Skip to main content

The Role of Alloimmune T Cell Responses in Obliterative Bronchiolitis

  • Chapter
  • First Online:
Bronchiolitis Obliterans Syndrome in Lung Transplantation

Part of the book series: Respiratory Medicine ((RM,volume 8))

  • 940 Accesses

Abstract

Obliterative bronchiolitis (OB) is the pathology thought to result from chronic lung allograft rejection. Anti-donor alloimmune T cells have been considered to be the main culprits in development of OB, although non-transplant and non-alloimmune etiologies of OB have also been identified. This chapter reviews basic concepts of transplant immunology, generation of alloimmune T cells, and T cell-mediated tissue injury. It further discusses the evidence supporting a role of alloimmune T cells in OB, based on human data and available animal models. Interactions between alloimmune T cells and other arms of the immune system immune system, such as the antibody response and innate immune cells, are described. New concepts in lung transplant immunology and recent landmark studies are reviewed, including data on regulatory T cells, Th17 responses, and local intrapulmonary immune events, which may have important implications for the future direction of basic lung transplant immunology research and development of therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hornick P, Rose M. Chronic rejection in the heart. Methods Mol Biol. 2006;333:131–44.

    PubMed  Google Scholar 

  2. Wyatt JI. Liver transplant pathology—messages for the non-specialist. Histopathology. 2010;57(3):333–41.

    PubMed  Google Scholar 

  3. Ponticelli C. Progression of renal damage in chronic rejection. Kidney Int Suppl. 2000;75:S62–70.

    PubMed  CAS  Google Scholar 

  4. Snyder LD, Palmer SM. Immune mechanisms of lung allograft rejection. Semin Respir Crit Care Med. 2006;27(5):534–43.

    PubMed  Google Scholar 

  5. Abbas AK, Lichtman AH, Pillai S. Cellular and molecular immunology. 6th ed. Philadelphia, PA: Elsevier; 2010.

    Google Scholar 

  6. Felix NJ, Allen PM. Specificity of T-cell alloreactivity. Nat Rev Immunol. 2007;7(12):942–53.

    PubMed  CAS  Google Scholar 

  7. Sayegh MH, Carpenter CB. Role of indirect allorecognition in allograft rejection. Int Rev Immunol. 1996;13(3):221–9.

    PubMed  CAS  Google Scholar 

  8. Bradley JA. Indirect T, cell recognition in allograft rejection. Int Rev Immunol. 1996;13(3):245–55.

    PubMed  CAS  Google Scholar 

  9. Liu Z, Sun YK, Xi YP, Maffei A, Reed E, Harris P, et al. Contribution of direct and indirect recognition pathways to T cell alloreactivity. J Exp Med. 1993;177(6):1643–50.

    PubMed  CAS  Google Scholar 

  10. Romaniuk A, Prop J, Petersen AH, Nieuwenhuis P, Wildevuur CR. Increased expression of class II major histocompatibility complex antigens in untreated and cyclosporine-treated rat lung allografts. J Heart Transplant. 1986;5(6):455–60.

    PubMed  CAS  Google Scholar 

  11. Chang SC, Hsu HK, Perng RP, Shiao GM, Lin CY. Increased expression of MHC class II antigens in rejecting canine lung allografts. Transplantation. 1990;49(6):1158–63.

    PubMed  CAS  Google Scholar 

  12. Burke CM, Glanville AR, Theodore J, Robin ED. Lung immunogenicity, rejection, and obliterative bronchiolitis. Chest. 1987;92(3):547–9.

    PubMed  CAS  Google Scholar 

  13. Gokmen MR, Lombardi G, Lechler RI. The importance of the indirect pathway of allorecognition in clinical transplantation. Curr Opin Immunol. 2008;20(5):568–74.

    PubMed  CAS  Google Scholar 

  14. D’Orsogna LJ, Roelen DL, Doxiadis II, Claas FH. Alloreactivity from human viral specific memory T-cells. Transpl Immunol. 2010;23(4):149–55.

    PubMed  Google Scholar 

  15. Csencsits KL, Bishop DK. Contrasting alloreactive CD4+ and CD8+ T cells: there’s more to it than MHC restriction. Am J Transplant. 2003;3(2):107–15.

    PubMed  CAS  Google Scholar 

  16. Stewart S, Fishbein MC, Snell GI, Berry GJ, Boehler A, Burke MM, et al. Revision of the 1996 working formulation for the standardization of nomenclature in the diagnosis of lung rejection. J Heart Lung Transplant. 2007;26(12):1229–42.

    PubMed  Google Scholar 

  17. Huisman C, van der Straaten HM, Canninga-van Dijk MR, Fijnheer R, Verdonck LF. Pulmonary complications after T-cell-depleted allogeneic stem cell transplantation: low incidence and strong association with acute graft-versus-host disease. Bone Marrow Transplant. 2006;38(8):561–6.

    PubMed  CAS  Google Scholar 

  18. Griffith BP, Paradis IL, Zeevi A, Rabinowich H, Yousem SA, Duquesnoy RJ, et al. Immunologically mediated disease of the airways after pulmonary transplantation. Ann Surg. 1988;208(3):371–8.

    PubMed  CAS  Google Scholar 

  19. Reinsmoen NL, Bolman RM, Savik K, Butters K, Matas AJ, Hertz MI. Improved long-term graft outcome in lung transplant recipients who have donor antigen-specific hyporeactivity. J Heart Lung Transplant. 1994;13(1 Pt 1):30–6; discussion 6–7.

    Google Scholar 

  20. Rabinowich H, Zeevi A, Paradis IL, Yousem SA, Dauber JH, Kormos R, et al. Proliferative responses of bronchoalveolar lavage lymphocytes from heart-lung transplant patients. Transplantation. 1990;49(1):115–21.

    PubMed  CAS  Google Scholar 

  21. Bharat A, Narayanan K, Street T, Fields RC, Steward N, Aloush A, et al. Early posttransplant inflammation promotes the development of alloimmunity and chronic human lung allograft rejection. Transplantation. 2007;83(2):150–8.

    PubMed  CAS  Google Scholar 

  22. de Haan A, van der Gun I, Hepkema BG, de Boer WJ, van der Bij W, de Leij LF, et al. Decreased donor-specific cytotoxic T cell precursor frequencies one year after clinical lung transplantation do not reflect transplantation tolerance: a comparison of lung transplant recipients with or without bronchiolitis obliterans syndrome. Transplantation. 2000;69(7):1434–9.

    PubMed  Google Scholar 

  23. Goulmy E, Stijnen T, Groenewoud AF, Persijn GG, Blokland E, Pool J, et al. Renal transplant patients monitored by the cell-mediated lympholysis assay. Evaluation of its clinical value. Transplantation. 1989;48(4):559–63.

    PubMed  CAS  Google Scholar 

  24. Duncan SR, Valentine V, Roglic M, Elias DJ, Pekny KW, Theodore J, et al. T cell receptor biases and clonal proliferations among lung transplant recipients with obliterative bronchiolitis. J Clin Invest. 1996;97(11):2642–50.

    PubMed  CAS  Google Scholar 

  25. Duncan SR, Leonard C, Theodore J, Lega M, Girgis RE, Rosen GD, et al. Oligoclonal CD4(+) T cell expansions in lung transplant recipients with obliterative bronchiolitis. Am J Respir Crit Care Med. 2002;165(10):1439–44.

    PubMed  Google Scholar 

  26. Stanford RE, Ahmed S, Hodson M, Banner NR, Rose ML. A role for indirect allorecognition in lung transplant recipients with obliterative bronchiolitis. Am J Transplant. 2003;3(6):736–42.

    PubMed  Google Scholar 

  27. SivaSai KS, Smith MA, Poindexter NJ, Sundaresan SR, Trulock EP, Lynch JP, et al. Indirect recognition of donor HLA class I peptides in lung transplant recipients with bronchiolitis obliterans syndrome. Transplantation. 1999;67(8):1094–8.

    PubMed  CAS  Google Scholar 

  28. Reznik SI, Jaramillo A, SivaSai KS, Womer KL, Sayegh MH, Trulock EP, et al. Indirect allorecognition of mismatched donor HLA class II peptides in lung transplant recipients with bronchiolitis obliterans syndrome. Am J Transplant. 2001;1(3):228–35.

