Skip to main content

Surrogate Models for Aerodynamic Shape Optimisation

  • Chapter
Surrogate-Based Modeling and Optimization

Abstract

The main challenges in full-scale aerospace systems development are related to the level of our understanding with respect to the systems behaviour. Computational modelling, through high-fidelity simulations, provides a viable approach towards efficient implementation of the design specifications and enhancing our understanding of the system’s response. Although high-fidelity modelling provides valuable information the associated computational cost restricts its applicability to full-scaled systems. This chapter presents a Computational Fluid Dynamics optimisation strategy based on surrogate modelling for obtaining high-fidelity predictions of aerodynamic forces and aerodynamic efficiency. An Aerodynamic Shape Optimisation problem is formulated and solved using Genetic Algorithm with surrogate models in the place of actual computational fluid dynamics algorithms. Ordinary Kriging approach and Hammersley Sequence Sampling plan are used to construct the surrogate models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balu, R., Ulaganathan, S.: Optimum hierarchical Bezier parameterization of arbitrary curves and surfaces. In: 11th Annual CFD Symposium, 11–12 August 2009. Indian Institute of Science, Bangalore (2009)

    Google Scholar 

  2. Zang, T., Green, L.: Multidisciplinary design optimization techniques: implications and opportunities for fluid dynamics research. In: 30th AIAA Fluid Dynamics Conference, June 28–July 1, Norfolk, VA (1999)

    Google Scholar 

  3. Raymer, D.: Enhancing aircraft conceptual design using multidisciplinary optimization. Doctoral thesis, Kungliga Tekniska Hogskolan, Royal Institute of Technology, Sweden (1995). ISBN: 91-7283-259-2, May

    Google Scholar 

  4. Giuntia, A.: Aircraft multidisciplinary design optimization using design of experiments theory and response surface modeling methods. MAD Center Report: 97-05-01, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0203 (1997)

    Google Scholar 

  5. Duchaine, F., Morel, T., Gicquel, L.Y.M.: Computational-fluid-dynamics-based kriging optimization tool for aeronautical combustion chambers. AIAA, ISSN: 0001-1452, Vol. 47, No. 3, pp. 631–645, CERFACS, 42 Av. G. Coriolis, 31057 Toulouse, France (2009)

    Google Scholar 

  6. Xiong, J.T., Qiao, Z.D., Han, Z.H.: Aerodynamic shape optimization of transonic airfoil and wing using response surface methodology. In: 25th International Congress of the Aeronautical Sciences, ICAS 2006-2.1.3, 3–8 September 2006, Hamburg, Germany (2006)

    Google Scholar 

  7. Laurenceau, J., Sagaut, P.: Building efficient response surfaces of aerodynamic functions with kriging and cokriging. CERFACS, Toulouse, 31057, France, January 24 (2008)

    Google Scholar 

  8. Sobieczky, H.: Parametric airfoils and wings. In: Notes on Numerical Fluid Mechanics, pp. 71–78. Vieweg, Wiesbaden (1998)

    Google Scholar 

  9. Avinash, G.S., Anil Lal, S.: Inverse Design of Airfoil Using Vortex Element Method. Department of Mechanical Engineering, College of Engineering, Thiruvananthapuram, Kerala, India (2010)

    Google Scholar 

  10. Nadarajah, S., Castonguay, P.: Effect of shape parameterization on aerodynamic shape optimization. In: 45th AIAA Aerospace Science Meeting and Exhibit, Reno, Nevada, January 8–11 (2007)

    Google Scholar 

  11. Selvakumar, U., Mukesh, P.R.: Aerodynamic shape optimization using computer mapping of natural evolution process. In: 2010 2nd International Conference on Computer Engineering and Technology (ICCET), vol. 5, pp. 367–371 (2010). ISBN: 978-1-4244-6347-3

    Google Scholar 

  12. Hajek, J.: Parameterization of airfoils and its application in aerodynamic optimization. In: WDS’07 Proceedings of Contributed Papers, Part I, pp. 233–240 (2007). ISBN:978-80-7378-023-4

    Google Scholar 

  13. Wang, G., Shan, S.: Sampling strategies for computer experiments: design and analysis. Int. J. Reliab. Appl. 2(3), 209–240 (2001)

    Google Scholar 

  14. Giunta, A.A., Wojtkiewicz, S.F. Jr., Eldred, M.S.: Overview of modern design of experiments methods for computational simulations. Sandia National Laboratories, Albuquerque, NM, AIAA 0649 (2003)

    Google Scholar 

  15. Kalagnanam, J.R., Diwekar, U.M.: An efficient sampling technique for off-line quality control. American Statistical Association and the American Society for Quality Control, vol. 39, No. 3, August (1997)

    Google Scholar 

  16. Jouhaud, J.-C., Sagaut, P., Montagnac, M., Laurenceau, J.: A surrogate-model based multidisciplinary shape optimization method with application to a 2D subsonic airfoil. Comput. Fluids 36, 520–529 (2007)

    Article  MATH  Google Scholar 

  17. Andersson, J.: A survey of multiobjective optimization in engineering design. Department of Mechanical Engineering, Linkoping University, Sweden, Technical report: LiTH-IKP-R-1097

    Google Scholar 

  18. Alba, E., Cotta, C.: Evolutionary algorithms, Dept. Lenguajes y Ciencias de la Computacion, ETSI Informatica, Universidad de Malaga, Campus de Teatinos, 29016, Malaga, Spain, February 19 (2004)

    Google Scholar 

  19. Holland, J.: Adaption in Natural and Artificial Systems. MIT Press, Cambridge (1975)

    MATH  Google Scholar 

  20. Goldberg, D.: Genetic Algorithms in Search, Optimization, and Learning. Addison-Wesley Longman, Inc., Boston (1989)

    MATH  Google Scholar 

  21. Balu, R.: Natural evolution as a process of optimisation. Aerodynamics Research and Development Division, VSSC, ISRO, India (1999)

    Google Scholar 

  22. Miller, B.L., Goldberg, D.E.: Genetic algorithms, tournament selection, and the effects of noise. Complex Systems 9, 193–212 (1995)

    MathSciNet  Google Scholar 

  23. Alam, M.N.: Optimization of VLSI circuit by genetic algorithms. Lecture Notes, University of Vassa (2006)

    Google Scholar 

  24. Kroo, I.: Applied Aerodynamics, Desktop Aerodynamics. P.O. Box 20384, Stanford, CA 94309, January (2007)

    Google Scholar 

  25. FLUENT: Fluent 6.1 User’s Guide, Fluent Inc. 25/01 (2003)

    Google Scholar 

  26. Spalart, P.R., Allmaras, S.R.: A one-equation turbulence model for aerodynamic flow. AIAA Paper 92-0439 (1992)

    Google Scholar 

  27. Wilcox, D.C.: Turbulence modelling for CFD. DCW Industries Inc, La Canada, California (1993)

    Google Scholar 

  28. Liang, Y., Cheng, X.-q., Li, Z.-n., Xiang, J.-w.: Robust multi-objective wing design optimisation via CFD approximation model. Eng. Appl. Comput. Fluid Mech. 5(2), 286–300 (2011)

    Google Scholar 

  29. Greschner, B., Yu, C., Zheng, S., Zhuang, M., Wang, Z.J., Thiele, F.: Knowledge based airfoil aerodynamic and aeroacoustic design. AIAA, pp. 1–11, May (2005)

    Google Scholar 

  30. Internet Material: Information on Y plus wall distance estimation. www.cfd-online.com, Accessed on August 12, 2011

  31. Kurganov, A., Tadmor, E.: New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations. J. Comput. Phys. 160, 214–282 (2010)

    Google Scholar 

  32. Metodiev, K.K.: Euler computations of supercritical airfoils. Space Research Institute, Bulgarian Academy of Sciences, Sofia, Bulgaria

    Google Scholar 

  33. Sheldahl, R.E., Klimas, P.C.: Aerodynamic characteristics of seven airfoil sections through 180 degrees angle of attack for use in aerodynamic analysis of vertical axis wind turbines. SAND80-2114, Sandia National Laboratories, Albuquerque, NM, March (1981)

    Google Scholar 

  34. Carroll, D.L.: FORTRAN code for Genetic Algorithm, Version 1.7a. CU Aerospace, 2004 South Wright Street Extended, Urbana, IL 61802 (2001)

    Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere gratitude to Dr. Raman Balu, Dean, School of Interdisciplinary Studies, NICHE, Tamilnadu, India for his valuable suggestions during the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selvakumar Ulaganathan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ulaganathan, S., Asproulis, N. (2013). Surrogate Models for Aerodynamic Shape Optimisation. In: Koziel, S., Leifsson, L. (eds) Surrogate-Based Modeling and Optimization. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7551-4_12

Download citation

Publish with us

Policies and ethics