Skip to main content

Effects of Lifestyle (Diet, Plant Sterols, Exercise) and Glycemic Control on Lipoproteins in Diabetes

  • Chapter
  • First Online:
Lipoproteins in Diabetes Mellitus

Part of the book series: Contemporary Diabetes ((CDI))

  • 1736 Accesses

Abstract

Although the data are limited, it is reasonable to state that people with diabetes mellitus behave in the same way to lipid modulating dietary components as people without diabetes. Thus saturated fat elevates and polyunsaturated fat reduces LDL-cholesterol levels. Psyllium and oat bran reduce LDL-cholesterol levels. Low-glycemic-index diets have no effect on plasma lipids, but fish oil lowers circulating triglyceride levels, as do exercise, weight loss, and improved glycemic control. HDL-cholesterol levels are most consistently increased by weight loss. Dietary cholesterol appears to be associated with coronary heart disease in people with diabetes, but cholesterol-feeding studies have not been performed in this group. Although theoretically plant sterols and stanols should be less effective at lowering LDL-cholesterol in people with diabetes, because of lower cholesterol absorption, this does not appear to be true. Modest alcohol intake appears to reduce the incidence of diabetes but does not appear to protect people with diabetes from heart disease. There are no data on strokes or peripheral vascular disease (PVD). There appear to be no alcohol intervention studies in people with diabetes. Fructose intake of less than 20 % of energy improves glycemic control without adversely affecting lipid levels.

This chapter will review the effects of various lifestyle factors, including diet, weight loss, smoking, and exercise, and various dietary components on the lipoprotein profile in people with diabetes mellitus.

Lipid Conversion Units:

To convert mmol/L of cholesterol to mg/dL, multiply by 38.8, and to convert mmol/L of triglyceride to mg/dL, multiply by 88.5.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADA:

American Diabetes Association

Apo:

Apolipoprotein

HDL:

High-density lipoprotein

LDL:

Low-density lipoprotein

P:S:

Polyunsaturated to saturated fat ratio

TG:

Triglycerides

VLDL:

Very low density lipoprotein

References

  1. Mensink RP, Zock PL, Kester AD, Katan MB. Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials. Am J Clin Nutr. 2003;77(5):1146–55.

    CAS  PubMed  Google Scholar 

  2. Simpson RW, Mann JI, Eaton J, Moore RA, Carter R, Hockaday TDR. Improved glucose control in maturity-onset diabetes treated with high-carbohydrate-modified fat diet. BMJ. 1979;1:1753–6.

    Article  CAS  PubMed  Google Scholar 

  3. Howard-Williams J, Patel P, Jelfs R, et al. Polyunsaturated fatty acids and diabetic retinopathy. Br J Ophthalmol. 1985;69:15–8.

    Article  CAS  PubMed  Google Scholar 

  4. Storm H, Thomsen C, Pedersen E, Rasmussen O, Christiansen C, Hermansen K. Comparison of a carbohydrate-rich diet and diets rich in stearic or palmitic acid in NIDDM patients. Effects on lipids, glycemic control, and diurnal blood pressure. Diabetes Care. 1997;20(12):1807–13.

    Article  CAS  PubMed  Google Scholar 

  5. Christiansen E, Schneider S, Palmvig B, Tauber-Lassen E, Pedersen O. Intake of a diet high in trans monounsaturated fatty acids or saturated fatty acids. Effects on postprandial insulinemia and glycemia in obese patients with NIDDM. Diabetes Care. 1997;20(5):881–7.

    Article  CAS  PubMed  Google Scholar 

  6. Abbott WG, Swinburn B, Ruotolo G, Hara H, Patti L, Harper I, Grundy SM, Howard BV. Effect of a high-carbohydrate, low-saturated-fat diet on apolipoprotein B and triglyceride metabolism in Pima Indians. J Clin Invest. 1990;86(2):642–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Heine RJ, Mulder C, Popp-Snijders C, van der Meer J, van der Veen EA. Linoleic-acid-enriched diet: long-term effects on serum lipoprotein and apolipoprotein concentrations and insulin sensitivity in noninsulin-dependent diabetic patients. Am J Clin Nutr. 1989;49(3):448–56.

