Skip to main content

Cognitive Abilities in Childhood and Adolescence

  • Chapter
  • First Online:
Behavior Genetics of Cognition Across the Lifespan

Part of the book series: Advances in Behavior Genetics ((AIBG,volume 1))

Abstract

General cognitive ability is associated with important life outcomes such as educational and occupational attainment, social mobility, and even health. The study of the behavioral genetics of cognition has grown dramatically in recent years, including our understanding of the developmental etiologies of cognitive abilities and relations to achievement and later outcomes. The purpose of this first chapter is to provide an overview of the research on the genetics of cognitive abilities in childhood and adolescence. We begin with a brief introduction to the constructs of general and specific cognitive abilities, followed by a discussion of prominent theories of cognitive development, both historical and current. We then discuss state-of-the-art methods in developmental behavioral genetics and their relevance to important issues in child and adolescent cognitive development. Each method is then illustrated by its application to a recent topic in cognitive development. Based on findings from these studies, we conclude that individual differences in cognitive abilities in childhood and adolescence are substantially and increasingly heritable, due primarilly to the combined influence of many genes with relatively small effect. Additional topics include the etiological overlap between cognitive abilities and academic achievement, quantitative and molecular genetic analyses of high and low ability and achievement, and sex differences. Additional research concerning the behavioral genetics of cognition should greatly facilitate future analyses of the interplay between genetic and environmental influences, including genotype-environment correlation and interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ardila, A., Rosselli, M., Matute, E., & Inozemtseva, O. (2011). Gender differences in cognitive development. Dev Psychol, 47(4), 984–990. doi:10.1037/a0023819

    PubMed  Google Scholar 

  • Arnold, L. E., Abikoff, H. B., Cantwell, D. P., Conners, C. K., Elliott, G., Greenhill, L. L., et al. (1997). National institute of mental health collaborative multimodal treatment study of children with ADHD (the MTA). Design challenges and choices. Archives of General Psychiatry, 54(9), 865–870.

    PubMed  Google Scholar 

  • Astrom, R. L., Wadsworth, S. J., & DeFries, J. C. (2007). Etiology of the stability of reading difficulties: the longitudinal twin study of reading disabilities. Twin Research and Human Genetics, 10(3), 434–439. doi:10.1375/twin.10.3.434

    PubMed  Google Scholar 

  • Astrom, R. L., Wadsworth, S. J., Olson, R. K., Willcutt, E. G., & DeFries, J. C. (2011). DeFries-Fulker analysis of longitudinal reading performance data from twin pairs ascertained for reading difficulties and from their nontwin siblings. Behav Genet, 41(5), 660–667. doi:10.1007/s 10519-011-9445-6

    PubMed  Google Scholar 

  • Baker, L. A., Ho, H., & Reynolds, C. (1994). Sex differences in genetic and environmental influences for cognitive abilities. R. P. J. C. DeFries & D. W. Fulker (Ed.), Nature and nurture during middle childhood (pp. 181–200). Cambridge: Blackwell.

    Google Scholar 

  • Bereiter, C. (1969). The future of individual differences. Harvard Educational Review, 39, 310–318.

    Google Scholar 

  • Binet, A., & Simon, T. (1905). Upon the necessity of establishing a scientific diagnosis of the inferior states of intelligence. L’Annee Psychologique, 11, 163–191.

    Google Scholar 

  • Binet, A., & Simon, T. (1916). New methods for the diagnosis of the intellectual level of subnormals. In the development of intelligence in children. New York: Williams & Wilkins.

    Google Scholar 

  • Bishop, D. V. (2001). Genetic influences on language impairment and literacy problems in children: Same or different? Journal of Child Psychology and Psychiatry and Allied Disciplines, 42(2), 189–198.

    Google Scholar 

  • Bishop, E. G., Cherny, S. S., Corley, R., Plomin, R., DeFries, J. C., & Hewitt, J. K. (2003). Development genetic analysis of general cognitive ability from 1 to 12 years in a sample of adoptees, biological siblings, and twins. Intelligence, 31(1), 31–49.

    Google Scholar 

  • Bouchard, T. J., & McGue, M. (1981). Familial studies of intelligence: A review. Science, 212, 1055–1059.

    PubMed  Google Scholar 

  • Brant, A. M., Haberstick, B. C., Corley, R. P. Wadsworth, S. J., DeFries, J. C., & Hewitt, J. K. (2009). The developmental etiology of high IQ. Behavior Genetics, 39(4), 393–405. doi:10.1007/s10519-009-9268-x

    PubMed  Google Scholar 

  • Butcher, L. M., Davis, O. S., Craig, I. W., & Plomin, R. (2008). Genome-wide quantitative trait locus association scan of general cognitive ability using pooled DNA and 500K single nucleotide polymorphism microarrays. Genes Brain Behav, 7(4), 435–446. doi:10.1111/j.1601-183X.2007.00368.x

    PubMed  Google Scholar 

  • Cardon, L. R. (1994). Specific cognitive abilities. R. P. J. C. DeFries & D. W. Fulker (Ed.), Nature and nurture during middle childhood (pp. 57–76). Oxford: Blackwell.

    Google Scholar 

  • Cardon, L. R., DiLalla, L. F., Plomin, R., DeFries, J. C., & Fulker, D. W. (1990). Genetic correlations between reading performance and IQ in the Colorado Adoption Project. Intelligence, 14, 245–257.

    Google Scholar 

  • Cardon, L. R., Fulker, D. W., DeFries, J. C., & Plomin, R. (1992a). Continuity and change in general cognitive ability from 1 to 7 Years of Age. Developmental Psychology, 28(1), 64–73.

    Google Scholar 

  • Cardon, L. R., Fulker, D. W., DeFries, J. C., & Plomin, R. (1992b). Multivariate genetic analysis of specific cognitive abilities in the Colorado Adoption Project at Age 7. Intelligence, 16(3–4), 383–400.

    Google Scholar 

  • Cardon, L. R. Smith, S. D., Fulker, D. W., Kimberling, W. J., Pennington, B. F., & DeFries, J. C. (1994). Quantitative trait locus for reading disability on chromosome 6. Science, 266, 276–279.

    Google Scholar 

  • Carroll, J. B. (1993). Human cognitive abilities: A survey of factor analytic studies. New York: Cambridge.

    Google Scholar 

  • Cattell, R. B. (1963). Theory of fluid and crystallized intelligence: A critical experiment. Journal of Educational Psychology, 54, 1–22.

    Google Scholar 

  • Chabris, C. F., Hebert, B. M., Benjamin, D. J., Beauchamp, J. P., Cesarini, D., van der Loos, M. J. H. M., et al. (in press). Most reported genetic associations with general intelligence are probably false positives. Psychological Science, 23(11), 1314–1323

    Google Scholar 

  • Cherny, S. S., & Cardon, L. R. (1994). General cognitive ability. J. C. DeFries, R. Plomin, & D. W. Fulker (Eds.), Nature and nurture during middle childhood (pp. 46–56). Oxford: Blackwell.

    Google Scholar 

  • Cherny, S. S., Fulker, D. W., & Hewitt, J. K. (1997). Cognitive development from infancy to middle childhood. R. J. S. E. L. Grigorenko (Ed.), Intelligence: Heredity and environment (pp. 463–482). New York: Cambridge University Press.

    Google Scholar 

  • Connolly, A. J., Nachtman, W., & Pritchett, E. M. (1976). Key Math Diagnostic Arithmetic Test. Circle Pines: American Guidance Service.

    Google Scholar 

  • Davies, G., Tenesa, A., Payton, A., Yang, J., Harris, S. E., Liewald, D., et al. (2011). Genome-wide association studies establish that human intelligence is highly heritable and polygenic. Mol Psychiatry, 16(10), 996–1005. doi:10.1038/mp.2011.85

    PubMed  Google Scholar 

  • Davis, O. S., Butcher, L. M., Docherty, S. J., Meaburn, E. L., Curtis, C. J., Simpson, M. A., et al. (2010). A three-stage genome-wide association study of general cognitive ability: hunting the small effects. Behav Genet, 40(6), 759–767. doi:10.1007/s10519-010-9350-4

    PubMed  Google Scholar 

  • Deary, I. J., Johnson, W., & Houlihan, L. M. (2009). Genetic foundations of human intelligence. Hum Genet, 126(1), 215–232. doi:10.1007/s00439-009-0655-4

    PubMed  Google Scholar 

  • Deary, I. J., Yang, J., Davies, G., Harris, S. E., Tenesa, A., Liewald, D., et al. (2012). Genetic contributions to stability and change in intelligence from childhood to old age. Nature, 482(7384), 212–215. doi:10.1038/nature10781

    PubMed  Google Scholar 

  • DeFries, J. C. (1985). Colorado reading project. In D. B. Gray & J. F. Kavanagh (Eds.), Biobehavioral measures of dyslexia (pp. 107–122). Parkton, MD: York Press. (Reprinted from: NOT IN FILE).

    Google Scholar 

  • DeFries, J. C., Filipek, P. A., Fulker, D. W., Olson, R. K., Pennington, B. F., Smith, S. D., & Wise, B. W. (1997). Colorado learning disabilities research center. Learning Disabilities: A Multidisciplinary Journal, 8, 7–19.

    Google Scholar 

  • DeFries, J. C., & Fulker, D. W. (1985). Multiple regression analysis of twin data. Behavior Genetics, 15, 467–473.

    PubMed  Google Scholar 

  • DeFries, J. C., & Fulker, D. W. (1988). Multiple regression analysis of twin data: Etiology of deviant scores versus individual differences. Acta Geneticae Medicae et Gemellologiae: Twin Research, 37, 205–216.

    PubMed  Google Scholar 

  • DeFries, J. C., Johnson, R. C., Kuse, A. R., McClearn, G. E., Polovina, J., Vandenberg, S. G., & Wilson, J. R. (1979). Familial resemblance for specific cognitive abilities. Behavior Genetics, 9(1), 23–43.

    PubMed  Google Scholar 

  • DeFries, J. C., Knopik, V. S., & Wadsworth, S. J. (1999). Colorado twin study of reading disability. In D. D. Duane (Ed.), Reading and attention disorders: Neurobiological correlates (pp. 17–41). Baltimore: York Press.

    Google Scholar 

  • DeFries, J. C., Olson, R. K., Pennington, B. F., & Smith, S. D. (1991). Colorado reading project: Past, present, and future. Learning Disabilities: A Multidisciplinary Journal, 2, 37–46.

    Google Scholar 

  • DeFries, J. C., Plomin, R., & Fulker, D. W. (1994). Nature and nurture during middle childhood. Oxford: Blackwell Publishers.

    Google Scholar 

  • Docherty, S. J., Davis, O. S. P., Kovas, Y., Meaburn, E. L., Dale, P. S., Petrill, S. A., et al. (2010). A genome-wide association study identifies multiple loci associated with mathematics ability and disability. Genes Brain and Behavior, 9(2), 234–247. doi:10.1111/j.1601-183X.2009.00553.x

    Google Scholar 

  • Docherty, S. J., Kovas, Y., & Plomin, R. (2011). Gene-environment interaction in the etiology of mathematical ability using SNP sets. Behavior Genetics, 41, 141–154.

    PubMed  Google Scholar 

  • Doyle, A. E., Ferreira, M. A., Sklar, P. B., Lasky-Su, J., Petty, C., Fusillo, S. J., et al. (2008). Multivariate genome-wide linkage scan of neurocognitive traits and ADHD symptoms: Suggestive linkage to 3q13. American Journal of Medical Genetics Part B (Neuropsychiatric Genetics), 147B(8), 1399–1411. doi:10.1002/ajmg.b.30868

    Google Scholar 

  • Dunn, L. M., & Markwardt, F. C. (1970). Examiner’s manual: Peabody individual achievement test. Circle Pines: American Guidance Service.

    Google Scholar 

  • Eichler, E. E., Flint, J., Gibson, G., Kong, A., Leal, S. M., Moore, J. H., & Nadeau, J. H. (2010). Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet, 11(6), 446–450. doi:10.1038/nrg2809

    PubMed  Google Scholar 

  • Emde, R. N., & Hewitt, J. K. (2001). Infancy to early childhood: Genetic and environmental influences on developmental change. Oxford: Oxford University Press.

    Google Scholar 

  • Erlenmeyer-Kimling, L., & Jarvik, L. F. (1963). Genetics and intelligence: A review. Science, 142, 1477–1479.

    PubMed  Google Scholar 

  • Friend, A., DeFries, J. C., & Olson, R. K. (2008). Parental education moderates genetic influences on reading disability. Psychological Science, 19(11), 1124–1130. doi:10.1111/j.1467-9280.2008.02213.x

    Google Scholar 

  • Friend, A., DeFries, J. C., Olson, R. K., Pennington, B. F., Harlaar, N., Byrne, B., et al. (2009). Heritability of high reading ability and its interaction with parental education. Behavior Genetics, 39(4), 427–436. doi:10.1007/s10519-009-9263-2

    Google Scholar 

  • Fulker, D. W., & Cherny, S. S. (1995). Genetic and environmental influences on cognition during childhood. Population Research and Policy Review, 14, 283–300.

    Google Scholar 

  • Fulker, D. W., Cherny, S. S., & Cardon, L. R. (1993). Continuity and change in cognitive development. In R. P. G. E. McClearn (Ed.), Nature, nurture and psychology (pp. 77–98). Washington, DC: American Psychological Association.

    Google Scholar 

  • Fulker, D. W., DeFries, J. C., & Plomin, R. (1988). Genetic influence on general mental ability increases between infancy and middle childhood. Nature, 336, 767–769.

    PubMed  Google Scholar 

  • Galton, F. (1869). Hereditary genius: An inquiry into its laws and consequences. London: Macmillan.

    Google Scholar 

  • Gardner, H. (2006). Multiple intelligences: New Horizons. New York: Basic Books.

    Google Scholar 

  • Gill, C. E., Jardine, R., & Martin, N. G. (1985). Further evidence for genetic influences on educational achievement. British Journal of Educational Psychology, 55, 240–250.

    PubMed  Google Scholar 

  • Gottfredson, L. S. (1997). Why g matters: The complexity of everyday life. Intelligence, 23(1), 79–132.

    Google Scholar 

  • Gottfredson, L. S., & Deary, I. J. (2004). Intelligence predicts health and longevity, but why? Current Directions in Psychological Science, 13(1), 1–4.

    Google Scholar 

  • Haier, A. J. (2011). Biological basis of intelligence. R. J. Sternberg & S. B. Kaufman (Eds.), The Cambridge handbook of intelligence (pp. 351–370). New York: Cambridge University Press.

    Google Scholar 

  • Hallgren, B. (1950). Specific dyslexia (Congenital word-blindness): A clinical and genetic study. Acta Psychiatrica et Neurologica Scandinavica, 65 (Supplement), 1–287.

    Google Scholar 

  • Halpern, D. F. (2000). Sex differences in cognitive abilities (3rd ed.) Mahwah: Lawrence Earlbaum Associates.

    Google Scholar 

  • Harlaar, N., Dale, P. S., & Plomin, R. (2007). From learning to read to reading to learn: Substantial and stable genetic influence. Child Development, 78(1), 116–131.

    PubMed  Google Scholar 

  • Harlaar, N., Spinath, F. M., Dale, P. S., & Plomin, R. (2005). Genetic influences on early word recognition abilities and disabilities: a study of 7-year-old twins. Journal of Child Psychology and Psychiatry, 46(4), 373–384. doi:10.1111/j.1469-7610.2004.00358.x

    PubMed  Google Scholar 

  • Hawke, J. L., Olson, R. K., Willcutt, E. G., Wadsworth, S. J., & DeFries, J. C. (2009). Gender ratios for reading difficulties. Dyslexia, 15(3), 239–242. doi:10.1002/dys.389

    PubMed  Google Scholar 

  • Hawke, J. L., Wadsworth, S. J., & DeFries, J. C. (2006). Genetic influences on reading difficulties in boys and girls: The Colorado Twin Study. Dyslexia: An International Journal of Research and Practice, 12, 21–29.

    Google Scholar 

  • Hawke, J. L., Wadsworth, S. J., Olson, R. K., & DeFries, J. C. (2007). Etiology of reading difficulties as a function of gender and severity. Reading and Writing, 20(1–2), 13–25.

    Google Scholar 

  • Haworth, C. M., Wright, M. J., Martin, N. W., Martin, N. G., Boomsma, D. I., Bartels, M., et al. (2009a). A twin study of the genetics of high cognitive ability selected from 11,000 twin pairs in six studies from four countries. Behavior Genetics, 39(4), 359–370. doi:10.1007/s10519-009-9262-3

    Google Scholar 

  • Haworth, C. M. A., Dale, P. S., & Plomin, R. (2009b). Generalist genes and high cognitive ability. Behavior Genetics, 39, 437–445.

    Google Scholar 

  • Haworth, C. M., Wright, M. J., Luciano, M., Martin, N. G., de Geus, E. J., van Beijsterveldt, C. E., et al. (2010). The heritability of general cognitive ability increases linearly from childhood to young adulthood. Mol Psychiatry, 15(11), 1112–1120. doi: mp200955[pii]10.1038/mp.2009.55

    PubMed  Google Scholar 

  • Hayiou-Thomas, M. E., Dale, P. S., & Plomin, R. (2012). The etiology of variation in language skills changes with development: a longitudinal twin study of language from 2 to 12 years. Developmental Science, 15(2), 233–249.

    PubMed  Google Scholar 

  • Hyde, J. S., Lindberg, S. M., Linn, M. C., Ellis, A. B., & Williams, C. C. (2008). Gender similarities characterize math performance. Science, 321, 494–495.

    PubMed  Google Scholar 

  • Hyde, J. S., & Linn, M. C. (1988). Gender differences in verbal ability: A meta analysis. Psychological Bulletin, 104(1), 53–69.

    Google Scholar 

  • Iacono, W. G., Carlson, S. R., Taylor, J. T., Elkins, I. J., & McGue, M. (1999). Behavioral disinhibition and the development of substance use disorders: Findings from the Minnesota Twin Family Study. Development and Psychopathology, 11, 869–900.

    PubMed  Google Scholar 

  • Jensen, A. R. (1967). Estimation of the limits of heritability of traits by comparison of monozygotic and dizygotic twins. Proceedings of the National Academy of Sciences, 58, 149–157.

    Google Scholar 

  • Jensen, A. R. (1969a). How much can we boost IQ and scholastic achievement? Harvard Educational Review, 39, 1–123.

    Google Scholar 

  • Jensen, A. R. (1969b). Reducing the heredity-environment uncertainty. Harvard Educational Review, 39, 449–483.

    Google Scholar 

  • Jensen, A. R. (1972). Genetics and education. New York: Harper and Row.

    Google Scholar 

  • Kagan, J. S. (1969). Inadequate evidence and illogical conclusions. Harvard Educational Review, 39, 274–277.

    Google Scholar 

  • Kirkpatrick, R. M., McGue, M., & Iacono, W. (2009). Shared environmental contributions to high cognitive ability. Behavior Genetics, 39, 406–416.

    PubMed  Google Scholar 

  • Koeppen-Schomerus, G., Spinath, F. M., & Plomin, R. (2003). Twins and non-twin siblings: different estimates of shared environmental influence in early childhood. Twin Research, 6, 97–105.

    PubMed  Google Scholar 

  • Kovas, Y., Haworth, C. M., Petrill, S. A., & Plomin, R. (2007). Mathematical ability of 10-year-old boys and girls: genetic and environmental etiology of typical and low performance. Journal of Learning Disabilities, 40(6), 554–567. doi:10.1177/00222194070400060601

    Google Scholar 

  • Kutalik, Z., Whittaker, J., Waterworth, D., Beckmann, J. S., & Bergmann, S. (2011). Novel method to estimate the phenotypic variation explained by genome-wide association studies reveals large fraction of the missing heritability. Genet Epidemiol, 35(5), 341–349. doi:10.1002/gepi.20582

    PubMed  Google Scholar 

  • Light, J. G., & DeFries, J. C. (1995). Comorbidity of reading and mathematics disabilities: genetic and environmental etiologies. Journal of Learning Disabilities, 28(2), 96–106.

    PubMed  Google Scholar 

  • Loehlin, J. C., & Nichols, R. C. (1976). Heredity, environment, and personality: A study of 850 sets of twins. Austin: University of Texas Press.

    Google Scholar 

  • Loo, S. K., Shtir, C., Doyle, A. E., Mick, E., McGough, J. J., McCracken, J., et al. (2012). Genome-wide association study of intelligence: Additive effects of novel brain expressed genes. Journal of the American Academy of Child and Adolescent Psychiatry, 51(4), 432–440.

    PubMed  Google Scholar 

  • Luciano, M., Wright, M. J., Duffy, D. L., Wainwright, M. A., Zhu, G., Evans, D. M., et al. (2006). Genome-wide scan of IQ finds significant linkage to a quantitative trait locus on 2q. Behav Genet, 36(1), 45–55. doi:10.1007/s10519-005-9003-1

    Google Scholar 

  • Luo, D. S., Thompson, L. A., & Detterman, D. K. (2003). Phenotypic and behavioral genetic covariation between elemental cognitive components and scholastic measures. Behavior Genetics, 33(3), 221–246.

    PubMed  Google Scholar 

  • Maccoby, E. E., & Jacklin, C. N. (1974). The psychology of sex differences. Stanford: Stanford University Press.

    Google Scholar 

  • Martin, N. G. (1975). The inheritance of scholastic abilities in a sample of twins. II. Genetical analysis of examination results. Annals of Human Genetics, 39, 219–229.

    PubMed  Google Scholar 

  • McArdle, J. J. (2006). Latent curve analyses of longitudinal twin data using a mixed-effects biometric approach. Twin Research and Human Genetics, 9(3), 343–359.

    PubMed  Google Scholar 

  • McArdle, J. J., Prescott, C. A., Hamagami, F., & Horn, J. L. (1998). A contemporary method for developmental-genetic analyses of age changes in intellectual abilities. Developmental Neuropsychology, 14, 69–114.

    Google Scholar 

  • McGrew, K. S. (Ed.). (2005). The Cattell-Horn-Carroll theory of cognitive abilities: Past, present, and future. New York: Guilford Press.

    Google Scholar 

  • McGue, M., Bouchard, T. J. J., Iacono, W. G., & Lykken, D. T. (1993). Behavioral genetics of cognitive ability: A life-span perspective. R. P. G. E. McClearn (Ed.), Nature, Nurture, and Psychology (pp. 59–76). Washington D.C.: American Psychological Association Press.

    Google Scholar 

  • Meaburn, E. L., Harlaar, N., Craig, I. W., Schalkwyk, L. C., & Plomin, R. (2008). Quantitative trait locus association scan of early reading disability and ability using pooled DNA and 100K SNP microarrays in a sample of 5760 children. Mol Psychiatry, 13(7), 729–740. doi:10.1038/sj.mp.4002063

    PubMed  Google Scholar 

  • Medland, S. E., Wright, M. J., Geffen, G. M., Hay, D. A., Levy, F., Martin, N. G., & Duffy, D. L. (2003). Special twin environments, genetic influences and their effects on the handedness of twins and their siblings. Twin Research, 6, 119–130.

    PubMed  Google Scholar 

  • Neale, M. C., & Cardon, L. R. (1992). Methodology for genetic studies of twins and families. Dordrecht: Kluwer Academic Press.

    Google Scholar 

  • Neale, M. C., & Maes, H. H. M. (2002). Methodology for genetic studies of twins and families. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Neale, M. C., & McArdle, J. J. (2000). Structured latent growth curves for twin data. Twin Research, 3, 165–177.

    PubMed  Google Scholar 

  • Petrill, S., Plomin, R., DeFries, J. C., & Hewitt, J. K. (Ed.), (2003). Nature, nurture, and the transition to adolescence. New York: Oxford University Press.

    Google Scholar 

  • Petrill, S. A., & Deater-Deckard, K. (2004). The heritability of general cognitive ability: A within-family adoption design. Intelligence, 32(4), 403–409. doi101016/j.intell.2004.05.001

    Google Scholar 

  • Petrill, S. A., Kovas, Y., Hart, S. A., Thompson, L. A., & Plomin, R. (2009). The genetic and environmental etiology of high math performance in 10-year-old Twins. Behav Genet 39, 371–379.

    PubMed  Google Scholar 

  • Petrill, S. A., Lipton, P. A., Hewitt, J. K., Plomin, R., Cherny, S. S., Corley, R., & DeFries, J. C. (2004). Genetic and environmental contributions to general cognitive ability through the first 16 years of life. Developmental Psychology, 40, 805–812.

    PubMed  Google Scholar 

  • Petrill, S. A., Saudino, K., Cherny, S. S., Emde, R. N., Fulker, D. W., Hewitt, J. K., & Plomin, R. (1998). Exploring the genetic and environmental etiology of high general cognitive ability in fourteen- to thirty-six-month-old twins. Child Development, 69(1), 68–74.

    PubMed  Google Scholar 

  • Petrill, S. A., Saudino, K., Cherny, S. S., Emde, R. N., Hewitt, J. K., Fulker, D. W., & Plomin, R. (1997). Exploring the genetic etiology of low general cognitive ability from 14 to 36 months. Developmental Psychology, 33(3), 544–548.

    PubMed  Google Scholar 

  • Plomin, R. (2012). Genetics: How intelligence changes with age. Nature, 482(7384), 165–166. doi:10.1038/482165a

    PubMed  Google Scholar 

  • Plomin, R., & DeFries, J. C. (1980). Genetics and intelligence: Recent data. Intelligence, 4, 15–24.

    Google Scholar 

  • Plomin, R., & DeFries, J. C. (1985). Origins of individual differences in infancy: The Colorado adoption project. New York: Academic Press.

    Google Scholar 

  • Plomin, R., & DeFries, J. C. (1998). The genetics of cognitive abilities and disabilities. Scientific American, 278(5), 62–69.

    PubMed  Google Scholar 

  • Plomin, R., DeFries, J. C., & Fulker, D. W. (1988). Nature and nurture during infancy and early childhood. New York: Cambridge University Press.

    Google Scholar 

  • Plomin, R., DeFries, J. C., Knopik, V. S., & Neiderhiser, J.M. (2013). Behavioral genetics (6th ed.). New York: Worth Publishers.

    Google Scholar 

  • Plomin, R., Fulker, D. W., Corley, R., & DeFries, J. C. (1997). Nature, nurture, and cognitive development from 1 to 16 years: A parent-offspring adoption study. Psychological Science, 8(6), 442–447.

    Google Scholar 

  • Plomin, R., & Haworth, C. M. A. (2009). Genetics of high cognitive abilities. Behavior Genetics, 39, 347–349.

    PubMed  Google Scholar 

  • Plomin, R., Hill, L., Craig, I. W., McGuffin, P., Purcell, S., Sham, P., et al. (2001). A genome-wide scan of 1842 DNA markers for allelic associations with general cognitive ability: a five-stage design using DNA pooling and extreme selected groups. Behavior Genetics, 31(6), 497–509.

    PubMed  Google Scholar 

  • Plomin, R., & Kovas, Y. (2005). Generalist genes and learning disabilities. Psychological Bulletin, 131(4), 592–617. doi:10.1037/0033-2909.131.4.592

    PubMed  Google Scholar 

  • Plomin, R. A. D., DeFries, J. C. (1979). Multivariate behavior genetic analysis of twin data on scholastic abilities. Behavior Genetics, 9, 505–517.

    PubMed  Google Scholar 

  • Posthuma, D., Luciano, M., Geus, E. J., Wright, M. J., Slagboom, P. E., Montgomery, G. W., et al. (2005). A genomewide scan for intelligence identifies quantitative trait loci on 2q and 6p. Am J Hum Genet, 77(2), 318–326. doi:10.1086/432647

    PubMed  Google Scholar 

  • Reynolds, C. A., Hewitt, J. K., Erickson, M. T., Silberg, J. L., Rutter, M., Simonoff, E., et al. (1996). The genetics of children’s oral reading performance. Journal of Child Psychology and Psychiatry and Allied Disciplines, 37(4), 425–434.

    Google Scholar 

  • Risch, N., & Merikangas, K. (1996). The future of genetic studies of complex human diseases. Science, 273(5281), 1516–1517.

    PubMed  Google Scholar 

  • Rose, L. T., & Fischer, K. W. (2011).Intelligence in childhood. R. J. Sternberg & S. B. Kaufman (Eds.), The Cambridge handbook of intelligence (pp. 144–173). New York: Cambridge University Press.

    Google Scholar 

  • Sattler, J. M. (1992). Assessment of children. San Diego: Jerome M. Sattler.

    Google Scholar 

  • Smith, S. D. (2010). Learning disabilities. In J. Nurnberger & W. Berrettini (Eds.), Psychiatric Genetics. Cambridge: Cambridge University Press.

    Google Scholar 

  • Snyderman, M., & Rothman, S. (1987). Survey of expert opinion on intelligence and aptitude testing. American Psychologist, 42, 137–144.

    Google Scholar 

  • Spearman, C. E. (1923). The nature of intelligence and the principles of cognition. London: Macmillan.

    Google Scholar 

  • Spearman, C. E. (1927). The abilities of man. New York: Macmillan.

    Google Scholar 

  • Sternberg, R. (2012). Intelligence. Dialogues in Clinical Neuroscience, 14, 19–27.

    PubMed  Google Scholar 

  • Sternberg, R. J. (1985). Beyond IQ: A triarchic theory of human intelligence. New York: Cambridge University Press.

    Google Scholar 

  • Sternberg, R. J., & Kauffman, S. B. (2011). The cambridge handbook of intelligence. New York: Cambridge University Press.

    Google Scholar 

  • Stevenson, J., Graham, P., Fredman, G., & McLoughlin, V. (1987). A twin study of genetic influences on reading and spelling ability and disability. Journal of Child Psychology and Psychiatry, 28(2), 229–247.

    PubMed  Google Scholar 

  • Terman, L. M., & Merrill, M. A. (1973). Stanford-Binet Intelligence Scale: 1972 Norms edition. Boston: Houghton Mifflin.

    Google Scholar 

  • Thomas, C. J. (1905). Congenital “word-blindness” and its treatment. Ophthalmoscope, 3, 380–385.

    Google Scholar 

  • Thompson, L. A., Detterman, D. K., & Plomin, R. (1991). Association between cognitive abilities and scholastic achievement: Genetic overlap, but environmental differences. Psychological Science, 2, 158–165.

    Google Scholar 

  • Thorndike, E. L. (1927). The measurement of intelligence. New York: Bureau of Publications, Teachers College, Columbia University.

    Google Scholar 

  • Thurstone, L. L. (1938). Primary mental abilities. Psychometric Monographs, Vol. 1. ix + 121.

    Google Scholar 

  • Thurstone, L. L., & Thurstone, T. G. (1941). Factorial studies of intelligence. Psychometric Monographs, 2, 1–94.

    Google Scholar 

  • van Soelen, I. L., Brouwer, R. M., van Leeuwen, M., Kahn, R. S., Hulshoff Pol, H. E., & Boomsma, D. I. (2011). Heritability of verbal and performance intelligence in a pediatric longitudinal sample. Twin Research and Human Genetics, 14(2), 119–128. doi:10.1375/twin.14.2.119

    Google Scholar 

  • Wadsworth, S. J. (1994). School achievement. In R. P. J. C. DeFries & D. W. Fulker (Ed.), Nature and nurture during middle childhood (pp. 86–101). Oxford: Blackwell.

    Google Scholar 

  • Wadsworth, S. J., Corley, R. P., Hewitt, J. K. Plomin, R., & DeFries, J. C. (2002). Parent-offspring resemblance for reading performance at 7, 12, and 16 years of age in the Colorado Adoption Project. Journal of Child Psychology and Psychiatry and Allied Disciplines, 43, 769–774.

    Google Scholar 

  • Wadsworth, S. J., Corley, R. P., Plomin, R., Hewitt, J. K., & DeFries, J. C. (2006). Genetic and environmental influences on continuity and change in reading achievement in the Colorado Adoption Project. In A. H. M. Ripke (Ed.), Developmental contexts of middle childhood: Bridges to adolescence and adulthood (pp. 87–106). New York: Cambridge University Press.

    Google Scholar 

  • Wadsworth, S. J., & DeFries, J. C. (2005). Genetic etiology of reading difficulties in boys and girls. Twin Research and Human Genetics, 8(6), 594–601. doi:10.1375/183242705774860196

    PubMed  Google Scholar 

  • Wadsworth, S. J., DeFries, J. C., Fulker, D. W., & Plomin, R. (1995a). Cognitive ability and academic achievement in the Colorado Adoption Project: A multivariate genetic analysis of parent-offspring and sibling data. Behavior Genetics, 25(1), 1–15.

    Google Scholar 

  • Wadsworth, S. J., DeFries, J. C., Fulker, D. W., Olson, R. K., & Pennington, B. F. (1995b). Reading performance and verbal short-term memory: A twin study of reciprocal causation. Intelligence, 20, 145–167.

    Google Scholar 

  • Wadsworth, S. J., Olson, R. K., & DeFries, J. C. (2010). Differential genetic etiology of reading difficulties as a function of IQ: An update. Behavior Genetics, 40(6), 751–758.

    PubMed  Google Scholar 

  • Wadsworth, S. J., Olson, R. K., Willcutt, E. G., & DeFries, J. (2011). Multiple regression analysis of reading performance data from twin pairs with reading difficulties and nontwin siblings: The augmented model. Twin Research and Human Genetics, 15, 116–119.

    Google Scholar 

  • Wadsworth, S. J., Olson, R. K., Willcutt, E. G., & DeFries, J. C. (2012). Multiple regression analysis of reading performance data from twin pairs with reading difficulties and nontwin siblings: The augmented model. Twin Research and Human Genetics, 15(1), 116–119.

    PubMed  Google Scholar 

  • Wasserman, J. D., & Tulsky, D. S. (2005). A history of intelligence assessment. D. P. Flanagan & P. L. Harrison (Eds.), Contemporary intellectual assessment: Theories, tests and issues (2nd ed., pp. 3–22). New York: Guilford Press.

    Google Scholar 

  • Wechsler, D. (1958). The measurement and appraisal of adult intelligence. Baltimore: Williams and Wilkins.

    Google Scholar 

  • Wechsler, D. (1974). Manual for the Wechsler Intelligence scale for children, revised. New York: The Psychological Corporation.

    Google Scholar 

  • Wechsler, D. (1981). Examiner’s manual: Wechsler adult intelligence scale-revised. New York: The Psychological Corporation.

    Google Scholar 

  • Wechsler, D. (1991). Manual for the Wechsler intelligence scale for children (3rd ed.). San Antonio: The Psychological Corporation.

    Google Scholar 

  • Wechsler, D. (2002). Examiners manual: The Wechsler individual achievement test—2nd edition. San Antonio: The Psychological Corporation.

    Google Scholar 

  • Wechsler, D. (2003). Manual for the Wechsler Intelligence scale for children (4th ed.). San Antonio: The Psychological Corporation.

    Google Scholar 

  • Willis, J. O., Dumont, R., & Kaufman, A. S. (2011). Factor-analytic models of intelligence. R. J. Sternberg & S. B. Kaufman (Eds.), The Cambridge handbook of intelligence (pp. 39–57). New York: Cambridge University Press.

    Google Scholar 

  • Wilson, R. S. (1983). The Louisville Twin Study: developmental synchronies in behavior. Child Development, 54(2), 298–316.

    PubMed  Google Scholar 

  • Woodcock, R. W., McGrew, K. S., & Mather, N. (2001). Woodcock-Johnson III tests of achievement. Itasca: Riverside Publishing.

    Google Scholar 

  • Yang, J., Lee, S. H., Goddard, M. E., & Visscher, P. M. (2011). GCTA: a tool for genome-wide complex trait analysis. American Journal of Human Genetics, 88(1), 76–82. doi:101016/j.ajhg.2010.11.011

    PubMed  Google Scholar 

  • Zuk, O., Hechte, E., Sunyaev, S. R., & Lander, E. S. (2012). The mystery of missing heritability: Genetic interactions create phantom heritability. Proceedings of the National Academy of Sciences U S A, 109(4), 1193–1198.

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants HD027802 and HD010333 from The Eunice Kennedy Shriver National Institute of Child Health and Human Development and by grant MH063207 from the National Institute of Mental Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sally J. Wadsworth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wadsworth, S., Corley, R., DeFries, J. (2014). Cognitive Abilities in Childhood and Adolescence. In: Finkel, D., Reynolds, C. (eds) Behavior Genetics of Cognition Across the Lifespan. Advances in Behavior Genetics, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7447-0_1

Download citation

Publish with us

Policies and ethics