    PubMed  CAS  Google Scholar 

  29. Lu KC, Jaramillo A, Mendeloff EN, Huddleston CB, Sweet SC, Patterson GA, et al. Concomitant allorecognition of mismatched donor HLA class I- and class II-derived peptides in pediatric lung transplant recipients with bronchiolitis obliterans syndrome. J Heart Lung Transplant. 2003;22(1):35–43.

    PubMed  Google Scholar 

  30. Fattal-German M, Frachon I, Cerrina J, Ladurie FL, Lecerf F, Dartevelle P, et al. Particular phenotypic profile of blood lymphocytes during obliterative bronchiolitis syndrome following lung transplantation. Transpl Immunol. 1994;2(3):243–51.

    PubMed  CAS  Google Scholar 

  31. Zheng L, Orsida B, Whitford H, Levvey B, Ward C, Walters EH, et al. Longitudinal comparisons of lymphocytes and subtypes between airway wall and bronchoalveolar lavage after human lung transplantation. Transplantation. 2005;80(2):185–92.

    PubMed  Google Scholar 

  32. Ward C, Snell GI, Zheng L, Orsida B, Whitford H, Williams TJ, et al. Endobronchial biopsy and bronchoalveolar lavage in stable lung transplant recipients and chronic rejection. Am J Respir Crit Care Med. 1998;158(1):84–91.

    PubMed  CAS  Google Scholar 

  33. Ward C, Whitford H, Snell G, Bao H, Zheng L, Reid D, et al. Bronchoalveolar lavage macrophage and lymphocyte phenotypes in lung transplant recipients. J Heart Lung Transplant. 2001;20(10):1064–74.

    PubMed  CAS  Google Scholar 

  34. Hodge G, Hodge S, Chambers D, Reynolds PN, Holmes M. Bronchiolitis obliterans syndrome is associated with absence of suppression of peripheral blood Th1 proinflammatory cytokines. Transplantation. 2009;88(2):211–8.

    PubMed  Google Scholar 

  35. Hodge S, Hodge G, Ahern J, Liew CL, Hopkins P, Chambers DC, et al. Increased levels of T cell granzyme b in bronchiolitis obliterans syndrome are not suppressed adequately by current immunosuppressive regimens. Clin Exp Immunol. 2009;158(2):230–6.

    PubMed  CAS  Google Scholar 

  36. Hodge G, Hodge S, Li-Liew C, Chambers D, Hopkins P, Reynolds PN, et al. Time post-lung transplant correlates with increasing peripheral blood T cell granzyme B and proinflammatory cytokines. Clin Exp Immunol. 2010;161(3):584–90.

    PubMed  CAS  Google Scholar 

  37. Slebos DJ, Postma DS, Koeter GH, Van Der Bij W, Boezen M, Kauffman HF. Bronchoalveolar lavage fluid characteristics in acute and chronic lung transplant rejection. J Heart Lung Transplant. 2004;23(5):532–40.

    PubMed  Google Scholar 

  38. Mamessier E, Lorec AM, Thomas P, Badier M, Magnan A, Reynaud-Gaubert M. T regulatory cells in stable posttransplant bronchiolitis obliterans syndrome. Transplantation. 2007;84(7):908–16.

    PubMed  Google Scholar 

  39. Studer SM, George MP, Zhu X, Song Y, Valentine VG, Stoner MW, et al. CD28 down-regulation on CD4 T cells is a marker for graft dysfunction in lung transplant recipients. Am J Respir Crit Care Med. 2008;178(7):765–73.

    PubMed  Google Scholar 

  40. Huurman VA, Velthuis JH, Hilbrands R, Tree TI, Gillard P, van der Meer-Prins PM, et al. Allograft-specific cytokine profiles associate with clinical outcome after islet cell transplantation. Am J Transplant. 2009;9(2):382–8.

    PubMed  CAS  Google Scholar 

  41. Hildebrandt GC, Choi SW, Mueller G, Olkiewicz KM, Moore BB, Cooke KR. The absence of donor-derived IL-13 exacerbates the severity of acute graft-versus-host disease following allogeneic bone marrow transplantation. Pediatr Blood Cancer. 2008;50(4):911–4.

    PubMed  Google Scholar 

  42. Laffont S, Coudert JD, Garidou L, Delpy L, Wiedemann A, Demur C, et al. CD8+ T-cell-mediated killing of donor dendritic cells prevents alloreactive T helper type-2 responses in vivo. Blood. 2006;108(7):2257–64.

    PubMed  CAS  Google Scholar 

  43. VanBuskirk AM, Wakely ME, Orosz CG. Transfusion of polarized TH2-like cell populations into SCID mouse cardiac allograft recipients results in acute allograft rejection. Transplantation. 1996;62(2):229–38.

    PubMed  CAS  Google Scholar 

  44. Bagley J, Sawada T, Wu Y, Iacomini J. A critical role for interleukin 4 in activating alloreactive CD4 T cells. Nat Immunol. 2000;1(3):257–61.

    PubMed  CAS  Google Scholar 

  45. Paantjens AW, Kwakkel-van Erp JM, van Ginkel WG, van Kessel DA, van den Bosch JM, van de Graaf EA, et al. Serum thymus and activation regulated chemokine levels post-lung transplantation as a predictor for the bronchiolitis obliterans syndrome. Clin Exp Immunol. 2008;154(2):202–8.

    PubMed  CAS  Google Scholar 

  46. Paantjens AW, van de Graaf EA, Kwakkel-van Erp JM, Hoefnagel T, van Kessel DA, van den Bosch JM, et al. Lung transplantation affects expression of the chemokine receptor type 4 on specific T cell subsets. Clin Exp Immunol. 2011;166(1):103–9.

    PubMed  CAS  Google Scholar 

  47. Iellem A, Mariani M, Lang R, Recalde H, Panina-Bordignon P, Sinigaglia F, et al. Unique chemotactic response profile and specific expression of chemokine receptors CCR4 and CCR8 by CD4(+)CD25(+) regulatory T cells. J Exp Med. 2001;194(6):847–53.

    PubMed  CAS  Google Scholar 

  48. Lama VN, Harada H, Badri LN, Flint A, Hogaboam CM, McKenzie A, et al. Obligatory role for interleukin-13 in obstructive lesion development in airway allografts. Am J Pathol. 2006;169(1):47–60.

    PubMed  CAS  Google Scholar 

  49. Keane MP, Gomperts BN, Weigt S, Xue YY, Burdick MD, Nakamura H, et al. IL-13 is pivotal in the fibro-obliterative process of bronchiolitis obliterans syndrome. J Immunol. 2007;178(1):511–9.

    PubMed  CAS  Google Scholar 

  50. Pellegrini P, Berghella AM, Contasta I, Adorno D. CD30 antigen: not a physiological marker for TH2 cells but an important costimulator molecule in the regulation of the balance between TH1/TH2 response. Transpl Immunol. 2003;12(1):49–61.

    PubMed  CAS  Google Scholar 

  51. Fields RC, Bharat A, Steward N, Aloush A, Meyers BF, Trulock EP, et al. Elevated soluble CD30 correlates with development of bronchiolitis obliterans syndrome following lung transplantation. Transplantation. 2006;82(12):1596–601.

    PubMed  Google Scholar 

  52. Golocheikine AS, Saini D, Ramachandran S, Trulock EP, Patterson A, Mohanakumar T. Soluble CD30 levels as a diagnostic marker for bronchiolitis obliterans syndrome following human lung transplantation. Transpl Immunol. 2008;18(3):260–3.

    PubMed  CAS  Google Scholar 

  53. Bauwens AM, van de Graaf EA, van Ginkel WG, van Kessel DA, Otten HG. Pre-transplant soluble CD30 is associated with bronchiolitis obliterans syndrome after lung transplantation. J Heart Lung Transplant. 2006;25(4):416–9.

    PubMed  Google Scholar 

  54. Kwakkel-van Erp JM, Otten HG, Paantjens AW, van Kessel DA, van Ginkel WG, van den Bosch JM, et al. Soluble CD30 measured after lung transplantation does not predict bronchiolitis obliterans syndrome in a tacrolimus/mycophenolate mofetil-based immunosuppressive regimen. J Heart Lung Transplant. 2008;27(10):1172–5.