    CAS  PubMed  Google Scholar 

  8. Heilbronn LK, Noakes M, Clifton PM. Effect of energy restriction, weight loss, and diet composition on plasma lipids and glucose in patients with type 2 diabetes. Diabetes Care. 1999;22(6):889–95.

    Article  CAS  PubMed  Google Scholar 

  9. Nield L, Moore HJ, Hooper L, Cruickshank JK, Vyas A, Whittaker V, Summerbell CD. Dietary advice for treatment of type 2 diabetes mellitus in adults. Cochrane Database Syst Rev. 2007;3, CD004097.

    PubMed  Google Scholar 

  10. Garg A. High-monounsaturated-fat diets for patients with diabetes mellitus: a meta-analysis. Am J Clin Nutr. 1998;67(3 Suppl):577S–82.

    CAS  PubMed  Google Scholar 

  11. Kodama S, Saito K, Tanaka S, Maki M, Yachi Y, Sato M, Sugawara A, Totsuka K, Shimano H, Ohashi Y, Yamada N, Sone H. Influence of fat and carbohydrate proportions on the metabolic profile in patients with type 2 diabetes: a meta-analysis. Diabetes Care. 2009;32(5):959–65.

    Article  CAS  PubMed  Google Scholar 

  12. Krauss RM, Blanche PJ, Rawlings RS, Fernstrom HS, Williams PT. Separate effects of reduced carbohydrate intake and weight loss on atherogenic dyslipidemia. Am J Clin Nutr. 2006;83(5):1025–31.

    CAS  PubMed  Google Scholar 

  13. Mozaffarian D, Micha R, Wallace S. Effects on coronary heart disease of increasing polyunsaturated fat in place of saturated fat: a systematic review and meta-analysis of randomized controlled trials. PLoS Med. 2010;7(3):e1000252. Review.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Thomsen C, Rasmussen OW, Hansen KW, Vesterlund M, Hermansen K. Comparison of the effects on the diurnal blood pressure, glucose, and lipid levels of a diet rich in monounsaturated fatty acids with a diet rich in polyunsaturated fatty acids in type 2 diabetic subjects. Diabet Med. 1995;12(7):600–6.

    Article  CAS  PubMed  Google Scholar 

  15. Jönsson T, Granfeldt Y, Ahrén B, Branell UC, Pålsson G, Hansson A, Söderström M, Lindeberg S. Beneficial effects of a Paleolithic diet on cardiovascular risk factors in type 2 diabetes: a randomized cross-over pilot study. Cardiovasc Diabetol. 2009;8:35.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Tanasescu M, Cho E, Manson JE, Hu FB. Dietary fat and cholesterol and the risk of cardiovascular disease among women with type 2 diabetes. Am J Clin Nutr. 2004;79:999–1005.

    CAS  PubMed  Google Scholar 

  17. Hartweg J, Perera R, Montori V, Dinneen S, Neil HA, Farmer A. Omega-3 polyunsaturated fatty acids (PUFA) for type 2 diabetes mellitus. Cochrane Database Syst Rev. 2008;1, CD003205.

    PubMed  Google Scholar 

  18. Weggemans RM, Zock PL, Katan MB. Dietary cholesterol from eggs increases the ratio of total cholesterol to high-density lipoprotein cholesterol in humans: a meta-analysis. Am J Clin Nutr. 2001;73(5):885–91.

    CAS  PubMed  Google Scholar 

  19. Reaven GM. Insulin resistance, dietary cholesterol, and cholesterol concentration in postmenopausal women. Metabolism. 2001;50:594–7.

    Article  CAS  PubMed  Google Scholar 

  20. Tannock LR, O’Brien KD, Knopp RH, et al. Cholesterol feeding increases C-reactive protein and serum amyloid A levels in lean insulin-sensitive subjects. Circulation. 2005;111:3058–62.

    Article  CAS  PubMed  Google Scholar 

  21. Gylling H, Hallikainen M, Pihlajamäki J, Simonen P, Kuusisto J, Laakso M, Miettinen TA. Insulin sensitivity regulates cholesterol metabolism to a greater extent than obesity: lessons from the METSIM Study. J Lipid Res. 2010;51(8):2422–7. Epub 2010 May 1.

    Article  CAS  PubMed  Google Scholar 

  22. Romano G, Tilly-Kiesi MK, Patti L, et al. Effects of dietary cholesterol on plasma lipoproteins and their subclasses in IDDM patients. Diabetologia. 1998;41:193–200.

    Article  CAS  PubMed  Google Scholar 

  23. Gylling H, Tuominen JA, Koivisto VA, Miettinen TA. Cholesterol metabolism in type 1 diabetes. Diabetes. 2004;53(9):2217–22.

    Article  CAS  PubMed  Google Scholar 

  24. Miettinen TA, Gylling H, Tuominen J, Simonen P, Koivisto V. Low synthesis and high absorption of cholesterol characterize type 1 diabetes. Diabetes Care. 2004;27(1):53–8.

    Article  CAS  PubMed  Google Scholar 

  25. Simonen PP, Gylling HK, Miettinen TA. Diabetes contributes to cholesterol metabolism regardless of obesity. Diabetes Care. 2002;25(9):1511–5.

    Article  CAS  PubMed  Google Scholar 

  26. Simonen P, Gylling H, Howard AN, Miettinen TA. Introducing a new component of the metabolic syndrome: low cholesterol absorption. Am J Clin Nutr. 2000;72:82–8.

    CAS  PubMed  Google Scholar 

  27. Lau VW, Journo M, Jones PJ. Plant sterols are efficacious in lowering plasma LDL and non-HDL cholesterol in hypercholesterolemic type 2 diabetic and nondiabetic persons. Am J Clin Nutr. 2005;81(6):1351–8.

    CAS  PubMed  Google Scholar 

  28. Abumweis SS, Barake R, Jones PJ. Plant sterols/stanols as cholesterol lowering agents: a meta-analysis of randomized controlled trials. Food Nutr Res. 2008;52. doi: 10.3402/fnr.v52i0.1811.

  29. Hallikainen M, Kurl S, Laakso M, Miettinen TA, Gylling H. Plant stanol esters lower LDL cholesterol level in statin-treated subjects with type 1 diabetes by interfering the absorption and synthesis of cholesterol. Atherosclerosis. 2011;217(2):473–8. Epub 2011 Apr 5.

    Article  CAS  PubMed  Google Scholar 

  30. Hallikainen M, Lyyra-Laitinen T, Laitinen T, Moilanen L, Miettinen TA, Gylling H. Effects of plant stanol esters on serum cholesterol concentrations, relative markers of cholesterol metabolism and endothelial function in type 1 diabetes. Atherosclerosis. 2008;199(2):432–9. Epub 2007 Dec 11.

    Article  CAS  PubMed  Google Scholar 

  31. Hu FB, Stampfer MJ, Rimm EB, et al. A prospective study of egg consumption and risk of cardiovascular disease in men and women. JAMA. 1999;281:1387–94.

    Article  CAS  PubMed  Google Scholar 

  32. Djousse L, Gaziano JM. Egg consumption in relation to cardiovascular disease and mortality: the physicians’ health study. Am J Clin Nutr. 2008;87:964–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Liese AD, Weis KE, Schulz M, Tooze JA. Food intake patterns associated with incident type 2 diabetes: the insulin resistance atherosclerosis study. Diabetes Care. 2009;32:263–8.

    Article  CAS  PubMed  Google Scholar 

  34. Djousse L, Gaziano JM, Buring JE, Lee IM. Egg consumption and risk of type 2 diabetes in men and women. Diabetes Care. 2009;32:295–300.

    Article  PubMed  Google Scholar 

  35. Rivellese A, Riccardi G, Giacco A, Pacioni D, Genovese S, Mattioli PL, Mancini M. Effect of dietary fibre on glucose control and serum lipoproteins in diabetic patients. Lancet. 1980;2(8192):447–50.

    Article  CAS  PubMed  Google Scholar 

  36. Karlström B, Vessby B, Asp NG, Boberg M, Gustafsson IB, Lithell H, Werner I. Effects of an increased content of cereal fibre in the diet of type 2 (non-insulin-dependent) diabetic patients. Diabetologia. 1984;26(4):272–7.

    Article  PubMed  Google Scholar 

  37. Riccardi G, Rivellese A, Pacioni D, Genovese S, Mastranzo P, Mancini M. Separate influence of dietary carbohydrate and fibre on the metabolic control in diabetes. Diabetologia. 1984;26(2):116–21.

    Article  CAS  PubMed  Google Scholar 

  38. Lousley SE, Jones DB, Slaughter P, Carter RD, Jelfs R, Mann JI. High carbohydrate-high fibre diets in poorly controlled diabetes. Diabet Med. 1984;1(1):21–5.

    Article  CAS  PubMed  Google Scholar 

  39. Scott AR, Attenborough Y, Peacock I, Fletcher E, Jeffcoate WJ, Tattersall RB. Comparison of high fibre diets, basal insulin supplements, and flexible insulin treatment for non-insulin dependent (type II) diabetics poorly controlled with sulphonylureas. BMJ. 1988;297:707–10.

    Article  CAS  PubMed  Google Scholar 

  40. Hollenbeck CB, Coulston AM, Reaven M. To what extent does increased dietary fiber improve glucose and lipid metabolism in patients with noninsulin-dependent diabetes mellitus (NIDDM). Am J Clin Nutr. 1986;43:16–24.

    CAS  PubMed  Google Scholar 

  41. Beattie VA, Edwards CA, Hosker JP, Cullen DR, Ward JD, Read NW. Does adding fibre to a low energy, high carbohydrate, low fat diet confer any benefit to the management of newly diagnosed overweight type II diabetics? Br Med J (Clin Res Ed). 1988;296(6630):1147–9.

    Article  CAS  Google Scholar 

  42. Chandelier M, Garg A, Lutjohann D, von Bergmann K, Grundy SM, Brinkley LJ. Beneficial effects of high dietary fiber intake in patients with type 2 diabetes mellitus. N Engl J Med. 2000;342(19):1392–8.

    Article  Google Scholar 

  43. Jenkins DJ, Kendall CW, McKeown-Eyssen G, Josse RG, Silverberg J, Booth GL, Vidgen E, Josse AR, Nguyen TH, Corrigan S, Banach MS, Ares S, Mitchell S, Emam A, Augustin LS, Parker TL, Leiter LA. Effect of a low-glycemic index or a high-cereal fiber diet on type 2 diabetes: a randomized trial. JAMA. 2008;300(23):2742–53.

    Article  CAS  PubMed  Google Scholar 

  44. Jenkins DJ, Kendall CW, Augustin LS, Martini MC, Axelsen M, Faulkner D, Vidgen E, Parker T, Lau H, Connelly PW, Teitel J, Singer W, Vandenbroucke AC, Leiter LA, Josse RG. Effect of wheat bran on glycemic control and risk factors for cardiovascular disease in type 2 diabetes. Diabetes Care. 2002;25(9):1522–8.

    Article  CAS  PubMed  Google Scholar 

  45. Itsiopoulos C, Brazionis L, Kaimakamis M, Cameron M, Best JD, O'Dea K, Rowley K. Can the Mediterranean diet lower HbA1c in type 2 diabetes? Results from a randomized cross-over study. Nutr Metab Cardiovasc Dis. 2011;21(9):740–7. Epub 2010 Jul 31.

    Article  CAS  PubMed  Google Scholar 

  46. Sartore G, Reitano R, Barison A, Magnanini P, Cosma C, Burlina S, Manzato E, Fedele D, Lapolla A. The effects of psyllium on lipoproteins in type II diabetic patients. Eur J Clin Nutr. 2009;63(10):1269–71. Epub 2009 Jul 22.

    Article  CAS  PubMed  Google Scholar 

  47. Rodriguez-Moran M, Guerrero-Romero F, Lazcano-Burciaga GJ. Lipid- and glucose-lowering efficacy of Plantago Psyllium in type II diabetes. J Diabetes Complications. 1998;12:273–8.

    Article  CAS  PubMed  Google Scholar 

  48. Anderson JW, Allgood LD, Turner J, Oeltgen PR, Daggy BP. Effects of psyllium on glucose and serum lipid responses in men with type 2 diabetes and hypercholesterolemia. Am J Clin Nutr. 1999;70(4):466–73.

    CAS  PubMed  Google Scholar 

  49. Sierra M, García JJ, Fernández N, Diez MJ, Calle AP. Therapeutic effects of psyllium in type 2 diabetic patients. Eur J Clin Nutr. 2002;56(9):830–42.

    Article  CAS  PubMed  Google Scholar 

  50. Pick ME, Hawrysh ZJ, Gee MI, Toth E, Garg ML, Hardin RT. Oat bran concentrate bread products improve long-term control of diabetes: a pilot study. J Am Diet Assoc. 1996;96(12):1254–61.

    Article  CAS  PubMed  Google Scholar 

  51. Cheng HH, Huang HY, Chen YY, Huang CL, Chang CJ, Chen HL, Lai MH. Ameliorative effects of stabilized rice bran on type 2 diabetes patients. Ann Nutr Metab. 2010;56(1):45–51. Epub 2009 Dec 15.

    Article  CAS  PubMed  Google Scholar 

  52. Uusitupa M, Siitonen O, Savolainen K, Silvasti M, Penttilä I, Parviainen M. Metabolic and nutritional effects of long-term use of guar gum in the treatment of noninsulin-dependent diabetes of poor metabolic control. Am J Clin Nutr. 1989;49(2):345–51.

    CAS  PubMed  Google Scholar 

  53. Lalor BC, Bhatnagar D, Winocour PH, Ishola M, Arrol S, Brading M, Durrington PN. Placebo-controlled trial of the effects of guar gum and metformin on fasting blood glucose and serum lipids in obese, type 2 diabetic patients. Diabet Med. 1990;7(3):242–5.

    Article  CAS  PubMed  Google Scholar 

  54. Vuorinen-Markkola H, Sinisalo M, Koivisto VA. Guar gum in insulin-dependent diabetes: effects on glycemic control and serum lipoproteins. Am J Clin Nutr. 1992;56(6):1056–60.

    CAS  PubMed  Google Scholar 

  55. Anderson JW, Allgood LD, Lawrence A, Altringer LA, Jerdack GR, Hengehold DA, et al. Cholesterol-lowering effects of psyllium intake adjunctive to diet therapy in men and women with hypercholesterolemia: meta-analysis of 8 controlled trials. Am J Clin Nutr. 2000;71:472–9.

    CAS  PubMed  Google Scholar 

  56. Opperman AM, Venter CS, Oosthuizen W, Thompson RL, Vorster HH. Meta-analysis of the health effects of using the glycaemic index in meal-planning. Br J Nutr. 2004;92(3):367–81.

    Article  CAS  PubMed  Google Scholar 

  57. Wolever TM, Gibbs AL, Mehling C, Chiasson JL, Connelly PW, Josse RG, Leiter LA, Maheux P, Rabasa-Lhoret R, Rodger NW, Ryan EA. The Canadian Trial of Carbohydrates in Diabetes (CCD), a 1-y controlled trial of low-glycemic-index dietary carbohydrate in type 2 diabetes: no effect on glycated hemoglobin but reduction in C-reactive protein. Am J Clin Nutr. 2008;87(1):114–25.

    CAS  PubMed  Google Scholar 

  58. Van Dam RM, Visscher AWJ, Feskens EJM, Verhoef P, Kromhout D. Dietary glycemic index in relation to metabolic risk factors and incidence of coronary heart disease: the Zutphen Elderly Study. Eur J Clin Nutr. 2000;54:729–31.

    Google Scholar 

  59. Buyken AE, Toeller M, Heitkamp G, Karamaros B, Rottiers R, Muggeo M, Fuller J, The EURODIAB IDDM Complications Study Group. Glycemic index in the diet of European outpatients with type 1 diabetes: relations to glycated hemoglobin and serum lipids. Am J Clin Nutr. 2001;73:574–81.

    CAS  PubMed  Google Scholar 

  60. Frost G, Leeds AA, Doré CJ, Madeiros S, Brading S, Dornhorst A. Glycaemic index as a determinant of serum HDL-cholesterol concentration. Lancet. 1999;353(9158):1045–8.

    Article  CAS  PubMed  Google Scholar 

  61. Ford ES, Liu S. Glycemic index and serum high-density lipoprotein cholesterol concentration among us adults. Arch Intern Med. 2001;161(4):572–6.

    Article  CAS  PubMed  Google Scholar 

  62. Gannon MC, Nuttall FQ, Westphal SA, Fang S, Ercan-Fang N. Acute metabolic response to high-carbohydrate, high-starch meals compared with moderate-carbohydrate, low-starch meals in subjects with type 2 diabetes. Diabetes Care. 1998;21(10):1619–26.

    Article  CAS  PubMed  Google Scholar 

  63. Osei K, Bossetti B. Dietary fructose as a natural sweetener in poorly controlled type 2 diabetes: a 12 month crossover study of effects on glucose, lipoprotein, and apolipoprotein metabolism. Diabet Med. 1989;6:506–11.

    Article  CAS  PubMed  Google Scholar 

  64. Osei K, Falko J, Bossetti BM, Holland GC. Metabolic effects of fructose as a natural sweetener in the physiologic meals of ambulatory obese patients with type II diabetes. Am J Med. 1987;83(2):249–55.

    Article  CAS  PubMed  Google Scholar 

  65. Grigoresco C, Rizkalla SW, Halfon P, Bornet F, Fontvielle AM, Bros M, Dauchy F, Tchobroutsky G, Slama G. Lack of detectable deleterious effects on metabolic control of daily fructose ingestion for 2 mo in NIDDM patients. Diabetes Care. 1988;11:546–50.

    Article  CAS  PubMed  Google Scholar 

  66. Anderson JW, Story LJ, Zettwoch NC, Gustafson NJ, Jefferson BS. Metabolic effects of fructose supplementation in diabetic individuals. Diabetes Care. 1989;12:337–44.

    Article  CAS  PubMed  Google Scholar 

  67. McAteer EJ, O'Reilly G, Hadden DR. The effects of one month high fructose intake on plasma glucose and lipid levels in non-insulin-dependent diabetes. Diabet Med. 1987;4(1):62–4.

    Article  CAS  PubMed  Google Scholar 

  68. Thorburn AW, Crapo PA, Beltz WF, Wallace P, Witztum JL, Henry RR. Lipid metabolism in non-insulin-dependent diabetes: effects of long-term treatment with fructose-supplemented mixed meals. Am J Clin Nutr. 1989;50:1015–22.

    CAS  PubMed  Google Scholar 

  69. Crapo PA, Kolterman OG, Henry RR. Metabolic consequence of two-week fructose feeding in diabetic subjects. Diabetes Care. 1986;9:111–9.

    Article  CAS  PubMed  Google Scholar 

  70. Bantle JP, Swanson JE, Thomas W, Laine DC. Metabolic effects of dietary fructose in diabetic subjects. Diabetes Care. 1992;15:1468–76.

    Article  CAS  PubMed  Google Scholar 

  71. Bantle JP. Dietary fructose and metabolic syndrome and diabetes. J Nutr. 2009;139(6):1263S–8.

    Article  CAS  PubMed  Google Scholar 

  72. Abraha A, Humphreys SM, Clark ML, Matthews DR, Frayn KN. Acute effects of fructose on postprandial lipaemia in diabetic and non-diabetic subjects. Br J Nutr. 1998;80:169–75.

    CAS  PubMed  Google Scholar 

  73. Koivisto VA, Yki-Järvinen H. Fructose and insulin sensitivity in patients with type 2 diabetes. J Intern Med. 1993;233:145–53.

    Article  CAS  PubMed  Google Scholar 

  74. Malerbi DA, Paiva ES, Duarte AL, Wajchenberg BL. Metabolic effects of dietary sucrose and fructose in type II diabetic subjects. Diabetes Care. 1996;19:1249–56.

    Article  CAS  PubMed  Google Scholar 

  75. Aucott L, Gray D, Rothnie H, Thapa M, Waweru C. Effects of lifestyle interventions and long-term weight loss on lipid outcomes – a systematic review. Obes Rev. 2011;12(5):e412–25.

    Article  CAS  PubMed  Google Scholar 

  76. Poobalan A, Aucott L, Smith WCS, Avenel A, Jung R, Broom J, Grant AM. Effects of weight loss in overweight/obese individuals and long-term lipid outcomes – a systematic review. Obes Rev. 2004;5(1):43–50.

    Article  CAS  PubMed  Google Scholar 

  77. Dattilo AM, Kris-Etherton PM. Effects of weight reduction on blood lipids and lipoproteins: a meta-analysis. Am J Clin Nutr. 1992;56:320–8.

    CAS  PubMed  Google Scholar 

  78. Yatsuya H, Jeffery RW, Erickson DJ, Welsh EM, Flood AP, Jaeb MA, Laqua PS, Mitchell NR, Langer SL, Levy RL. Sex-specific HDL cholesterol changes with weight loss and their association with anthropometric variables: the LIFE study. Obesity (Silver Spring). 2011;19(2):429–35.

    Article  CAS  Google Scholar 

  79. Look AHEAD Research Group, Wing RR. Long-term effects of a lifestyle intervention on weight and cardiovascular risk factors in individuals with type 2 diabetes mellitus: four-year results of the Look AHEAD trial. Arch Intern Med. 2010;170(17):1566–75.

    CAS  PubMed  Google Scholar 

  80. Shai I, Schwarzfuchs D, Henkin Y, Shahar DR, Witkow S, Greenberg I, Golan R, Fraser D, Bolotin A, Vardi H, Tangi-Rozental O, Zuk-Ramot R, Sarusi B, Brickner D, Schwartz Z, Sheiner E, Marko R, Katorza E, Thiery J, Fiedler GM, Blüher M, Stumvoll M, Stampfer MJ. Dietary intervention randomized controlled trial (DIRECT) group. Weight loss with a low-carbohydrate, Mediterranean, or low-fat diet. N Engl J Med. 2008;359(3):229–41.

    Article  CAS  PubMed  Google Scholar 

  81. Sacks FM, Bray GA, Carey VJ, Smith SR, Ryan DH, Anton SD, McManus K, Champagne CM, Bishop LM, Laranjo N, Leboff MS, Rood JC, de Jonge L, Greenway FL, Loria CM, Obarzanek E, Williamson DA. Comparison of weight-loss diets with different compositions of fat, protein, and carbohydrates. N Engl J Med. 2009;360(9):859–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Manley SE, Stratton IM, Cull CA, Frighi V, Eeley EA, Matthews DR, Holman RR, Turner RC, Neil HA, United Kingdom Prospective Diabetes Study Group. Effects of three months’ diet after diagnosis of type 2 diabetes on plasma lipids and lipoproteins (UKPDS 45). Diabet Med. 2000;17(7):518–23.

    Article  CAS  PubMed  Google Scholar 

  83. Ahmad Khan H. Clinical significance of HbA1c as a marker of circulating lipids in male and female type 2 diabetic patients. Acta Diabetol. 2007;44(4):193–200. Epub 2007 Sep 1.

    Article  CAS  PubMed  Google Scholar 

  84. Comaschi M, Coscelli C, Cucinotta D, Malini P, Manzato E, Nicolucci A, SFIDA Study Group-Italian Association of Diabetologists (AMD). Cardiovascular risk factors and metabolic control in type 2 diabetic subjects attending outpatient clinics in Italy: the SFIDA (survey of risk factors in Italian diabetic subjects by AMD) study. Nutr Metab Cardiovasc Dis. 2005;15(3):204–11.

    Article  PubMed  Google Scholar 

  85. Becker A, van der Does FE, van Hinsbergh VW, Heine RJ, Bouter LM, Stehouwer CD. Improvement of glycaemic control in type 2 diabetes: favourable changes in blood pressure, total cholesterol and triglycerides, but not in HDL cholesterol, fibrinogen, Von Willebrand factor and (pro)insulin. Neth J Med. 2003;61(4):129–36.

    CAS  PubMed  Google Scholar 

  86. Emanuele N, Azad N, Abraira C, et al. Effect of intensive glycemic control on fibrinogen, lipids, and lipoproteins: veterans affairs cooperative study in type II diabetes mellitus. Arch Intern Med. 1998;158:2485–90.

    Article  CAS  PubMed  Google Scholar 

  87. The Diabetes Control and Complications Trial (DCCT) Research Group. Effect of intensive diabetes management on macrovascular events and risk factors in the diabetes control and complications trial. Am J Cardiol. 1995;75:894–903.

    Article  Google Scholar 

  88. Cusi K, Cunningham GR, Comstock JP. Safety and efficacy of normalizing fasting glucose with bedtime NPH insulin alone in NIDDM. Diabetes Care. 1995;18:843–5.

    Article  CAS  PubMed  Google Scholar 

  89. Carlsson S, Hammar N, Grill V, Kaprio J. Alcohol consumption and the incidence of type 2 diabetes: a 20-year follow-up of the Finnish twin cohort study. Diabetes Care. 1998;21(10):1619–26.

    Article  Google Scholar 

  90. Koppes LL, Dekker JM, Hendriks HF, Bouter LM, Heine RJ. Moderate alcohol consumption lowers the risk of type 2 diabetes: a meta-analysis of prospective observational studies. Diabetes Care. 2005;28(3):719–25.

    Article  PubMed  Google Scholar 

  91. Sluik D, Boeing H, Bergmann MM, Schütze M, Teucher B, Kaaks R, Tjønneland A, Overvad K, Arriola L, Ardanaz E, Bendinelli B, Agnoli C, Tumino R, Ricceri F, Mattiello A, Spijkerman AM, Beulens JW, Grobbee DE, Nilsson PM, Melander O, Franks PW, Rolandsson O, Riboli E, Gallo V, Romaguera D, Nöthlings U. Alcohol consumption and mortality in individuals with diabetes mellitus. Br J Nutr. 2011;15:1–9.

    Google Scholar 

  92. Valmadrid CT, Klein R, Moss SE, Klein BE, Cruickshanks KJ. Alcohol intake and the risk of coronary heart disease mortality in persons with older-onset diabetes mellitus. JAMA. 1999;282(3):239–46.

    Article  CAS  PubMed  Google Scholar 

  93. Wakabayashi I. Association between alcohol drinking and metabolic syndrome in Japanese male workers with diabetes mellitus. J Atheroscler Thromb. 2011;18(8):684–92.

    Article  CAS  PubMed  Google Scholar 

  94. Thomas DE, Elliott EJ, Naughton GA. Exercise for type 2 diabetes mellitus. Cochrane Database Syst Rev. 2006;3, CD002968.

    PubMed  Google Scholar 

  95. Qin R, Chen T, Lou Q, Yu D. Excess risk of mortality and cardiovascular events associated with smoking among patients with diabetes: meta-analysis of observational prospective studies. Int J Cardiol. 2013;167(2):342–50.

    Google Scholar 

  96. Maeda K, Noguchi Y, Fukui T. The effects of cessation from cigarette smoking on the lipid and lipoprotein profiles: a meta-analysis. Prev Med. 2003;37:283–290.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Clifton M.B.B.S., B.Med.Sci., F.R.A.C.P., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Clifton, P. (2014). Effects of Lifestyle (Diet, Plant Sterols, Exercise) and Glycemic Control on Lipoproteins in Diabetes. In: Jenkins, A., Toth, P., Lyons, T. (eds) Lipoproteins in Diabetes Mellitus. Contemporary Diabetes. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-7554-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7554-5_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4614-7553-8

  • Online ISBN: 978-1-4614-7554-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics