Skip to main content

Automated Carotid IMT Measurement and Its Validation in Low Contrast Ultrasound Database of 885 Patient Indian Population Epidemiological Study: Results of AtheroEdge® Software

  • Chapter
  • First Online:
Multi-Modality Atherosclerosis Imaging and Diagnosis

Abstract

This chapter demonstrates the usage of an automated computer-based IMT measurement system called CALEX 3.0 (a class of patented AtheroEdge® software) on a low contrast and low-resolution image database acquired during an epidemiological study from India. The overall purpose of this chapter is to show that fully automated methods nowadays have accuracy and reproducibility suitable to epidemiological studies.

The image contrast was very low resolution, with pixel density of 12.7 pixels/mm. The accuracy and reproducibility of the AtheroEdge® software system were compared with that of the manual tracings of a vascular surgeon—considered as a gold standard.

We automatically measured the IMT value of 885 common carotid arteries in longitudinal B-Mode images. CALEX 3.0 consisted of a stage for the automatic recognition of the carotid artery and an IMT measurement modulus made of a fuzzy K-means classifier. Performance was assessed by measuring the system accuracy and reproducibility against manual tracings by experts.

Results were very encouraging: CALEX 3.0 processed all the 885 images of the dataset (100% success). The average automated obtained IMT measurement by CALEX 3.0 was 0.407 ± 0.083 mm compared with 0.429 ± 0.052 mm for the manual tracings, which led to an IMT bias of 0.022 ± 0.081 mm. The IMT measurement accuracy (0.022 mm) was comparable to that obtained on high-resolution images and the reproducibility (0.081 mm) was very low and suitable to clinical application. The Figure-of-Merit defined as the percent agreement between the computer-estimated IMT and manually measured IMT for CALEX 3.0 was 94.7%.

CALEX 3.0 had a 100% success in processing low contrast/low-resolution images. CALEX 3.0 is the first technique, which has led to high accuracy and reproducibility on low-resolution images acquired during an epidemiological study. We propose CALEX 3.0 as a generalized framework for IMT measurement on large datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. WHO. Cardiovascular disease [WWW document]. http://www.who.int/cardiovascular_diseases/en/

  2. Badimon JJ, Ibanez B, Cimmino G (2009) Genesis and dynamics of atherosclerotic lesions: implications for early detection. Cerebrovasc Dis 27(Suppl 1):38–47

    Article  PubMed  Google Scholar 

  3. Walter M (2009) Interrelationships among HDL metabolism, aging, and atherosclerosis. Arterioscler Thromb Vasc Biol 29:1244–1250

    Article  PubMed  CAS  Google Scholar 

  4. Kampoli AM, Tousoulis D, Antoniades C, Siasos G, Stefanadis C (2009) Biomarkers of premature atherosclerosis. Trends Mol Med 15:323–332

    Article  PubMed  CAS  Google Scholar 

  5. U-King-Im JM, Young V, Gillard JH (2009) Carotid-artery imaging in the diagnosis and management of patients at risk of stroke. Lancet Neurol 8:569–580

    Article  PubMed  Google Scholar 

  6. Kastelein JJ, Wiegman A, de Groot E (2003) Surrogate markers of atherosclerosis: impact of statins. Atheroscler Suppl 4:31–36

    Article  PubMed  CAS  Google Scholar 

  7. Polak JF, Pencina MJ, Meisner A, Pencina KM, Brown LS, Wolf PA, D’Agostino RB Sr (2010) Associations of carotid artery intima-media thickness (IMT) with risk factors and prevalent cardiovascular disease: comparison of mean common carotid artery IMT with maximum internal carotid artery IMT. J Ultrasound Med 29:1759–1768

    PubMed  Google Scholar 

  8. Touboul PJ, Hennerici MG, Meairs S, Adams H, Amarenco P, Bornstein N et al (2007) Mannheim carotid intima-media thickness consensus (2004–2006). An update on behalf of the Advisory Board of the 3rd and 4th Watching the Risk Symposium, 13th and 15th European Stroke Conferences, Mannheim, Germany, 2004, and Brussels, Belgium, 2006. Cerebrovasc Dis 23:75–80

    Article  PubMed  Google Scholar 

  9. Touboul PJ, Hennerici MG, Meairs S, Adams H, Amarenco P, Desvarieux M et al (2004) Mannheim intima-media thickness consensus. Cerebrovasc Dis 18:346–349

    Article  PubMed  Google Scholar 

  10. Watanabe H, Yamane K, Egusa G, Kohno N (2004) Influence of westernization of lifestyle on the progression of IMT in Japanese. J Atheroscler Thromb 11:330–334

    Article  PubMed  Google Scholar 

  11. van der Meer IM, Bots ML, Hofman A, del Sol AI, van der Kuip DA, Witteman JC (2004) Predictive value of noninvasive measures of atherosclerosis for incident myocardial infarction: the Rotterdam Study. Circulation 109:1089–1094

    Article  PubMed  Google Scholar 

  12. Liu L, Zhao F, Yang Y, Qi LT, Zhang BW, Chen F et al (2008) The clinical significance of carotid intima-media thickness in cardiovascular diseases: a survey in Beijing. J Hum Hypertens 22:259–265

    Article  PubMed  CAS  Google Scholar 

  13. (1991) Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade carotid stenosis. North American Symptomatic Carotid Endarterectomy Trial Collaborators. N Engl J Med 325:445–453

    Google Scholar 

  14. Fisher M, Martin A, Cosgrove M, Norris JW (1993) The NASCET-ACAS plaque project. North American Symptomatic Carotid Endarterectomy Trial. Asymptomatic Carotid Atherosclerosis Study. Stroke 24:I24–I25, discussion I31–I32

    Article  PubMed  CAS  Google Scholar 

  15. Grogan JK, Shaalan WE, Cheng H, Gewertz B, Desai T, Schwarze G et al (2005) B-mode ultrasonographic characterization of carotid atherosclerotic plaques in symptomatic and asymptomatic patients. J Vasc Surg 42:435–441

    Article  PubMed  Google Scholar 

  16. Johnsen SH, Mathiesen EB (2009) Carotid plaque compared with intima-media thickness as a predictor of coronary and cerebrovascular disease. Curr Cardiol Rep 11:21–27

    Article  PubMed  Google Scholar 

  17. Bhuiyan AR, Srinivasan SR, Chen W, Paul TK, Berenson GS (2006) Correlates of vascular structure and function measures in asymptomatic young adults: the Bogalusa Heart Study. Atherosclerosis 189:1–7

    Article  PubMed  CAS  Google Scholar 

  18. Schargrodsky H, Hernandez-Hernandez R, Champagne BM, Silva H, Vinueza R, Silva Aycaguer LC et al (2008) CARMELA: assessment of cardiovascular risk in seven Latin American cities. Am J Med 121:58–65

    Article  PubMed  Google Scholar 

  19. de Groot E, van Leuven SI, Duivenvoorden R, Meuwese MC, Akdim F, Bots ML, Kastelein JJ (2008) Measurement of carotid intima-media thickness to assess progression and regression of atherosclerosis. Nat Clin Pract Cardiovasc Med 5:280–288

    Article  PubMed  Google Scholar 

  20. Rothwell PM, Gibson RJ, Slattery J, Warlow CP (1994) Prognostic value and reproducibility of measurements of carotid stenosis. A comparison of three methods on 1001 angiograms. European Carotid Surgery Trialists’ Collaborative Group. Stroke 25:2440–2444

    Article  PubMed  CAS  Google Scholar 

  21. Naqvi TZ (2006) Ultrasound vascular screening for cardiovascular risk assessment. Why, when and how? Minerva Cardioangiol 54:53–67

    PubMed  CAS  Google Scholar 

  22. Sipila O, Blomqvist P, Jauhiainen M, Kilpelainen T, Malaska P, Mannila V et al (2011) Reproducibility of phantom-based quality assurance parameters in real-time ultrasound imaging. Acta Radiol 52(6):665–669

    Article  PubMed  Google Scholar 

  23. Lieu D (2010) Ultrasound physics and instrumentation for pathologists. Arch Pathol Lab Med 134:1541–1556

    PubMed  Google Scholar 

  24. Loizou CP, Pattichis CS, Pantziaris M, Tyllis T, Nicolaides A (2006) Quality evaluation of ultrasound imaging in the carotid artery based on normalization and speckle reduction filtering. Med Biol Eng Comput 44:414–426

    Article  PubMed  CAS  Google Scholar 

  25. Molinari F, Zeng G, Suri JS (2010) An integrated approach to computer-based automated tracing and its validation for 200 common carotid arterial wall ultrasound images: a new technique. J Ultrasound Med 29:399–418

    PubMed  Google Scholar 

  26. Molinari F, Zeng G, Suri JS (2010) Intima-media thickness: setting a standard for completely automated method for ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control 57:1112–1124

    Article  PubMed  Google Scholar 

  27. Molinari F, Liboni W, Giustetto P, Badalamenti S, Suri JS (2009) Automatic computer-based tracings (ACT) in longitudinal 2-D ultrasound images using different scanners. J Mech Med Biol 9:481–505

    Article  Google Scholar 

  28. Molinari F, Zeng G, Suri J (2010) Greedy technique and its validation for fusion of two segmentation paradigms leads to an accurate intima-media thickness measure in plaque carotid arterial ultrasound. J Vasc Ultrasound 34:63–73

    Google Scholar 

  29. Molinari F, Zeng G, Suri J (2011) Inter-greedy technique for fusion of different segmentation strategies leading to high-performance carotid IMT measurement in ultrasound images. J Med Syst 35(5):905–919

    Article  PubMed  Google Scholar 

  30. Saba L, Montisci R, Molinari F, Tallapally N, Zeng G, Mallarini G, Suri JS (2012) Comparison between manual and automated analysis for the quantification of carotid wall by using sonography. A validation study with CT. Eur J Radiol 81(5):911–918

    Article  PubMed  Google Scholar 

  31. Saba L, Sanfilippo R, Tallapally N, Molinari F, Montisci R, Mallarini G, Suri JS (2011) Evaluation of carotid wall thickness by using computed tomography (CT) and semi-automated ultrasonographic software. J Vasc Ultrasound 35(3):136–142

    Google Scholar 

  32. Molinari F, Zeng G, Suri JS (2010) Effect of learning algorithm on automated tracings of adventitia borders in atherosclerotic common carotid artery (CCA) ultrasound. In: 2010 AIUM annual convention, San Diego, CA

    Google Scholar 

  33. Suri JS, Haralick RM, Sheehan FH (2000) Greedy algorithm for error correction in automatically produced boundaries from low contrast ventriculograms. Pattern Anal Appl 3:39–60

    Article  Google Scholar 

  34. Stein JH, Korcarz CE, Mays ME, Douglas PS, Palta M, Zhang H et al (2005) A semiautomated ultrasound border detection program that facilitates clinical measurement of ultrasound carotid intima-media thickness. J Am Soc Echocardiogr 18:244–251

    Article  PubMed  Google Scholar 

  35. Faita F, Gemignani V, Bianchini E, Giannarelli C, Ghiadoni L, Demi M (2008) Real-time measurement system for evaluation of the carotid intima-media thickness with a robust edge operator. J Ultrasound Med 27:1353–1361

    PubMed  Google Scholar 

  36. Molinari F, Zeng G, Suri JS (2010) A state of the art review on intima-media thickness (IMT) measurement and wall segmentation techniques for carotid ultrasound. Comput Methods Programs Biomed 100:201–221

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The Hyderabad DXA Study was funded by the Wellcome Trust (WT083707MA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippo Molinari Ph.D. .

Editor information

Editors and Affiliations

Appendices

Appendix 1. Polyline Distance

The polyline distance metric (PDM) is a robust metric to define the distance between two boundaries. The basic idea is to measure the distance of each vertex of a boundary to the segments of the other boundary. The polyline distance from vertex v to the boundary B 2 can be defined as the minimum distance between v and the segments of B 2. The distance between the vertexes of B 1 and the segments of B 2 is then defined as the sum of the distances from the vertexes of B 1 to the closest segment of B 2. Let’s call this distance as d(B 1,B 2). Similarly, it is possible to calculate the distance between the vertices of B 2 and the closest segment of B 1 (let’s call this distance as d(B 2,B 1)). The polyline distance between boundaries is the defined as

$$ D\left( {{B_1},{B_2}} \right)=\frac{{d\left( {{B_1},{B_2}} \right)+d\left( {{B_2},{B_1}} \right)}}{{\left( {\#\ \mathrm{of}\ \mathrm{vertices}\ \mathrm{of}\ {B_1} + \#\ \mathrm{of}\ \mathrm{vertices}\ \mathrm{of}\ {B_2}} \right)}} $$
(17.1)

Appendix 2. Definition of the IMT Bias, Absolute Error, and Squared Errors

Let IMT i be the intima–media thickness value automatically computed by CALEX 3.0 on the ith image of the database. Let GTIMT i be the IMT value computed by manual measurements.

The IMT measurement bias ε i is defined as

$$ {\varepsilon_i}=\mathrm{GTIM}{{\mathrm{T}}_i}-\mathrm{IM}{{\mathrm{T}}_i} $$
(17.2)

The absolute value μ i of the IMT bias is defined as

$$ {\mu_i}=\left| {\mathrm{IM}{{\mathrm{T}}_i}-\mathrm{GTIM}{{\mathrm{T}}_i}} \right| $$
(17.3)

The squared error η i is, finally, defined as

$$ {\eta_i}={{\left| {\mathrm{IM}{{\mathrm{T}}_i}-\mathrm{GTIM}{{\mathrm{T}}_i}} \right|}^2} $$
(17.4)

By averaging all these error metrics on the N images of the database, we computed the overall system errors as:

$$ \overline{\varepsilon}=\frac{1}{N}\sum\limits_{i=1}^N {{\varepsilon_i}} $$
(17.5)
$$ \overline{\mu}=\frac{1}{N}\sum\limits_{i=1}^N {{\mu_i}} $$
(17.6)
$$ \overline{\eta}=\frac{1}{N}\sum\limits_{i=1}^N {{\eta_i}} $$
(17.7)

Appendix 3. Figure-of-Merit

Let IMT i be the intima–media thickness value automatically computed by CALEX 3.0 on the ith image of the database. Let GTIMT i be the IMT value computed by manual measurements. If we consider a database of N images, then the overall system IMT estimate can be defined as

$$ \overline{\mathrm{IM}\mathrm{T}}=\frac{1}{N}\sum\limits_{i=1}^N {\mathrm{IM}{{\mathrm{T}}_i}}$$
(17.8)
$$ \overline{\mathrm{GTIM}\mathrm{T}}=\frac{1}{N}\sum\limits_{i=1}^N {\mathrm{GTIM}{{\mathrm{T}}_i}} $$
(17.9)

The Figure-of-Merit (FoM) is mathematically represented as

$$ \mathrm{FoM}=100-\left| {\frac{{\overline{\mathrm{IMT}}-\overline{\mathrm{GTIMT}}}}{{\overline{\mathrm{GTIMT}}}}} \right|\times 100 $$
(17.10)

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Molinari, F. et al. (2014). Automated Carotid IMT Measurement and Its Validation in Low Contrast Ultrasound Database of 885 Patient Indian Population Epidemiological Study: Results of AtheroEdge® Software. In: Saba, L., Sanches, J., Pedro, L., Suri, J. (eds) Multi-Modality Atherosclerosis Imaging and Diagnosis. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7425-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7425-8_17

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7424-1

  • Online ISBN: 978-1-4614-7425-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics