Skip to main content

Pathophysiology of Heart Failure: Back to Basics

  • Chapter
  • First Online:
Translational Approach to Heart Failure

Abstract

Basic mechanisms of chronic heart failure are reviewed. A central theme that cuts all the way through this review is that chronic heart failure is a problem of failing complexity, rather than a problem of the failure of a single unit (e.g., cell type) or processes (e.g., contractility). A brief paragraph introducing this central concept will precede the main text of this chapter.

Next, a definition of heart failure will be formulated, and the most common etiologies and symptoms of heart failure in clinical cardiology summarized. The progressive nature of chronic heart failure will then be described and its driving forces analyzed. Finally, indices of cardiac performance and heart failure will be summarized and placed into a conceptual frame. The chapter will end by scrutinizing the mechanisms of diastolic dysfunction and by formulating some future trends of heart failure research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. De Keulenaer GW, Brutsaert DL (2011) Systolic and diastolic heart failure are overlapping phenotypes within the heart failure spectrum. Circulation 123:1996–2004

    Article  PubMed  Google Scholar 

  2. Brutsaert DL (2006) Cardiac dysfunction in heart failure: the cardiologist’s love affair with time. Prog Cardiovasc Dis 49:157–181

    Article  PubMed  Google Scholar 

  3. Prigogine I, Strengers I (1979) La nouvelle alliance. Gallimard, Paris

    Google Scholar 

  4. Lusis AJ, Weiss JN (2010) Cardiovascular networks: systems-based approaches to cardiovascular disease. Circulation 121:157–170

    Article  PubMed  Google Scholar 

  5. Borlaug BA, Redfield MM (2011) Diastolic and systolic heart failure are distinct phenotypes within the heart failure spectrum. Circulation 123:2006–2013

    Article  PubMed  Google Scholar 

  6. Yip G, Wang M, Zhang Y, Fung JW, Ho PY, Sanderson JE (2002) Left ventricular long axis function in diastolic heart failure is reduced in both diastole and systole: time for a redefinition? Heart 87:121–125

    Article  PubMed  CAS  Google Scholar 

  7. De Keulenaer GW, Brutsaert DL (2009) The heart failure spectrum: time for a phenotype-oriented approach. Circulation 119:3044–3046

    Article  PubMed  Google Scholar 

  8. Chatterjee K, Massie B (2007) Systolic and diastolic heart failure: differences and similarities. J Card Fail 13:569–576

    Article  PubMed  Google Scholar 

  9. Januzzi JL, van Kimmenade R, Lainchbury J, Bayes-Genis A, Ordonez-Llanos J, Santalo-Bel M, Pinto YM, Richards M (2006) NT-proBNP testing for diagnosis and short-term prognosis in acute destabilized heart failure: an international pooled analysis of 1256 patients: the International Collaborative of NT-proBNP Study. Eur Heart J 27:330–337

    Article  PubMed  CAS  Google Scholar 

  10. Drexler H, Coats AJ (1996) Explaining fatigue in congestive heart failure. Annu Rev Med 47:241–256

    Article  PubMed  CAS  Google Scholar 

  11. Borlaug BA, Melenovsky V, Russell SD, Kessler K, Pacak K, Becker LC, Kass DA (2006) Impaired chronotropic and vasodilator reserves limit exercise capacity in patients with heart failure and a preserved ejection fraction. Circulation 14(114):2138–2147

    Article  Google Scholar 

  12. Kubo SH, Rector TS, Bank AJ, Williams RE, Heifetz SM (1991) Endothelium-dependent vasodilation is attenuated in patients with heart failure. Circulation 84:1589–1596

    Article  PubMed  CAS  Google Scholar 

  13. Middlekauff HR (2010) Making the case for skeletal myopathy as the major limitation of exercise capacity in heart failure. Circ Heart Fail 3(4):537–546

    Article  PubMed  Google Scholar 

  14. Fukuta H, Little WC (2007) Contribution of systolic and diastolic abnormalities to heart failure with a normal and a reduced ejection fraction. Prog Cardiovasc Dis 49:229–240

    Article  PubMed  Google Scholar 

  15. Piepoli M, Clark AL, Volterrani M et al (1996) Contribution of muscle afferents to the hemodynamic, autonomic, and ventilatory responses to exercise in patients with chronic heart failure: effects of physical training. Circulation 93:940–952

    Article  PubMed  CAS  Google Scholar 

  16. Cohn JN, Archibald DG, Ziesche S, Franciosa JA, Harston WE, Tristani FE, Dunkman WB, Jacobs W, Francis GS, Flohr KH (1986) Effect of vasodilator therapy on mortality in chronic congestive heart failure. Results of a Veterans Administration Cooperative Study. N Engl J Med 314:1547–1552

    Article  PubMed  CAS  Google Scholar 

  17. DiBianco R, Shabetai R, Kostuk W, Moran J, Schlant RC, Wright R (1989) A comparison of oral milrinone, digoxin, and their combination in the treatment of patients with chronic heart failure. N Engl J Med 320(11):677–683

    Article  PubMed  CAS  Google Scholar 

  18. Packer M, Carver JR, Rodeheffer RJ, Ivanhoe RJ, DiBianco R, Zeldis SM, Hendrix GH, Bommer WJ, Elkayam U, Kukin ML (1991) Effect of oral milrinone on mortality in severe chronic heart failure. The PROMISE Study Research Group. N Engl J Med 325:1468–1475

    Article  PubMed  CAS  Google Scholar 

  19. The CONSENSUS Trial Study Group (1987) Effects of enalapril on mortality in severe congestive heart failure. Results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). N Engl J Med 316(23):1429–1435

    Article  Google Scholar 

  20. Cohn JN, Tognoni G, Valsartan Heart Failure Trial Investigators (2001) A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure. N Engl J Med 345:1667–1675

    Article  PubMed  CAS  Google Scholar 

  21. Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, Palensky J, Wittes J (1999) The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med 341:709–717

    Article  PubMed  CAS  Google Scholar 

  22. MERIT-HF Study Group (1999) Effects of metoprolol in chronic heart failure. Lancet 353:2001

    Article  Google Scholar 

  23. Mann DL, McMurray JJ, Packer M, Swedberg K, Borer JS, Colucci WS, Djian J, Drexler H, Feldman A, Kober L, Krum H, Liu P, Nieminen M, Tavazzi L, van Veldhuisen DJ, Waldenstrom A, Warren M, Westheim A, Zannad F, Fleming T (2004) Targeted anticytokine therapy in patients with chronic heart failure: results of the randomized etanercept worldwide evaluation (RENEWAL). Circulation 109:1594–1602

    Article  PubMed  CAS  Google Scholar 

  24. Brutsaert DL (2003) Cardiac endothelial-myocardial signaling: its role in cardiac growth, contractile performance, and rhythmicity. Physiol Rev 83:59–115

    PubMed  CAS  Google Scholar 

  25. Lemmens K, Doggen K, De Keulenaer GW (2007) Role of neuregulin-1/ErbB signaling in cardiovascular physiology and disease: implications for therapy of heart failure. Circulation 116:954–960

    Article  PubMed  CAS  Google Scholar 

  26. Tirziu D, Giordano FJ, Simons M (2010) Cell communications in the heart. Circulation 122:928–937

    Article  PubMed  Google Scholar 

  27. Piro M, Della Bona R, Abbate A, Biasucci LM, Crea F (2010) Sex-related differences in myocardial remodeling. J Am Coll Cardiol 55:1057–1065

    Article  PubMed  CAS  Google Scholar 

  28. Abel ED, Litwin SE, Sweeney G (2008) Cardiac remodeling in obesity. Physiol Rev 88:389–419

    Article  PubMed  CAS  Google Scholar 

  29. Cooper LT Jr (2009) Myocarditis. N Engl J Med 360:1526–1538

    Article  PubMed  CAS  Google Scholar 

  30. Turer AT, Hill JA (2010) Pathogenesis of myocardial ischemia-reperfusion injury and rationale for therapy. Am J Cardiol 106:360–368

    Article  PubMed  Google Scholar 

  31. Poornima IG, Parikh P, Shannon RP (2006) Diabetic cardiomyopathy: the search for a unifying hypothesis. Circ Res 98:596–605

    Article  PubMed  CAS  Google Scholar 

  32. Mudd J, Kass DA (2008) Tackling heart failure in the twenty-first century. Nature 451:919–928

    Article  PubMed  CAS  Google Scholar 

  33. De Keulenaer GW, Doggen K, Lemmens K (2010) The vulnerability of the heart as a pluricellular paracrine organ: lessons from unexpected triggers of heart failure in targeted ErbB2 anticancer therapy. Circ Res 106:35–46

    Article  PubMed  Google Scholar 

  34. Bers DM (2006) Altered cardiac myocyte Ca regulation in heart failure. Physiology (Bethesda) 21:380–387

    Article  CAS  Google Scholar 

  35. Lefkowitz RJ, Rockman HA, Koch WJ (2000) Catecholamines, cardiac beta-adrenergic receptors, and heart failure. Circulation 101:1634–1637

    Article  PubMed  CAS  Google Scholar 

  36. Segers VF, Lee RT (2008) Stem-cell therapy for cardiac disease. Nature 451:937–942

    Article  PubMed  CAS  Google Scholar 

  37. Frank KF, Bolck B, Brixius K, Kranias EG, Schwinger RH (2002) Modulation of SERCA: implications for the failing human heart. Basic Res Cardiol 97(suppl 1):I72–I78

    PubMed  Google Scholar 

  38. del Monte F, Harding SE, Dec GW, Gwathmey JK, Hajjar RJ (2002) Targeting phospholamban by gene transfer in human heart failure. Circulation 105:904–907

    Article  PubMed  Google Scholar 

  39. MacLennan DH, Kranias EG (2003) Phospholamban: a crucial regulator of cardiac contractility. Nat Rev Mol Cell Biol 4:566–577

    Article  PubMed  CAS  Google Scholar 

  40. Hasenfuss G, Pieske B (2002) Calcium cycling in congestive heart failure. J Mol Cell Cardiol 34:951–969

    Article  PubMed  CAS  Google Scholar 

  41. Miyamoto MI, del Monte F, Schmidt U, DiSalvo TS, Kang ZB, Matsui T, Guerrero JL, Gwathmey JK, Rosenzweig A, Hajjar RJ (2000) Adenoviral gene transfer of SERCA2a improves left-ventricular function in aortic-banded rats in transition to heart failure. Proc Natl Acad Sci U S A 97:793–798

    Article  PubMed  CAS  Google Scholar 

  42. Hoshijima M, Ikeda Y, Iwanaga Y, Minamisawa S, Date MO, Gu Y, Iwatate M, Li M, Wang L, Wilson JM, Wang Y, Ross J Jr, Chien KR (2002) Chronic suppression of heart-failure progression by a pseudophosphorylated mutant of phospholamban via in vivo cardiac rAAV gene delivery. Nat Med 8:864–871

    PubMed  CAS  Google Scholar 

  43. Mercadier JJ (2000) Progression from cardiac hypertrophy to heart failure. In: Hosenpud D, Greenberg BH (eds) Congestive heart failure, 2nd edn. Lipincott Williams & Wilkins, Philadelphia, pp 83–100

    Google Scholar 

  44. Geisterfer-Lowrance AA, Christe M, Conner DA, Ingwall JS, Schoen FJ, Seidman CE, Seidman JG (1996) A mouse model of familial hypertrophic cardiomyopathy. Science 272:731–734

    Article  PubMed  CAS  Google Scholar 

  45. Paulus WJ, Bronzwaer JG, Felice H, Kishan N, Wellens F (1992) Deficient acceleration of left ventricular relaxation during exercise after heart transplantation. Circulation 86:1175–1185

    Article  PubMed  CAS  Google Scholar 

  46. Vantrimpont PJ, Felice H, Paulus WJ (1995) Does dobutamine prevent the rise in left ventricular filling pressures observed during exercise after heart transplantation? Eur Heart J 16:1300–1306

    PubMed  CAS  Google Scholar 

  47. Brutsaert DL, Rademakers FE, Sys SU (1984) Triple control of relaxation: implications in cardiac disease. Circulation 69:190–196

    Article  PubMed  CAS  Google Scholar 

  48. Hori M, Inoue M, Kitakaze M, Tsujioka K, Ishida Y, Fukunami M, Nakajima S, Kitabatake A, Abe H (1985) Loading sequence is a major determinant of afterload-dependent relaxation in intact canine heart. Am J Physiol 249:H747–H754

    PubMed  CAS  Google Scholar 

  49. Kawaguchi M, Hay I, Fetics B, Kass DA (2003) Combined ventricular systolic and arterial stiffening in patients with heart failure and preserved ejection fraction: implications for systolic and diastolic reserve limitations. Circulation 107:714–720

    Article  PubMed  Google Scholar 

  50. LeWinter MM, Granzier H (2010) Cardiac titin: a multifunctional giant. Circulation 121:2137–2145

    Article  PubMed  Google Scholar 

  51. Wu Y, Cazorla O, Labeit D et al (2000) Changes in titin and collagen underlie diastolic stiffness diversity of cardiac muscle. J Mol Cell Cardiol 32:2151–2162

    Article  PubMed  CAS  Google Scholar 

  52. Bishu K, Hamdani N, Mohammed S, Kruger M, Ohtani T, Ogut O, Brozovich F, Burnett J, Linke WW, Redfield MM (2011) Sildenafil and B-type natriuretic peptide acutely phosphorylate titin and improve diastolic distensibility in vivo. Circulation 124:2882–2891

    Article  PubMed  CAS  Google Scholar 

  53. Weber KT, Janicki JS, Pick R, Capasso J, Anversa P (1990) Myocardial fibrosis and pathologic hypertrophy in the rat with renovascular hypertension. Am J Cardiol 65:1G–7G

    Article  PubMed  CAS  Google Scholar 

  54. Kato S, Spinale FG, Tanaka R, Johnson W, Cooper G IV, Zile MR (1995) Inhibition of collagen cross-linking: effects on fibrillar collagen and ventricular diastolic function. Am J Physiol 269:H863–H868

    PubMed  CAS  Google Scholar 

  55. Stroud JD, Baicu CF, Barnes MA, Spinale FG, Zile MR (2002) Viscoelastic properties of pressure overload hypertrophied myocardium: effect of serine protease treatment. Am J Physiol Heart Circ Physiol 282:H2324–H2335

    PubMed  CAS  Google Scholar 

  56. Brower GL, Janicki JS (2001) Contribution of ventricular remodeling to pathogenesis of heart failure in rats. Am J Physiol Heart Circ Physiol 280:H674–H683

    PubMed  CAS  Google Scholar 

  57. Kass DA, Bronzwaer JG, Paulus WJ (2004) What mechanisms underlie diastolic dysfunction in heart failure? Circ Res 94:1533–1542

    Article  PubMed  CAS  Google Scholar 

  58. Paulus WJ, Vantrimpont PJ, Shah AM (1995) Paracrine coronary endothelial control of left ventricular function in humans. Circulation 92:2119–2126

    Article  PubMed  CAS  Google Scholar 

  59. Blankenberg S, Zeller T, Saarela O, Havulinna AS, Kee F, Tunstall-Pedoe H, Kuulasmaa K, Yarnell J, Schnabel RB, Wild PS, Münzel TF, Lackner KJ, Tiret L, Evans A, Salomaa V, MORGAM Project (2010) Contribution of 30 biomarkers to 10-year cardiovascular risk estimation in 2 population cohorts: the MONICA, risk, genetics, archiving, and monograph (MORGAM) biomarker project. Circulation 121:2388–2397

    Article  PubMed  Google Scholar 

  60. Lander AD (2010) The edges of understanding. BMC Biol 8:40

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilles W. De Keulenaer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this chapter

Cite this chapter

De Keulenaer, G.W., Segers, V., Brutsaert, D.L. (2013). Pathophysiology of Heart Failure: Back to Basics. In: Bartunek, J., Vanderheyden, M. (eds) Translational Approach to Heart Failure. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7345-9_1

Download citation

Publish with us

Policies and ethics