Skip to main content

Adsorption Capacity, Towards Carbon Dioxide, of a Chemically Activated Coal

  • Chapter
  • First Online:
Causes, Impacts and Solutions to Global Warming

Abstract

The chemical activation of a low-rank coal by alkaline hydroxides and carbonates, successively, carries the formation of activated carbons characterized by a very developed porous texture and highly microporous. Indeed, the microporous volume can reach the value of 0.63 cm3 g−1 and the pore size distribution, deduced from the technique of immersionnal calorimetry into liquids of increasing molecular dimensions, shows that the average diameter of these pores is of the order of 0.7 nm. This distribution is perfectly suitable to the adsorption of the carbon dioxide at room temperature so that the adsorption capacities, at this temperature, of the prepared activated charcoals towards this greenhouse gas are very important (0.68 g/g, i.e., 0.68 ton/ton). Otherwise, the obtained results show that the alkaline hydroxides are more effective than the corresponding carbonates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CO:

Carbon monoxide

CO2 :

Carbon dioxide

c:

Constant

E0 :

Characteristic energy, J/mol

GHG:

Greenhouse gas

HCl:

Hydrochloric acid

hi :

Specific enthalpy of immersion, mJ/m2

K2CO3 :

Potassium carbonate

KOH:

Potassium hydroxide

Lm:

Minimal width of the pore, nm

Me:

Low-rank coal

N2 :

Nitrogen gas

ppm:

Parts per million

\({\mathrm{ S}}_{{\mathrm{ CO}}_2} \) :

Dubinin and Radushkevich (DR) apparent specific area, m2/g

Se:

External surface, m2/g

\( {\mathrm{ S}}_{{\mathrm{ N}}_2} \) :

Brunauer, Emmett, and Teller (BET) specific area, m2/g

Tc:

Critical temperature, °C

TPD:

Temperature-programmed desorption

Vm:

Molar volume, cm3/mol

W(L):

Micropore volume filled, cm3/g

W0 :

Total micropore volume, cm3/g

α:

Thermal expansion coefficient, K−1

β:

Affinity coefficient

-ΔH:

Enthalpy of immersion, J/g

ϕ:

Pore diameter, nm

References

  1. Yun CH, Park YH, Park CR (2001) Effects of pre-carbonization on porosity development of activated carbons from rice straw. Carbon 39:559–567

    Article  Google Scholar 

  2. Jagtoyen M, Thwaites M, Stencel J, McEnaney B, Derbyshire F (1992) Adsorbent carbon synthesis from coals by phosphoric acid activation. Carbon 30(7):1089–1096

    Article  Google Scholar 

  3. Hayashi J, Kazehaya A, Muroyama K, Watkinson AP (2000) Preparation of activated carbon from lignin by chemical activation. Carbon 38:1873–1878

    Article  Google Scholar 

  4. Suarez-Garcia F, Martinez-Alonso A, Tascon JMD (2004) Activated carbon fibers from Nomex by chemical activation with phosphoric acid. Carbon 42:1419–1426

    Article  Google Scholar 

  5. Molina-Sabio M, Rodriguez-Reinoso F (2004) Role of chemical activation in the development of carbon porosity. Colloid Surface A 241:15–25

    Article  Google Scholar 

  6. Gomez-Serrano V, Cuerda-Correa EM, Fernandez-Gonzalez MC (2005) Preparation of activated carbons from chestnut wood by phosphoric acid-chemical activation; study of microporosity and fractal dimension. Mater Lett 59:846–853

    Article  Google Scholar 

  7. Marsh H, Yan DS, O’Grady TM, Wennerberg A (1984) Formation of active carbons from cokes using potassium hydroxide. Carbon 22(6):603–611

    Article  Google Scholar 

  8. Ehrburger P, Addoun A, Addoun F, Donnet JB (1986) Carbonization of coals in the presence of alkaline hydroxides and carbonates: formation of activated carbons. Fuel 65(10):1447–1449

    Article  Google Scholar 

  9. Verheyen V, Rathbone R, Jagtoyen M, Derbyshire F (1995) Activated extrutades by oxidation and KOH activation of bituminous coal. Carbon 33(6):763–772

    Article  Google Scholar 

  10. Lillo-Rodenas MA, Lozano-Castello D, Cazorla-Amoros D, Linares-Solano A (2001) Preparation of activated carbons from Spanish anthracite. II. Activation by NaOH. Carbon 39:751–759

    Article  Google Scholar 

  11. Addoun A, Dentzer J, Ehrburger P (2002) Porosity of carbons obtained by chemical activation: effect of the nature of the alkaline carbonates. Carbon 40:1140–1143

    Article  Google Scholar 

  12. Hammond GP (2000) Energy, environment and sustainable development: a UK perspective. Trans I Chem E B Process Safe Environ Protect 78:304–323

    Article  Google Scholar 

  13. Eshel G, Martin PA (2006) Diet, energy and global warming. Earth Interact 10:1

    Article  Google Scholar 

  14. Socolow RH (2005) Can we bury global warming? Sci Am 293:49–55

    Article  Google Scholar 

  15. Metz B, Davidson O, Bosch PR, Dave R, Meyer LA (eds) (2007) Climate change: mitigation of climate change. Cambridge University Press, Cambridge

    Google Scholar 

  16. Energy Information Administration (2009) Office of integrated analysis and forecasting. U.S. Department of Energy, International Energy Outlook, EIA, Washington, DC

    Google Scholar 

  17. Wang J, Chameides B (2007) Are humans responsible for global warming? Review of the facts. Environmental Defence, New York

    Google Scholar 

  18. Stoeckli HF, Kraehenbuehl F (1984) The external surface of microporous carbons, derived from adsorption and immersion studies. Carbon 22(3):297–299

    Article  Google Scholar 

  19. Kipling JJ, Wilson RB (1960) Adsorption properties of polymer carbons. Part1. comparative data. Trans Faraday Soc 56:557–561

    Article  Google Scholar 

  20. Kraehenbuehl F, Stoeckli HF, Addoun A, Ehrburger P, Donnet JB (1986) The use of immersion calorimetry in the determination of micropore distribution of carbons in the course of activation. Carbon 24(4):483–488

    Article  Google Scholar 

  21. Adams LB, Boucher EA, Everett DH (1970) Adsorption of organic vapors by sara-fibre and powders. Carbon 8:761–772

    Article  Google Scholar 

  22. Ainscough AN, Dolimore D, Heal GR (1973) The adsorption characteristics of polyvinylidene chloride carbon. Carbon 11:189–197

    Article  Google Scholar 

  23. Garido J, Linares-Solano A, Martin Martinez JM, Molina-Sabio M, Rodriguez-Reinoso F, Torregrosa R (1987) Use of nitrogen vs. carbon dioxide in the characterization of activated carbons. Langmuir 3(1):76–81

    Article  Google Scholar 

  24. Stoeckli HF, Kraehenbuehl F (1981) The enthalpies of immersion of active carbons, in relation to the Dubinin theory for the volume filling of micropores. Carbon 19:353–356

    Article  Google Scholar 

  25. Stoeckli HF (1993) Dubinin’s theory for the volume filling of micropores: an historical approach. Adsorp Sci Technol 10:3–16

    Google Scholar 

  26. Marsh H, Wynne-Jones WFK (1964) The surface properties of carbon. I. The effect of activated diffusion in the determination of surface area. Carbon 1:269–279

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelhamid Addoun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Addoun, A., Temdrara, L., Khelifi, A. (2013). Adsorption Capacity, Towards Carbon Dioxide, of a Chemically Activated Coal. In: Dincer, I., Colpan, C., Kadioglu, F. (eds) Causes, Impacts and Solutions to Global Warming. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7588-0_54

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7588-0_54

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7587-3

  • Online ISBN: 978-1-4614-7588-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics