHH:

Sonic Hedgehog Homologue

T regs:

T regulatory cells

TA:

Tumor antigen

TNBC:

Triple negative breast cancer

References

  1. Ferris RL, Jaffee EM, Ferrone S. Tumor antigen-targeted, monoclonal antibody-based immunotherapy: clinical response, cellular immunity, and immuno escape. J Clin Oncol: Official J Am Soc Clin Oncol. 2010;28:4390–9.

    Article  CAS  Google Scholar 

  2. Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG, Liu S, Schott A, Hayes D, Birnbaum D, Wicha MS, Dontu G. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007;1:555–67.

    Article  PubMed  CAS  Google Scholar 

  3. Wicha MS, Liu S, Dontu G. Cancer stem cells: an old idea–a paradigm shift. Cancer research. 2006;66:1883–90, discussion 95–6.

    Google Scholar 

  4. Wicha MS. Cancer stem cell heterogeneity in hereditary breast cancer. Breast Cancer Res: BCR. 2008;10:105.

    Article  PubMed  Google Scholar 

  5. Matsuda Y, Kure S, Ishiwata T. Nestin and other putative cancer stem cell markers in pancreatic cancer. Med Mol Morphol. 2012;45:59–65.

    Article  PubMed  CAS  Google Scholar 

  6. Li J, Zhong XY, Li ZY, Cai JF, Zou L, Li JM, et al. CD133 expression in osteosarcoma and derivation of CD133(+) cells. Mol Med Rep. 2013;7:577–84.

    PubMed  CAS  Google Scholar 

  7. Visus C, Ito D, Amoscato A, Maciejewska-Franczak M, Abdelsalem A, Dhir R, Shin DM, Donnenberg VS, Whiteside TL, DeLeo AB. Identification of human aldehyde dehydrogenase 1 family member A1 as a novel CD8+ T-cell-defined tumor antigen in squamous cell carcinoma of the head and neck. Cancer Res. 2007;67:10538–45.

    Article  PubMed  CAS  Google Scholar 

  8. Huang CP, Tsai MF, Chang TH, Tang WC, Chen SY, Lai HH, Lin TY, Yang JC, Yang PC, Shih JY, Lin SB. ALDH-positive lung cancer stem cells confer resistance to epidermal growth factor receptor tyrosine kinase inhibitors. Cancer Lett. 2013;328:144–51.

    Article  PubMed  CAS  Google Scholar 

  9. Kim MP, Fleming JB, Wang H, Abbruzzese JL, Choi W, Kopetz S, McConkey DJ, Evans DB, Gallick GE. ALDH activity selectively defines an enhanced tumor-initiating cell population relative to CD133 expression in human pancreatic adenocarcinoma. PLoS One. 2011;6:e20636.

    Article  PubMed  CAS  Google Scholar 

  10. Deng S, Yang X, Lassus H, Liang S, Kaur S, Ye Q, Li C, Wang LP, Roby KF, Orsulic S, Connolly DC, Zhang Y, Montone K, Bützow R, Coukos G, Zhang L. Distinct expression levels and patterns of stem cell marker, aldehyde dehydrogenase isoform 1 (ALDH1), in human epithelial cancers. PLoS ONE. 2010;5:e10277.

    Article  PubMed  Google Scholar 

  11. Sanders MA, Majumdar AP. Colon cancer stem cells: implications in carcinogenesis. Front Biosci: J Virtual Library. 2011;16:1651–62.

    Article  CAS  Google Scholar 

  12. Li T, Su Y, Mei Y, Leng Q, Leng B, Liu Z, Stass SA, Jiang F. ALDH1A1 is a marker for malignant prostate stem cells and predictor of prostate cancer patients’ outcome. Lab Invest; J Tech Methods pathol. 2010;90:234–44.

    Article  CAS  Google Scholar 

  13. Honoki K, Fujii H, Kubo A, Kido A, Mori T, Tanaka Y, Tsujiuchi T. Possible involvement of stem-like populations with elevated ALDH1 in sarcomas for chemotherapeutic drug resistance. Oncol Rep. 2010;24:501–5.

    Article  PubMed  CAS  Google Scholar 

  14. Vasiliou V, Pappa A, Estey T. Role of human aldehyde dehydrogenases in endobiotic and xenobiotic metabolism. Drug Metab Rev. 2004;36:279–99.

    Article  PubMed  CAS  Google Scholar 

  15. Muzio G, Maggiora M, Paiuzzi E, Oraldi M, Canuto RA. Aldehyde dehydrogenases and cell proliferation. Free Radical Biol Med. 2012;52:735–46.

    Article  CAS  Google Scholar 

  16. Jackson B, Brocker C, Thompson DC, Black W, Vasiliou K, Nebert DW, Vasiliou V. Update on the aldehyde dehydrogenase gene (ALDH) superfamily. Human Genom. 2011;5:283–303.

    Article  CAS  Google Scholar 

  17. Marcato P, Dean CA, Giacomantonio CA, Lee PW. Aldehyde dehydrogenase: its role as a cancer stem cell marker comes down to the specific isoform. Cell Cycle. 2011;10:1378–84.

    Article  PubMed  CAS  Google Scholar 

  18. Storms RW, Trujillo AP, Springer JB, Shah L, Colvin OM, Ludeman SM, Smith C. Isolation of primitive human hematopoietic progenitors on the basis of aldehyde dehydrogenase activity. Proc Natl Acad Sci USA. 1999;96:9118–23.

    Article  PubMed  CAS  Google Scholar 

  19. Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, Visvader J, Weissman IL, Wahl GM. Cancer stem cells–perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res. 2006;66:9339–44.

    Article  PubMed  CAS  Google Scholar 

  20. Lauth M. RAS and Hedgehog–partners in crime. Front Biosci. 2011;17:2259–70.

    Article  Google Scholar 

  21. Visvader JE. Cells of origin in cancer. Nature. 2011;469:314–22.

    Article  PubMed  CAS  Google Scholar 

  22. Tavaluc RT, Hart LS, Dicker DT, El-Deiry WS. Effects of low confluency, serum starvation and hypoxia on the side population of cancer cell lines. Cell Cycle. 2007;6:2554–62.

    Article  PubMed  CAS  Google Scholar 

  23. Campoli MR, Chang CC, Kageshita T, Wang X, McCarthy JB, Ferrone S. Human high molecular weight-melanoma-associated antigen (HMW-MAA): a melanoma cell surface chondroitin sulfate proteoglycan (MSCP) with biological and clinical significance. Crit Rev Immunol. 2004;24:267–96.

    Article  PubMed  CAS  Google Scholar 

  24. Campoli M, Ferrone S, Wang X. Functional and clinical relevance of chondroitin sulfate proteoglycan 4. Adv Cancer Res. 2010;109:73–121.

    Article  PubMed  CAS  Google Scholar 

  25. Wang X, Osada T, Wang Y, Yu L, Sakakura K, Katayama A, McCarthy JB, Brufsky A, Chivukula M, Khoury T, Hsu DS, Barry WT, Lyerly HK, Clay TM, Ferrone S. CSPG4 protein as a new target for the antibody-based immunotherapy of triple-negative breast cancer. J Natl Cancer Inst. 2010;102:1496–512.

    Article  PubMed  Google Scholar 

  26. McLaughlin M, Vandenbroeck K. The endoplasmic reticulum protein folding factory and its chaperones: new targets for drug discovery? Br J Pharmacol. 2011;162:328–45.

    Article  PubMed  CAS  Google Scholar 

  27. Marzec M, Eletto D, Argon Y. GRP94: An HSP90-like protein specialized for protein folding and quality control in the endoplasmic reticulum. Biochim Biophys Acta. 2011;1823:774–87.

    Article  PubMed  Google Scholar 

  28. Argon Y, Simen BB. GRP94, an ER chaperone with protein and peptide binding properties. Semin Cell Dev Biol. 1999;10:495–505.

    Article  PubMed  CAS  Google Scholar 

  29. Yang Y, Li Z. Roles of heat shock protein gp96 in the ER quality control: redundant or unique function? Mol Cells. 2005;20:173–82.

    Article  PubMed  CAS  Google Scholar 

  30. de Bono JS, Kristeleit R, Tolcher A, Fong P, Pacey S, Karavasilis V, Mita M, Shaw H, Workman P, Kaye S, Rowinsky EK, Aherne W, Atadja P, Scott JW, Patnaik A. Phase I pharmacokinetic and pharmacodynamic study of LAQ824, a hydroxamate histone deacetylase inhibitor with a heat shock protein-90 inhibitory profile, in patients with advanced solid tumors. Clin Cancer Res: Official J Am Assoc Cancer Res. 2008;14:6663–73.

    Article  Google Scholar 

  31. Tse AN, Klimstra DS, Gonen M, Shah M, Sheikh T, Sikorski R, Carvajal R, Mui J, Tipian C, O’Reilly E, Chung K, Maki R, Lefkowitz R, Brown K, Manova-Todorova K, Wu N, Egorin MJ, Kelsen D, Schwartz GK. A phase 1 dose-escalation study of irinotecan in combination with 17-allylamino-17-demethoxygeldanamycin in patients with solid tumors. Clin Cancer Res: Official J Am Assoc Cancer Res. 2008;14:6704–11.

    Article  CAS  Google Scholar 

  32. Solit DB, Osman I, Polsky D, Panageas KS, Daud A, Goydos JS, Teitcher J, Wolchok JD, Germino FJ, Krown SE, Coit D, Rosen N, Chapman PB. Phase II trial of 17-allylamino-17-demethoxygeldanamycin in patients with metastatic melanoma. Clin Cancer Res: Official J Am Assoc Cancer Res. 2008;14:8302–7.

    Article  CAS  Google Scholar 

  33. Chapoval AI, Ni J, Lau JS, Wilcox RA, Flies DB, Liu D, Dong H, Sica GL, Zhu G, Tamada K, Chen L. B7–H3: a costimulatory molecule for T cell activation and IFN-gamma production. Nat Immunol. 2001;2:269–74.

    Article  PubMed  CAS  Google Scholar 

  34. Merchant AA, Matsui W. Targeting Hedgehog–a cancer stem cell pathway. Clin Cancer Res: Official J Am Assoc Cancer Res. 2010;16:3130–40.

    Article  CAS  Google Scholar 

  35. Dreesen O, Brivanlou AH. Signaling pathways in cancer and embryonic stem cells. Stem Cell Rev. 2007;3:7–17.

    Article  PubMed  CAS  Google Scholar 

  36. Keeler RF, Baker DC. Oral, osmotic minipump, and intramuscular administration to sheep of the Veratrum alkaloid cyclopamine. Proceedings of the society for experimental biology and medicine society for experimental biology and medicine. 1989;192:153–156.

    Google Scholar 

  37. Ziada A, et al. The use of trastuzumab in the treatment of hormone refractory prostate cancer; phase II trial. Prostate. 2004;60:332–7.

    Article  PubMed  CAS  Google Scholar 

  38. Ryan CJ, et al. Targeted MET inhibition in castration-resistant prostate cancer: a randomized phase II study and biomarker analysis with rilotumumab plus mitoxantrone and prednisone. Clin Cancer Res: Official J Am Assoc Cancer Res. 2013;19:215–24.

    Article  CAS  Google Scholar 

  39. Smith DC, Smith MR, Sweeney C, Elfiky AA, Logothetis C, Corn PG, Vogelzang NJ, Small EJ, Harzstark AL, Gordon MS, Vaishampayan UN, Haas NB, Spira AI, Lara PN Jr, Lin CC, Srinivas S, Sella A, Schöffski P, Scheffold C, Weitzman AL, Hussain M. Cabozantinib in patients with advanced prostate cancer: results of a phase II randomized discontinuation trial. J Clin Oncol: Official J Am Soc Clin Oncolo. 2013;31:412–9.

    Article  CAS  Google Scholar 

  40. Bardelli A, Siena S. Molecular mechanisms of resistance to cetuximab and panitumumab in colorectal cancer. J Clin Oncol: Official J Am Soc Clin Oncol. 2010;28:1254–61.

    Article  CAS  Google Scholar 

  41. Berns K, Horlings HM, Hennessy BT, Madiredjo M, Hijmans EM, Beelen K, Linn SC, Gonzalez-Angulo AM, Stemke-Hale K, Hauptmann M, Beijersbergen RL, Mills GB, van de Vijver MJ, Bernards R. A functional genetic approach identifies the PI3 K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell. 2007;12:395–402.

    Article  PubMed  CAS  Google Scholar 

  42. Nagata Y, Lan KH, Zhou X, Tan M, Esteva FJ, Sahin AA, Klos KS, Li P, Monia BP, Nguyen NT, Hortobagyi GN, Hung MC, Yu D. PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell. 2004;6:117–27.

    Article  PubMed  CAS  Google Scholar 

  43. Lu Y, Zi X, Zhao Y, Mascarenhas D, Pollak M. Insulin-like growth factor-I receptor signaling and resistance to trastuzumab (Herceptin). J Natl Cancer Inst. 2001;93:1852–7.

    Article  PubMed  CAS  Google Scholar 

  44. Desbois-Mouthon C, Baron A. Blivet-Van Eggelpoel MJ, Fartoux L, Venot C, Bladt F, Housset C, Rosmorduc O. Insulin-like growth factor-1 receptor inhibition induces a resistance mechanism via the epidermal growth factor receptor/HER3/AKT signaling pathway: rational basis for cotargeting insulin-like growth factor-1 receptor and epidermal growth factor receptor in hepatocellular carcinoma. Clin Cancer Res: Official J Am Assoc Cancer Res. 2009;15:5445–56.

    Article  CAS  Google Scholar 

  45. Koutras AK, Fountzilas G, Kalogeras KT, Starakis I, Iconomou G, Kalofonos HP. The upgraded role of HER3 and HER4 receptors in breast cancer. Critical Rev Oncol/hematology. 2010;74:73–8.

    Article  Google Scholar 

  46. Lin A, Yan WH, Xu HH, Gan MF, Cai JF, Zhu M, Zhou MY. HLA-G expression in human ovarian carcinoma counteracts NK cell function. Ann Oncol. 2007;18:1804–9.

    Article  PubMed  CAS  Google Scholar 

  47. Levy EM, Sycz G, Arriaga JM, Barrio MM, von Euw EM, Morales SB, González M, Mordoh J, Bianchini M. Cetuximab-mediated cellular cytotoxicity is inhibited by HLA-E membrane expression in colon cancer cells. Innate Immun. 2009;15:91–100.

    Article  PubMed  CAS  Google Scholar 

  48. Fishelson Z, Donin N, Zell S, Schultz S, Kirschfink M. Obstacles to cancer immunotherapy: expression of membrane complement regulatory proteins (mCRPs) in tumors. Mol Immunol. 2003;40:109–23.

    Article  PubMed  CAS  Google Scholar 

  49. Jurianz K, Maslak S, Garcia-Schuler H, Fishelson Z, Kirschfink M. Neutralization of complement regulatory proteins augments lysis of breast carcinoma cells targeted with rhumAb anti-HER2. Immunopharmacology. 1999;42:209–18.

    Article  PubMed  CAS  Google Scholar 

  50. You T, Hu W, Ge X, Shen J, Qin X. Application of a novel inhibitor of human CD59 for the enhancement of complement-dependent cytolysis on cancer cells. Cell Mol Immunol. 2011;8:157–63.

    Article  PubMed  CAS  Google Scholar 

  51. Dzietczenia J, Wrobel T, Mazur G, Poreba R, Jazwiec B, Kuliczkowski K. Expression of complement regulatory proteins: CD46, CD55, and CD59 and response to rituximab in patients with CD20+ non-Hodgkin’s lymphoma. Med Oncol. 2010;27:743–6.

    Article  PubMed  CAS  Google Scholar 

  52. Chang CC, Campoli M, Ferrone S. Classical and nonclassical HLA class I antigen and NK Cell-activating ligand changes in malignant cells: current challenges and future directions. Adv Cancer Res. 2005;93:189–234.

    Article  PubMed  CAS  Google Scholar 

  53. Taylor C, Hershman D, Shah N, Suciu-Foca N, Petrylak DP, Taub R, Vahdat L, Cheng B, Pegram M, Knutson KL, Clynes R. Augmented HER-2 specific immunity during treatment with trastuzumab and chemotherapy. Clin Cancer Res: Official J Am Assoc Cancer Res. 2007;13:5133–43.

    Article  CAS  Google Scholar 

  54. Algarra I, Garcia-Lora A, Cabrera T, Ruiz-Cabello F, Garrido F. The selection of tumor variants with altered expression of classical and nonclassical MHC class I molecules: implications for tumor immune escape. Cancer Immunol, Immunotherapy: CII. 2004;53:904–10.

    CAS  Google Scholar 

  55. Zou W. Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol. 2006;6:295–307.

    Article  PubMed  CAS  Google Scholar 

  56. Nagaraj S, Gupta K, Pisarev V, Kinarsky L, Sherman S, Kang L, Herber DL, Schneck J, Gabrilovich DI. Altered recognition of antigen is a mechanism of CD8 + T cell tolerance in cancer. Nat Med. 2007;13:828–35.

    Article  PubMed  CAS  Google Scholar 

  57. Xue SA, Stauss HJ. Enhancing immune responses for cancer therapy. Cell Mol Immunol. 2007;4:173–84.

    PubMed  CAS  Google Scholar 

  58. Musolino A, Naldi N, Bortesi B, Pezzuolo D, Capelletti M, Missale G, Laccabue D, Zerbini A, Camisa R, Bisagni G, Neri TM, Ardizzoni A. Immunoglobulin G fragment C receptor polymorphisms and clinical efficacy of trastuzumab-based therapy in patients with HER-2/neu-positive metastatic breast cancer. J Clin Oncol: Official J Am Soc Clin Oncol. 2008;26:1789–96.

    Article  CAS  Google Scholar 

  59. Zhang W, Gordon M, Schultheis AM, Yang DY, Nagashima F, Azuma M, Chang HM, Borucka E, Lurje G, Sherrod AE, Iqbal S, Groshen S, Lenz HJ. FCGR2A and FCGR3A polymorphisms associated with clinical outcome of epidermal growth factor receptor expressing metastatic colorectal cancer patients treated with single-agent cetuximab. J Clin Oncol: Official J Am Soc Clin Oncol. 2007;25:3712–8.

    Article  CAS  Google Scholar 

  60. Binder M, Otto F, Mertelsmann R, Veelken H, Trepel M. The epitope recognized by rituximab. Blood. 2006;108:1975–8.

    Article  PubMed  CAS  Google Scholar 

  61. Pejawar-Gaddy S, Finn OJ. Cancer vaccines: accomplishments and challenges. Crit Rev Oncology/hematology. 2008;67:93–102.

    Article  Google Scholar 

  62. Lopez-Albaitero A, Lee SC, Morgan S, Grandis JR, Gooding WE, Ferrone S, Ferris RL. Role of polymorphic Fc gamma receptor IIIa and EGFR expression level in cetuximab mediated, NK cell dependent in vitro cytotoxicity of head and neck squamous cell carcinoma cells. Cancer Immunol, immunotherapy: CII. 2009;58:1853–64.

    Article  PubMed  CAS  Google Scholar 

  63. Kurai J, Chikumi H, Hashimoto K, Yamaguchi K, Yamasaki A, Sako T, Touge H, Makino H, Takata M, Miyata M, Nakamoto M, Burioka N, Shimizu E. Antibody-dependent cellular cytotoxicity mediated by cetuximab against lung cancer cell lines. Clin Cancer Res: Official J Ame Assoc Cancer Res. 2007;13:1552–61.

    Article  CAS  Google Scholar 

  64. Burtness B, Goldwasser MA, Flood W, Mattar B, Forastiere AA. Eastern cooperative oncology G. Phase III randomized trial of cisplatin plus placebo compared with cisplatin plus cetuximab in metastatic/recurrent head and neck cancer: an eastern cooperative oncology group study. J Clin Oncol: Official J Am Soc Clin Oncol. 2005;23:8646–54.

    Article  Google Scholar 

  65. Zhao WL, Wang L, Liu YH, Yan JS, Leboeuf C, Liu YY, Wu WL, Janin A, Chen Z, Chen SJ. Combined effects of histone deacetylase inhibitor and rituximab on non-Hodgkin’s B-lymphoma cells apoptosis. Exp Hematol. 2007;35:1801–11.

    Article  PubMed  CAS  Google Scholar 

  66. Mukohara T. Mechanisms of resistance to anti-human epidermal growth factor receptor 2 agents in breast cancer. Cancer Sci. 2011;102:1–8.

    Article  PubMed  CAS  Google Scholar 

  67. Neller MA, Lopez JA, Schmidt CW. Antigens for cancer immunotherapy. Semin Immunol. 2008;20:286–95.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by PHS grants RO1CA138188 and RO1CA110249 awarded by the National Cancer Institute and Susan Komen Post Doctoral Fellowship KG111486 awarded by the Susan G. Komen for the Cure Foundation.

Conflicts of Interest

No potential conflicts of interest were disclosed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soldano Ferrone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wang, Y. et al. (2013). Tumor Antigen-Specific Monoclonal Antibody-Based Immunotherapy, Cancer Initiating Cells and Disease Recurrence. In: Bonavida, B. (eds) Resistance to Immunotherapeutic Antibodies in Cancer. Resistance to Targeted Anti-Cancer Therapeutics, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7654-2_2

Download citation

Publish with us

Policies and ethics