    PubMed  Google Scholar 

  55. Burlingham WJ, Love RB, Jankowska-Gan E, Haynes LD, Xu Q, Bobadilla JL, et al. IL-17-dependent cellular immunity to collagen type V predisposes to obliterative bronchiolitis in human lung transplants. J Clin Invest. 2007;117(11):3498–506.

    PubMed  CAS  Google Scholar 

  56. Snell GI, Esmore DS, Williams TJ. Cytolytic therapy for the bronchiolitis obliterans syndrome complicating lung transplantation. Chest. 1996;109(4):874–8.

    PubMed  CAS  Google Scholar 

  57. Hoffmeyer F, Hoeper MM, Spiekerkotter E, Harringer W, Haverich A, Fabel H, et al. Azathioprine withdrawal in stable lung and heart/lung recipients receiving cyclosporine-based immunosuppression. Transplantation. 2000;70(3):522–5.

    PubMed  CAS  Google Scholar 

  58. Fisher AJ, Rutherford RM, Bozzino J, Parry G, Dark JH, Corris PA. The safety and efficacy of total lymphoid irradiation in progressive bronchiolitis obliterans syndrome after lung transplantation. Am J Transplant. 2005;5(3):537–43.

    PubMed  Google Scholar 

  59. Verleden GM, Lievens Y, Dupont LJ, Van Raemdonck DE, De Vleeschauwer SI, Vos R, et al. Efficacy of total lymphoid irradiation in azithromycin nonresponsive chronic allograft rejection after lung transplantation. Transplant Proc. 2009;41(5):1816–20.

    PubMed  CAS  Google Scholar 

  60. Reams BD, Musselwhite LW, Zaas DW, Steele MP, Garantziotis S, Eu PC, et al. Alemtuzumab in the treatment of refractory acute rejection and bronchiolitis obliterans syndrome after human lung transplantation. Am J Transplant. 2007;7(12):2802–8.

    PubMed  CAS  Google Scholar 

  61. Shyu S, Dew MA, Pilewski JM, DeVito Dabbs AJ, Zaldonis DB, Studer SM, et al. Five-year outcomes with alemtuzumab induction after lung transplantation. J Heart Lung Transplant. 2011;30(7):743–54.

    PubMed  Google Scholar 

  62. Snell GI, Westall GP. Immunosuppression for lung transplantation: evidence to date. Drugs. 2007;67(11):1531–9.

    PubMed  CAS  Google Scholar 

  63. Hopkins PM, McNeil K. Evidence for immunosuppression in lung transplantation. Curr Opin Organ Transplant. 2008;13(5):477–83.

    PubMed  Google Scholar 

  64. Hartwig MG, Snyder LD, Appel III JZ, Cantu III E, Lin SS, Palmer SM, et al. Rabbit anti-thymocyte globulin induction therapy does not prolong survival after lung transplantation. J Heart Lung Transplant. 2008;27(5):547–53.

    PubMed  Google Scholar 

  65. Hodge G, Hodge S, Reynolds P, Holmes M. Intracellular cytokines in blood T cells in lung transplant patients—a more relevant indicator of immunosuppression than drug levels. Clin Exp Immunol. 2005;139(1):159–64.

    PubMed  CAS  Google Scholar 

  66. Hodge G, Hodge S, Reynolds PN, Holmes M. Increased intracellular pro- and anti-inflammatory cytokines in bronchoalveolar lavage T cells of stable lung transplant patients. Transplantation. 2005;80(8):1040–5.

    PubMed  CAS  Google Scholar 

  67. Quantz MA, Bennett LE, Meyer DM, Novick RJ. Does human leukocyte antigen matching influence the outcome of lung transplantation? An analysis of 3,549 lung transplantations. J Heart Lung Transplant. 2000;19(5):473–9.

    PubMed  CAS  Google Scholar 

  68. Peltz M, Edwards LB, Jessen ME, Torres F, Meyer DM. HLA mismatches influence lung transplant recipient survival, bronchiolitis obliterans and rejection: implications for donor lung allocation. J Heart Lung Transplant. 2011;30(4):426–34.

    PubMed  Google Scholar 

  69. Harjula AL, Baldwin JC, Glanville AR, Tazelaar H, Oyer PE, Stinson EB, et al. Human leukocyte antigen compatibility in heart-lung transplantation. J Heart Transplant. 1987;6(3):162–6.

    PubMed  CAS  Google Scholar 

  70. Sundaresan S, Mohanakumar T, Smith MA, Trulock EP, Lynch J, Phelan D, et al. HLA-A locus mismatches and development of antibodies to HLA after lung transplantation correlate with the development of bronchiolitis obliterans syndrome. Transplantation. 1998;65(5):648–53.

    PubMed  CAS  Google Scholar 

  71. Schulman LL, Weinberg AD, McGregor CC, Suciu-Foca NM, Itescu S. Influence of donor and recipient HLA locus mismatching on development of obliterative bronchiolitis after lung transplantation. Am J Respir Crit Care Med. 2001;163(2):437–42.

    PubMed  CAS  Google Scholar 

  72. Chalermskulrat W, Neuringer IP, Schmitz JL, Catellier DJ, Gurka MJ, Randell SH, et al. Human leukocyte antigen mismatches predispose to the severity of bronchiolitis obliterans syndrome after lung transplantation. Chest. 2003;123(6):1825–31.

    PubMed  Google Scholar 

  73. Brugiere O, Thabut G, Suberbielle C, Reynaud-Gaubert M, Thomas P, Pison C, et al. Relative impact of human leukocyte antigen mismatching and graft ischemic time after lung transplantation. J Heart Lung Transplant. 2008;27(6):628–34.

    PubMed  Google Scholar 

  74. van den Berg JW, Hepkema BG, Geertsma A, Koeter GH, Postma DS, de Boer WJ, et al. Long-term outcome of lung transplantation is predicted by the number of HLA-DR mismatches. Transplantation. 2001;71(3):368–73.

    PubMed  Google Scholar 

  75. Roberts DH, Wain JC, Chang Y, Ginns LC. Donor-recipient gender mismatch in lung transplantation: impact on obliterative bronchiolitis and survival. J Heart Lung Transplant. 2004;23(11):1252–9.

    PubMed  Google Scholar 

  76. Valujskikh A, Zhang Q, Heeger PS. CD8 T cells specific for a donor-derived, self-restricted transplant antigen are nonpathogenic bystanders after vascularized heart transplantation in mice. J Immunol. 2006;176(4):2190–6.

    PubMed  CAS  Google Scholar 

  77. Lee RS, Grusby MJ, Glimcher LH, Winn HJ, Auchincloss Jr H. Indirect recognition by helper cells can induce donor-specific cytotoxic T lymphocytes in vivo. J Exp Med. 1994;179(3):865–72.

    PubMed  CAS  Google Scholar 

  78. Gelman AE, Okazaki M, Lai J, Kornfeld CG, Kreisel FH, Richardson SB, et al. CD4+ T lymphocytes are not necessary for the acute rejection of vascularized mouse lung transplants. J Immunol. 2008;180(7):4754–62.

    PubMed  CAS  Google Scholar 

  79. Smith CR, Jaramillo A, Duffy BF, Mohanakumar T. Airway epithelial cell damage mediated by antigen-specific T cells: implications in lung allograft rejection. Hum Immunol. 2000;61(10):985–92.

    PubMed  CAS  Google Scholar 

  80. Palmer SM, Davis RD, Hadjiliadis D, Hertz MI, Howell DN, Ward FE, et al. Development of an antibody specific to major histocompatibility antigens detectable by flow cytometry after lung transplant is associated with bronchiolitis obliterans syndrome. Transplantation. 2002;74(6):799–804.

    PubMed  CAS  Google Scholar 

  81. Bradley JA, Mowat AM, Bolton EM. Processed MHC class I alloantigen as the stimulus for CD4+ T-cell dependent antibody-mediated graft rejection. Immunol Today. 1992;13(11):434–8.

    PubMed  CAS  Google Scholar 

  82. Steele DJ, Laufer TM, Smiley ST, Ando Y, Grusby MJ, Glimcher LH, et al. Two levels of help for B cell alloantibody production. J Exp Med. 1996;183(2):699–703.

    PubMed  CAS  Google Scholar 

  83. Sawyer GJ, Dalchau R, Fabre JW. Indirect T cell allorecognition: a cyclosporin A resistant pathway for T cell help for antibody production to donor MHC antigens. Transpl Immunol. 1993;1(1):77–81.

    PubMed  CAS  Google Scholar 

  84. Taylor PM, Rose ML, Yacoub MH. Expression of MHC antigens in normal human lungs and transplanted lungs with obliterative bronchiolitis. Transplantation. 1989;48(3):506–10.

    PubMed  CAS  Google Scholar 

  85. Yousem SA, Curley JM, Dauber J, Paradis I, Rabinowich H, Zeevi A, et al. HLA-class II antigen expression in human heart-lung allografts. Transplantation. 1990;49(5):991–5.

    PubMed  CAS  Google Scholar 

  86. Milne DS, Gascoigne AD, Wilkes J, Sviland L, Ashcroft T, Malcolm AJ, et al. MHC class II and ICAM-1 expression and lymphocyte subsets in transbronchial biopsies from lung transplant recipients. Transplantation. 1994;57(12):1762–6.

    PubMed  CAS  Google Scholar 

  87. Arbustini E, Morbini P, Diegoli M, Grasso M, Fasani R, Vitulo P, et al. Coexpression of aspartic proteinases and human leukocyte antigen-DR in human transplanted lung. Am J Pathol. 1994;145(2):310–21.

    PubMed  CAS  Google Scholar 

  88. Elssner A, Jaumann F, Wolf WP, Schwaiblmair M, Behr J, Furst H, et al. Bronchial epithelial cell B7-1 and B7-2 mRNA expression after lung transplantation: a role in allograft rejection? Eur Respir J. 2002;20(1):165–9.

    PubMed  CAS  Google Scholar 

  89. Christie JD, Edwards LB, Kucheryavaya AY, Aurora P, Dobbels F, Kirk R, et al. The Registry of the International Society for Heart and Lung Transplantation: twenty-seventh official adult lung and heart-lung transplant report—2010. J Heart Lung Transplant. 2010;29(10):1104–18.

    PubMed  Google Scholar 

  90. Burton CM, Iversen M, Carlsen J, Mortensen J, Andersen CB, Steinbruchel D, et al. Acute cellular rejection is a risk factor for bronchiolitis obliterans syndrome independent of post-transplant baseline FEV1. J Heart Lung Transplant. 2009;28(9):888–93.

    PubMed  Google Scholar 

  91. Hopkins PM, Aboyoun CL, Chhajed PN, Malouf MA, Plit ML, Rainer SP, et al. Association of minimal rejection in lung transplant recipients with obliterative bronchiolitis. Am J Respir Crit Care Med. 2004;170(9):1022–6.

    PubMed  Google Scholar 

  92. Khalifah AP, Hachem RR, Chakinala MM, Yusen RD, Aloush A, Patterson GA, et al. Minimal acute rejection after lung transplantation: a risk for bronchiolitis obliterans syndrome. Am J Transplant. 2005;5(8):2022–30.

    PubMed  Google Scholar 

  93. Hachem RR, Khalifah AP, Chakinala MM, Yusen RD, Aloush AA, Mohanakumar T, et al. The significance of a single episode of minimal acute rejection after lung transplantation. Transplantation. 2005;80(10):1406–13.

    PubMed  Google Scholar 

  94. Glanville AR, Aboyoun CL, Havryk A, Plit M, Rainer S, Malouf MA. Severity of lymphocytic bronchiolitis predicts long-term outcome after lung transplantation. Am J Respir Crit Care Med. 2008;177(9):1033–40.

    PubMed  Google Scholar 

  95. Floreth T, Bhorade SM, Ahya VN. Conventional and novel approaches to immunosuppression. Clin Chest Med. 2011;32(2):265–77.

    PubMed  Google Scholar 

  96. Martinu T, Pavlisko EN, Chen DF, Palmer SM. Acute allograft rejection: cellular and humoral processes. Clin Chest Med. 2011;32(2):295–310.

    PubMed  Google Scholar 

  97. Donnenberg VS, Burckart GJ, Zeevi A, Griffith BP, Iacono A, McCurry KR, et al. P-glycoprotein activity is decreased in CD4+ but not CD8+ lung allograft-infiltrating T cells during acute cellular rejection. Transplantation. 2004;77(11):1699–706.

    PubMed  CAS  Google Scholar 

  98. Hasegawa S, Ockner DM, Ritter JH, Patterson GA, Trulock EP, Cooper JD, et al. Expression of class II major histocompatibility complex antigens (HLA-DR) and lymphocyte subset immunotyping in chronic pulmonary transplant rejection. Arch Pathol Lab Med. 1995;119(5):432–9.

    PubMed  CAS  Google Scholar 

  99. Rizzo M, Sundaresan S, Lynch J, Trulock EP, Cooper J, Patterson GA, et al. Increased concentration of soluble human leukocyte antigen class I levels in the bronchoalveolar lavage of human pulmonary allografts. J Heart Lung Transplant. 1997;16(11):1135–40.

    PubMed  CAS  Google Scholar 

  100. DeVito-Haynes LD, Jankowska-Gan E, Heisey DM, Cornwell RD, Meyer KC, Love RB, et al. Soluble HLA class I in epithelial lining fluid of lung transplants: associations with graft outcome. Hum Immunol. 1997;52(2):95–108.

    PubMed  CAS  Google Scholar 

  101. Oberbarnscheidt MH, Zecher D, Lakkis FG. The innate immune system in transplantation. Semin Immunol. 2011;23(4):264–72.

    PubMed  CAS  Google Scholar 

  102. Goldstein DR, Palmer SM. Role of Toll-like receptor-driven innate immunity in thoracic organ transplantation. J Heart Lung Transplant. 2005;24(11):1721–9.

    PubMed  Google Scholar 

  103. Bharat A, Kuo E, Steward N, Aloush A, Hachem R, Trulock EP, et al. Immunological link between primary graft dysfunction and chronic lung allograft rejection. Ann Thorac Surg. 2008;86(1):189–95; discussion 96–7.

    Google Scholar 

  104. Shah N, Force SD, Mitchell PO, Lin E, Lawrence EC, Easley K, et al. Gastroesophageal reflux disease is associated with an increased rate of acute rejection in lung transplant allografts. Transplant Proc. 2010;42(7):2702–6.

    PubMed  CAS  Google Scholar 

  105. Cantu E III, Appel JZ III, Hartwig MG, Woreta H, Green C, Messier R, et al. J. Maxwell Chamberlain Memorial Paper. Early fundoplication prevents chronic allograft dysfunction in patients with gastroesophageal reflux disease. Ann Thorac Surg. 2004;78(4):1142–51; discussion 1142–51.

    Google Scholar 

  106. Meltzer AJ, Weiss MJ, Veillette GR, Sahara H, Ng CY, Cochrane ME, et al. Repetitive gastric aspiration leads to augmented indirect allorecognition after lung transplantation in miniature swine. Transplantation. 2008;86(12):1824–9.

    PubMed  Google Scholar 

  107. Hartwig MG, Appel JZ, Li B, Hsieh CC, Yoon YH, Lin SS, et al. Chronic aspiration of gastric fluid accelerates pulmonary allograft dysfunction in a rat model of lung transplantation. J Thorac Cardiovasc Surg. 2006;131(1):209–17.

    PubMed  Google Scholar 

  108. Li B, Hartwig MG, Appel JZ, Bush EL, Balsara KR, Holzknecht ZE, et al. Chronic aspiration of gastric fluid induces the development of obliterative bronchiolitis in rat lung transplants. Am J Transplant. 2008;8(8):1614–21.

    PubMed  CAS  Google Scholar 

  109. Winter JB, Gouw AS, Groen M, Wildevuur C, Prop J. Respiratory viral infections aggravate airway damage caused by chronic rejection in rat lung allografts. Transplantation. 1994;57(3):418–22.

    PubMed  CAS  Google Scholar 

  110. Kuo E, Bharat A, Goers T, Chapman W, Yan L, Street T, et al. Respiratory viral infection in obliterative airway disease after orthotopic tracheal transplantation. Ann Thorac Surg. 2006;82(3):1043–50.

    PubMed  Google Scholar 

  111. Gelman AE, Li W, Richardson SB, Zinselmeyer BH, Lai J, Okazaki M, et al. Cutting edge: acute lung allograft rejection is independent of secondary lymphoid organs. J Immunol. 2009;182(7):3969–73.

    PubMed  CAS  Google Scholar 

  112. Leonard CT, Soccal PM, Singer L, Berry GJ, Theodore J, Holt PG, et al. Dendritic cells and macrophages in lung allografts: a role in chronic rejection? Am J Respir Crit Care Med. 2000;161(4 Pt 1):1349–54.

    PubMed  CAS  Google Scholar 

  113. Gelman AE, Okazaki M, Sugimoto S, Li W, Kornfeld CG, Lai J, et al. CCR2 regulates monocyte recruitment as well as CD4 T1 allorecognition after lung transplantation. Am J Transplant. 2010;10(5):1189–99.

    PubMed  CAS  Google Scholar 

  114. Sekine Y, Bowen LK, Heidler KM, Van Rooijen N, Brown JW, Cummings OW, et al. Role of passenger leukocytes in allograft rejection: effect of depletion of donor alveolar macrophages on the local production of TNF-alpha, T helper 1/T helper 2 cytokines, IgG subclasses, and pathology in a rat model of lung transplantation. J Immunol. 1997;159(8):4084–93.

    PubMed  CAS  Google Scholar 

  115. Belperio JA, Keane MP, Burdick MD, Lynch III JP, Xue YY, Berlin A, et al. Critical role for the chemokine MCP-1/CCR2 in the pathogenesis of bronchiolitis obliterans syndrome. J Clin Invest. 2001;108(4):547–56.

    PubMed  CAS  Google Scholar 

  116. Mikols CL, Yan L, Norris JY, Russell TD, Khalifah AP, Hachem RR, et al. IL-12 p80 is an innate epithelial cell effector that mediates chronic allograft dysfunction. Am J Respir Crit Care Med. 2006;174(4):461–70.

    PubMed  CAS  Google Scholar 

  117. Tesar BM, Jiang D, Liang J, Palmer SM, Noble PW, Goldstein DR. The role of hyaluronan degradation products as innate alloimmune agonists. Am J Transplant. 2006;6(11):2622–35.

    PubMed  CAS  Google Scholar 

  118. Goldstein DR, Tesar BM, Akira S, Lakkis FG. Critical role of the Toll-like receptor signal adaptor protein MyD88 in acute allograft rejection. J Clin Invest. 2003;111(10):1571–8.

    PubMed  CAS  Google Scholar 

  119. McKay D, Shigeoka A, Rubinstein M, Surh C, Sprent J. Simultaneous deletion of MyD88 and Trif delays major histocompatibility and minor antigen mismatch allograft rejection. Eur J Immunol. 2006;36(8):1994–2002.

    PubMed  CAS  Google Scholar 

  120. Tesar BM, Zhang J, Li Q, Goldstein DR. TH1 immune responses to fully MHC mismatched allografts are diminished in the absence of MyD88, a Toll-like receptor signal adaptor protein. Am J Transplant. 2004;4(9):1429–39.

    PubMed  CAS  Google Scholar 

  121. Chen L, Wang T, Zhou P, Ma L, Yin D, Shen J, et al. TLR engagement prevents transplantation tolerance. Am J Transplant. 2006;6(10):2282–91.

    PubMed  CAS  Google Scholar 

  122. Walker WE, Nasr IW, Camirand G, Tesar BM, Booth CJ, Goldstein DR. Absence of innate MyD88 signaling promotes inducible allograft acceptance. J Immunol. 2006;177(8):5307–16.

    PubMed  CAS  Google Scholar 

  123. Miller DM, Thornley TB, Pearson T, Kruger AJ, Yamazaki M, Shultz LD, et al. TLR agonists prevent the establishment of allogeneic hematopoietic chimerism in mice treated with costimulation blockade. J Immunol. 2009;182(9):5547–59.

    PubMed  CAS  Google Scholar 

  124. Wang S, Schmaderer C, Kiss E, Schmidt C, Bonrouhi M, Porubsky S, et al. Recipient Toll-like receptors contribute to chronic graft dysfunction by both MyD88- and TRIF-dependent signaling. Dis Model Mech. 2010;3(1–2):92–103.

    PubMed  CAS  Google Scholar 

  125. Palmer SM, Burch LH, Mir S, Smith SR, Kuo PC, Herczyk WF, et al. Donor polymorphisms in Toll-like receptor-4 influence the development of rejection after renal transplantation. Clin Transplant. 2006;20(1):30–6.

    PubMed  Google Scholar 

  126. Palmer SM, Klimecki W, Yu L, Reinsmoen NL, Snyder LD, Ganous TM, et al. Genetic regulation of rejection and survival following human lung transplantation by the innate immune receptor CD14. Am J Transplant. 2007;7(3):693–9.

    PubMed  CAS  Google Scholar 

  127. Palmer SM, Burch LH, Trindade AJ, Davis RD, Herczyk WF, Reinsmoen NL, et al. Innate immunity influences long-term outcomes after human lung transplant. Am J Respir Crit Care Med. 2005;171(7):780–5.

    PubMed  Google Scholar 

  128. Wood KJ, Bushell A, Hester J. Regulatory immune cells in transplantation. Nat Rev Immunol. 2012;12(6):417–30.

    PubMed  CAS  Google Scholar 

  129. Tang Q, Bluestone JA, Kang SM. CD4(+)Foxp3(+) regulatory T cell therapy in transplantation. J Mol Cell Biol. 2012;4(1):11–21.

    PubMed  CAS  Google Scholar 

  130. Meloni F, Vitulo P, Bianco AM, Paschetto E, Morosini M, Cascina A, et al. Regulatory CD4+CD25+ T cells in the peripheral blood of lung transplant recipients: correlation with transplant outcome. Transplantation. 2004;77(5):762–6.

    PubMed  Google Scholar 

  131. Meloni F, Morosini M, Solari N, Bini F, Vitulo P, Arbustini E, et al. Peripheral CD4+ CD25+ Treg cell expansion in lung transplant recipients is not affected by calcineurin inhibitors. Int Immunopharmacol. 2006;6(13–14):2002–10.

    PubMed  CAS  Google Scholar 

  132. Polster K, Walker A, Fildes J, Entwistle G, Yonan N, Hutchinson IV, et al. CD4-veCD8-ve CD30+ve T cells are detectable in human lung transplant patients and their proportion of the lymphocyte population after in vitro stimulation with donor spleen cells correlates with preservation of lung physiology. Transplant Proc. 2005;37(5):2257–60.

    PubMed  CAS  Google Scholar 

  133. Bianco AM, Solari N, Miserere S, Pellegrini C, Vitulo P, Pozzi E, et al. The frequency of interleukin-10- and interleukin-5-secreting CD4+ T cells correlates to tolerance of transplanted lung. Transplant Proc. 2005;37(5):2255–6.

    PubMed  Google Scholar 

  134. Bharat A, Fields RC, Steward N, Trulock EP, Patterson GA, Mohanakumar T. CD4+25+ regulatory T cells limit Th1-autoimmunity by inducing IL-10 producing T cells following human lung transplantation. Am J Transplant. 2006;6(8):1799–808.

    PubMed  CAS  Google Scholar 

  135. Bharat A, Fields RC, Trulock EP, Patterson GA, Mohanakumar T. Induction of IL-10 suppressors in lung transplant patients by CD4+25+ regulatory T cells through CTLA-4 signaling. J Immunol. 2006;177(8):5631–8.

    PubMed  CAS  Google Scholar 

  136. Gregson AL, Hoji A, Palchevskiy V, Hu S, Weigt SS, Liao E, et al. Protection against bronchiolitis obliterans syndrome is associated with allograft CCR7+ CD45RA- T regulatory cells. PLoS One. 2010;5(6):e11354.

    PubMed  Google Scholar 

  137. Bhorade SM, Chen H, Molinero L, Liao C, Garrity ER, Vigneswaran WT, et al. Decreased percentage of CD4+FoxP3+ cells in bronchoalveolar lavage from lung transplant recipients correlates with development of bronchiolitis obliterans syndrome. Transplantation. 2010;90(5):540–6.

    PubMed  Google Scholar 

  138. Botturi K, Lacoeuille Y, Thomas P, Boniface S, Reynaud-Gaubert M, Magnan A. CTLA-4-mediated regulatory phenotype of T-cells in tolerant lung recipients. Eur Respir J. 2008;31(6):1167–76.

    PubMed  CAS  Google Scholar 

  139. Solari MG, Thomson AW. Human dendritic cells and transplant outcome. Transplantation. 2008;85(11):1513–22.

    PubMed  Google Scholar 

  140. Meloni F, Cascina A, Miserere S, Perotti C, Vitulo P, Fietta AM. Peripheral CD4(+)CD25(+) TREG cell counts and the response to extracorporeal photopheresis in lung transplant recipients. Transplant Proc. 2007;39(1):213–7.

    PubMed  CAS  Google Scholar 

  141. Kirsch BM, Haidinger M, Zeyda M, Bohmig GA, Tombinsky J, Muhlbacher F, et al. Alemtuzumab (Campath-1H) induction therapy and dendritic cells: impact on peripheral dendritic cell repertoire in renal allograft recipients. Transpl Immunol. 2006;16(3–4):254–7.

    PubMed  CAS  Google Scholar 

  142. Trzonkowski P, Zilvetti M, Friend P, Wood KJ. Recipient memory-like lymphocytes remain unresponsive to graft antigens after CAMPATH-1H induction with reduced maintenance immunosuppression. Transplantation. 2006;82(10):1342–51.

    PubMed  Google Scholar 

  143. Trzonkowski P, Zilvetti M, Chapman S, Wieckiewicz J, Sutherland A, Friend P, et al. Homeostatic repopulation by CD28-CD8+ T cells in alemtuzumab-depleted kidney transplant recipients treated with reduced immunosuppression. Am J Transplant. 2008;8(2):338–47.

    PubMed  CAS  Google Scholar 

  144. Kopf H, de la Rosa GM, Howard OM, Chen X. Rapamycin inhibits differentiation of Th17 cells and promotes generation of FoxP3+ T regulatory cells. Int Immunopharmacol. 2007;7(13):1819–24.

    PubMed  CAS  Google Scholar 

  145. Shin HJ, Baker J, Leveson-Gower DB, Smith AT, Sega EI, Negrin RS. Rapamycin and IL-2 reduce lethal acute graft-versus-host disease associated with increased expansion of donor type CD4+CD25+Foxp3+ regulatory T cells. Blood. 2011;118(8):2342–50.

    PubMed  CAS  Google Scholar 

  146. Shi Q, Cao H, Liu J, Zhou X, Lan Q, Zheng S, et al. CD4+ Foxp3+ regulatory T cells induced by TGF-beta, IL-2 and all-trans retinoic acid attenuate obliterative bronchiolitis in rat trachea transplantation. Int Immunopharmacol. 2011;11(11):1887–94.

    PubMed  CAS  Google Scholar 

  147. Yasufuku K, Heidler KM, Woods KA, Smith Jr GN, Cummings OW, Fujisawa T, et al. Prevention of bronchiolitis obliterans in rat lung allografts by type V collagen-induced oral tolerance. Transplantation. 2002;73(4):500–5.

    PubMed  CAS  Google Scholar 

  148. Boehler A, Bai XH, Liu M, Cassivi S, Chamberlain D, Slutsky AS, et al. Upregulation of T-helper 1 cytokines and chemokine expression in post-transplant airway obliteration. Am J Respir Crit Care Med. 1999;159(6):1910–7.

    PubMed  CAS  Google Scholar 

  149. Neuringer IP, Walsh SP, Mannon RB, Gabriel S, Aris RM. Enhanced T cell cytokine gene expression in mouse airway obliterative bronchiolitis. Transplantation. 2000;69(3):399–405.

    PubMed  CAS  Google Scholar 

  150. Boehler A, Chamberlain D, Kesten S, Slutsky AS, Liu M, Keshavjee S. Lymphocytic airway infiltration as a precursor to fibrous obliteration in a rat model of bronchiolitis obliterans. Transplantation. 1997;64(2):311–7.

    PubMed  CAS  Google Scholar 

  151. Neuringer IP, Mannon RB, Coffman TM, Parsons M, Burns K, Yankaskas JR, et al. Immune cells in a mouse airway model of obliterative bronchiolitis. Am J Respir Cell Mol Biol. 1998;19(3):379–86.

    PubMed  CAS  Google Scholar 

  152. Higuchi T, Jaramillo A, Kaleem Z, Patterson GA, Mohanakumar T. Different kinetics of obliterative airway disease development in heterotopic murine tracheal allografts induced by CD4+ and CD8+ T cells. Transplantation. 2002;74(5):646–51.

    PubMed  CAS  Google Scholar 

  153. King MB, Pedtke AC, Levrey-Hadden HL, Hertz MI. Obliterative airway disease progresses in heterotopic airway allografts without persistent alloimmune stimulus. Transplantation. 2002;74(4):557–62.

    PubMed  Google Scholar 

  154. Harada H, Lama VN, Badri LN, Ohtsuka T, Petrovic-Djergovic D, Liao H, et al. Early growth response gene-1 promotes airway allograft rejection. Am J Physiol. 2007;293(1):L124–30.

    CAS  Google Scholar 

  155. Minamoto K, Harada H, Lama VN, Fedarau MA, Pinsky DJ. Reciprocal regulation of airway rejection by the inducible gas-forming enzymes heme oxygenase and nitric oxide synthase. J Exp Med. 2005;202(2):283–94.

    PubMed  CAS  Google Scholar 

  156. Minamoto K, Pinsky DJ. Recipient iNOS but not eNOS deficiency reduces luminal narrowing in tracheal allografts. J Exp Med. 2002;196(10):1321–33.

    PubMed  CAS  Google Scholar 

  157. Hollmen M, Tikkanen JM, Nykanen AI, Koskinen PK, Lemstrom KB. Tacrolimus treatment effectively inhibits progression of obliterative airway disease even at later stages of disease development. J Heart Lung Transplant. 2008;27(8):856–64.

    PubMed  Google Scholar 

  158. Gu Y, Takao M, Kai M, Lu L, Shimamoto A, Onoda K, et al. The role of cyclosporine A and interleukin-2 in obliterative airway disease in a rat tracheal transplant model. Ann Thorac Cardiovasc Surg. 2000;6(4):224–31.

    PubMed  CAS  Google Scholar 

  159. Fahrni JA, Berry GJ, Morris RE, Rosen GD. Rapamycin inhibits development of obliterative airway disease in a murine heterotopic airway transplant model. Transplantation. 1997;63(4):533–7.

    PubMed  CAS  Google Scholar 

  160. Smith MA, Jaramillo A, SivaSai KS, Naziruddin B, Kaleem Z, Patterson GA, et al. Indirect recognition and antibody production against a single mismatched HLA-A2-transgenic molecule precede the development of obliterative airway disease in murine heterotopic tracheal allografts. Transplantation. 2002;73(2):186–93.

    PubMed  CAS  Google Scholar 

  161. Qu N, de Haan A, Harmsen MC, Kroese FG, de Leij LF, Prop J. Specific immune responses against airway epithelial cells in a transgenic mouse-trachea transplantation model for obliterative airway disease. Transplantation. 2003;76(7):1022–8.

    PubMed  Google Scholar 

  162. Higuchi T, Maruyama T, Jaramillo A, Mohanakumar T. Induction of obliterative airway disease in murine tracheal allografts by CD8+ CTLs recognizing a single minor histocompatibility antigen. J Immunol. 2005;174(4):1871–8.

    PubMed  CAS  Google Scholar 

  163. Chalermskulrat W, Neuringer IP, Brickey WJ, Felix NJ, Randell SH, Ting JP, et al. Hierarchical contributions of allorecognition pathways in chronic lung rejection. Am J Respir Crit Care Med. 2003;167(7):999–1007.

    PubMed  Google Scholar 

  164. Richards DM, Dalheimer SL, Ehst BD, Vanasek TL, Jenkins MK, Hertz MI, et al. Indirect minor histocompatibility antigen presentation by allograft recipient cells in the draining lymph node leads to the activation and clonal expansion of CD4+ T cells that cause obliterative airways disease. J Immunol. 2004;172(6):3469–79.

    PubMed  CAS  Google Scholar 

  165. Kita Y, Suzuki K, Nogimura H, Takahashi T, Kazui T. CTLA4Ig-gene transfection inhibits obliterative airway disease in rats. Ann Thorac Surg. 2003;75(4):1123–7.

    PubMed  Google Scholar 

  166. Konishi K, Inobe M, Yamada A, Murakami M, Todo S, Uede T. Combination treatment with FTY720 and CTLA4IgG preserves the respiratory epithelium and prevents obliterative disease in a murine airway model. J Heart Lung Transplant. 2002;21(6):692–700.

    PubMed  Google Scholar 

  167. Tikkanen JM, Lemstrom KB, Koskinen PK. Blockade of CD28/B7-2 costimulation inhibits experimental obliterative bronchiolitis in rat tracheal allografts: suppression of helper T cell type1-dominated immune response. Am J Respir Crit Care Med. 2002;165(5):724–9.

    PubMed  Google Scholar 

  168. KleinJan A, Willart MA, Kuipers H, Coyle AJ, Hoogsteden HC, Lambrecht BN. Inducible costimulator blockade prolongs airway luminal patency in a mouse model of obliterative bronchiolitis. Transplantation. 2008;86(10):1436–44.

    PubMed  Google Scholar 

  169. Rumbley CA, Silver SJ, Phillips SM. Dependence of murine obstructive airway disease on CD40 ligand. Transplantation. 2001;72(10):1616–25.

    PubMed  CAS  Google Scholar 

  170. Fernandez FG, McKane B, Marshbank S, Patterson GA, Mohanakumar T. Inhibition of obliterative airway disease development following heterotopic murine tracheal transplantation by costimulatory molecule blockade using anti-CD40 ligand alone or in combination with donor bone marrow. J Heart Lung Transplant. 2005;24(7 Suppl):S232–8.

    PubMed  Google Scholar 

  171. Shah PD, West EE, Whitlock AB, Orens JB, McDyer JF. CD154 deficiency uncouples allograft CD8+ T-cell effector function from proliferation and inhibits murine airway obliteration. Am J Transplant. 2009;9(12):2697–706.

    PubMed  CAS  Google Scholar 

  172. Naidu B, Krishnadasan B, Whyte RI, Warner RL, Ward PA, Mulligan MS. Regulatory role of IL-10 in experimental obliterative bronchiolitis in rats. Exp Mol Pathol. 2002;73(3):164–70.

    PubMed  CAS  Google Scholar 

  173. Shoji F, Yonemitsu Y, Okano S, Yoshino I, Nakagawa K, Nakashima Y, et al. Airway-directed gene transfer of interleukin-10 using recombinant Sendai virus effectively prevents post-transplant fibrous airway obliteration in mice. Gene Ther. 2003;10(3):213–8.

    PubMed  CAS  Google Scholar 

  174. Boehler A, Chamberlain D, Xing Z, Slutsky AS, Jordana M, Gauldie J, et al. Adenovirus-mediated interleukin-10 gene transfer inhibits post-transplant fibrous airway obliteration in an animal model of bronchiolitis obliterans. Hum Gene Ther. 1998;9(4):541–51.

    PubMed  CAS  Google Scholar 

  175. Hirayama S, Sato M, Liu M, Loisel-Meyer S, Yeung JC, Wagnetz D, et al. Local long-term expression of lentivirally delivered IL-10 in the lung attenuates obliteration of intrapulmonary allograft airways. Hum Gene Ther. 2011;22(11):1453–60.

    PubMed  CAS  Google Scholar 

  176. Belperio JA, Keane MP, Burdick MD, Lynch III JP, Xue YY, Li K, et al. Critical role for CXCR3 chemokine biology in the pathogenesis of bronchiolitis obliterans syndrome. J Immunol. 2002;169(2):1037–49.

    PubMed  CAS  Google Scholar 

  177. Agostini C, Calabrese F, Rea F, Facco M, Tosoni A, Loy M, et al. Cxcr3 and its ligand CXCL10 are expressed by inflammatory cells infiltrating lung allografts and mediate chemotaxis of T cells at sites of rejection. Am J Pathol. 2001;158(5):1703–11.

    PubMed  CAS  Google Scholar 

  178. Medoff BD, Wain JC, Seung E, Jackobek R, Means TK, Ginns LC, et al. CXCR3 and its ligands in a murine model of obliterative bronchiolitis: regulation and function. J Immunol. 2006;176(11):7087–95.

    PubMed  CAS  Google Scholar 

  179. Uchida O, Kajiwara N, Hayashi A, Miyajima K, Nagatsuka T, Hayashi H, et al. Met-RANTES ameliorates fibrous airway obliteration and decreases ERK expression in a murine model of bronchiolitis obliterans. Ann Thorac Cardiovasc Surg. 2007;13(2):82–6.

    PubMed  Google Scholar 

  180. Suga M, Maclean AA, Keshavjee S, Fischer S, Moreira JM, Liu M. RANTES plays an important role in the evolution of allograft transplant-induced fibrous airway obliteration. Am J Respir Crit Care Med. 2000;162(5):1940–8.

    PubMed  CAS  Google Scholar 

  181. Medoff BD, Seung E, Wain JC, Means TK, Campanella GS, Islam SA, et al. BLT1-mediated T cell trafficking is critical for rejection and obliterative bronchiolitis after lung transplantation. J Exp Med. 2005;202(1):97–110.

    PubMed  CAS  Google Scholar 

  182. Zhao Y, LaPar DJ, Steidle J, Emaminia A, Kron IL, Ailawadi G, et al. Adenosine signaling via the adenosine 2B receptor is involved in bronchiolitis obliterans development. J Heart Lung Transplant. 2010;29(12):1405–14.

    PubMed  Google Scholar 

  183. Lau CL, Zhao Y, Kron IL, Stoler MH, Laubach VE, Ailawadi G, et al. The role of adenosine A2A receptor signaling in bronchiolitis obliterans. Ann Thorac Surg. 2009;88(4):1071–8.

    PubMed  Google Scholar 

  184. Ohtsuka T, Changelian PS, Bouis D, Noon K, Harada H, Lama VN, et al. Ecto-5′-nucleotidase (CD73) attenuates allograft airway rejection through adenosine 2A receptor stimulation. J Immunol. 2010;185(2):1321–9.

    PubMed  CAS  Google Scholar 

  185. Kwun J, Hazinedaroglu SM, Schadde E, Kayaoglu HA, Fechner J, Hu HZ, et al. Unaltered graft survival and intragraft lymphocytes infiltration in the cardiac allograft of Cxcr3−/− mouse recipients. Am J Transplant. 2008;8(8):1593–603.

    PubMed  CAS  Google Scholar 

  186. Zerwes HG, Li J, Kovarik J, Streiff M, Hofmann M, Roth L, et al. The chemokine receptor Cxcr3 is not essential for acute cardiac allograft rejection in mice and rats. Am J Transplant. 2008;8(8):1604–13.

    PubMed  CAS  Google Scholar 

  187. Martinu T, Kinnier CV, Gowdy KM, Kelly FL, Snyder LD, Jiang D, et al. Innate immune activation potentiates alloimmune lung disease independent of chemokine (C-X-C motif) receptor 3. J Heart Lung Transplant. 2011;30(6):717–25.

    PubMed  Google Scholar 

  188. Mamessier E, Milhe F, Badier M, Thomas P, Magnan A, Reynaud-Gaubert M. Comparison of induced sputum and bronchoalveolar lavage in lung transplant recipients. J Heart Lung Transplant. 2006;25(5):523–32.

    PubMed  Google Scholar 

  189. Meloni F, Solari N, Miserere S, Morosini M, Cascina A, Klersy C, et al. Chemokine redundancy in BOS pathogenesis. A possible role also for the CC chemokines: MIP3-beta, MIP3-alpha, MDC and their specific receptors. Transpl Immunol. 2008;18(3):275–80.

    PubMed  CAS  Google Scholar 

  190. Krupnick AS, Lin X, Li W, Okazaki M, Lai J, Sugimoto S, et al. Orthotopic mouse lung transplantation as experimental methodology to study transplant and tumor biology. Nat Protoc. 2009;4(1):86–93.

    PubMed  CAS  Google Scholar 

  191. Okazaki M, Gelman AE, Tietjens JR, Ibricevic A, Kornfeld CG, Huang HJ, et al. Maintenance of airway epithelium in acutely rejected orthotopic vascularized mouse lung transplants. Am J Respir Cell Mol Biol. 2007;37(6):625–30.

    PubMed  CAS  Google Scholar 

  192. Fan L, Benson HL, Vittal R, Mickler EA, Presson R, Fisher AJ, et al. Neutralizing IL-17 prevents obliterative bronchiolitis in murine orthotopic lung transplantation. Am J Transplant. 2011;11(5):911–22.

    PubMed  CAS  Google Scholar 

  193. De Vleeschauwer S, Jungraithmayr W, Wauters S, Willems S, Rinaldi M, Vaneylen A, et al. Chronic rejection pathology after orthotopic lung transplantation in mice: the development of a murine BOS model and its drawbacks. PLoS One. 2012;7(1):e29802.

    PubMed  Google Scholar 

  194. Lendermon EA, Dood-o JM, Miller HL, Zhong Q, McDyer JF. T-bet deficiency in mouse orthotopic lung transplant. J Heart Lung Transplant. 2012;31(4S):S30 (published in abstract form).

    Google Scholar 

  195. Gowdy KM, Nugent JL, Martinu T, Potts E, Snyder LD, Foster WM, et al. Protective role of T-bet and Th1 cytokines in pulmonary graft-versus-host disease and peribronchiolar fibrosis. Am J Respir Cell Mol Biol. 2012;46(2):249–56.

    PubMed  CAS  Google Scholar 

  196. Vanaudenaerde BM, Dupont LJ, Wuyts WA, Verbeken EK, Meyts I, Bullens DM, et al. The role of interleukin-17 during acute rejection after lung transplantation. Eur Respir J. 2006;27(4):779–87.

    PubMed  CAS  Google Scholar 

  197. Ng YH, Chalasani G. Role of secondary lymphoid tissues in primary and memory T-cell responses to a transplanted organ. Transplant Rev (Orlando). 2010;24(1):32–41.

    Google Scholar 

  198. Wang J, Dong Y, Sun JZ, Taylor RT, Guo C, Alegre ML, et al. Donor lymphoid organs are a major site of alloreactive T-cell priming following intestinal transplantation. Am J Transplant. 2006;6(11):2563–71.

    PubMed  CAS  Google Scholar 

  199. West EE, Lavoie TL, Orens JB, Chen ES, Ye SQ, Finkelman FD, et al. Pluripotent allospecific CD8+ effector T cells traffic to lung in murine obliterative airway disease. Am J Respir Cell Mol Biol. 2006;34(1):108–18.

    PubMed  CAS  Google Scholar 

  200. Dutly AE, Andrade CF, Verkaik R, Kugathasan L, Trogadis J, Liu M, et al. A novel model for post-transplant obliterative airway disease reveals angiogenesis from the pulmonary circulation. Am J Transplant. 2005;5(2):248–54.

    PubMed  Google Scholar 

  201. Sato M, Liu M, Anraku M, Ogura T, D’Cruz G, Alman BA, et al. Allograft airway fibrosis in the pulmonary milieu: a disorder of tissue remodeling. Am J Transplant. 2008;8(3):517–28.

    PubMed  CAS  Google Scholar 

  202. Sato M, Hirayama S, Hwang DM, Lara-Guerra H, Wagnetz D, Waddell TK, et al. The role of intrapulmonary de novo lymphoid tissue in obliterative bronchiolitis after lung transplantation. J Immunol. 2009;182(11):7307–16.

    PubMed  CAS  Google Scholar 

  203. Shilling RA, Wilkes DS. Immunobiology of chronic lung allograft dysfunction: new insights from the bench and beyond. Am J Transplant. 2009;9(8):1714–8.

    PubMed  CAS  Google Scholar 

  204. Lee AG, Wagner FM, Giaid A, Chen MF, Hamid Q, Serrick C, et al. Immunohistochemical characterization of inflammatory and proliferative events during chronic rejection in rat lung allografts. Transplantation. 1997;64(3):465–71.

    PubMed  CAS  Google Scholar 

  205. Hirt SW, You XM, Moller F, Boeke K, Starke M, Spranger U, et al. Development of obliterative bronchiolitis after allogeneic rat lung transplantation: implication of acute rejection and the time point of treatment. J Heart Lung Transplant. 1999;18(6):542–8.

    PubMed  CAS  Google Scholar 

  206. Jungraithmayr W, Vogt P, Inci I, Hillinger S, Arni S, Korom S, et al. A model of chronic lung allograft rejection in the rat. Eur Respir J. 2010;35(6):1354–63.

    PubMed  CAS  Google Scholar 

  207. von Suesskind-Schwendi M, Brunner E, Hirt SW, Diez C, Ruemmele P, Puehler T, et al. Suppression of bronchiolitis obliterans in allogeneic rat lung transplantation—effectiveness of everolimus. Exp Toxicol Pathol. 2013;65(4):383–9.

    Google Scholar 

  208. von Suesskind-Schwendi M, Hirt SW, Diez C, Ruemmele P, Puehler T, Schmid C, et al. Impact of the severity of acute rejection in the early phase after rat lung transplantation on the effectiveness of mycophenolate mofetil to treat chronic allograft rejection. Eur J Cardiothorac Surg. 2012;42(1):142–8.

    Google Scholar 

  209. Uusitalo MH, Salminen US, Ikonen TS, Taskinen EI, Lautenschlager IT, Maasilta PK, et al. Alloimmune injury preceding airway obliteration in porcine heterotopic lung implants: a histologic and immunohistologic study. Transplantation. 1999;68(7):970–5.

    PubMed  CAS  Google Scholar 

  210. Salminen US, Ikonen T, Uusitalo M, Taskinen E, Korpela A, Maasilta P, et al. Obliterative lesions in small airways in an immunosuppressed porcine heterotopic bronchial allograft model. Transpl Int. 1998;11 Suppl 1:S515–8.

    PubMed  Google Scholar 

  211. Salminen US, Alho H, Taskinen E, Maasilta P, Ikonen T, Harjula AL. Effects of rapamycin analogue SDZ RAD on obliterative lesions in a porcine heterotopic bronchial allograft model. Transplant Proc. 1998;30(5):2204–5.

    PubMed  CAS  Google Scholar 

  212. al-Dossari GA, Kshettry VR, Jessurun J, Bolman RM III. Experimental large-animal model of obliterative bronchiolitis after lung transplantation. Ann Thorac Surg. 1994;58(1):34–9; discussion 9–40.

    Google Scholar 

  213. Allan JS, Wain JC, Schwarze ML, Houser SL, Benjamin LC, Madsen JC, et al. Modeling chronic lung allograft rejection in miniature swine. Transplantation. 2002;73(3):447–53.

    PubMed  Google Scholar 

  214. Shoji T, Muniappan A, Guenther DA, Wain JC, Houser SL, Hoerbelt R, et al. Long-term acceptance of porcine pulmonary allografts without chronic rejection. Transplant Proc. 2005;37(1):72–4.

    PubMed  CAS  Google Scholar 

  215. Shoji T, Sahara H, Muniappan A, Guenther DA, Houser SL, Pujara AC, et al. An MHC class II disparity raises the threshold for tolerance induction in pulmonary allografts in miniature swine. Transplant Proc. 2006;38(10):3268–70.

    PubMed  CAS  Google Scholar 

  216. Xue J, Zhu X, George MP, Myerburg MM, Stoner MW, Pilewski JW, et al. A human-mouse chimeric model of obliterative bronchiolitis after lung transplantation. Am J Pathol. 2011;179(2):745–53.

    PubMed  Google Scholar 

  217. Panoskaltsis-Mortari A, Tram KV, Price AP, Wendt CH, Blazar BR. A new murine model for bronchiolitis obliterans post-bone marrow transplant. Am J Respir Crit Care Med. 2007;176(7):713–23.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank Drs. Kymberly M. Gowdy, Scott M. Palmer, and Rebecca A. Shilling for their critical feedback on this manuscript, as well as Dr. David N. Howell for providing the OB pathology photomicrographs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tereza Martinu M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Martinu, T. (2013). The Role of Alloimmune T Cell Responses in Obliterative Bronchiolitis. In: Meyer, K., Glanville, A. (eds) Bronchiolitis Obliterans Syndrome in Lung Transplantation. Respiratory Medicine, vol 8. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-7636-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7636-8_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4614-7635-1

  • Online ISBN: 978-1-4614-7636-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics