Skip to main content

Nonnucleoside Reverse Transcriptase Inhibitors (NNRTIs)

  • Chapter
  • First Online:
Human Immunodeficiency Virus Reverse Transcriptase

Abstract

HIV is a retrovirus; the retroviral life cycle is characterized by two specific steps: (1) the conversion of the single-stranded RNA genome found in the virion into double-stranded DNA by the viral enzyme reverse transcriptase (RT) and (2) the subsequent insertion of this DNA copy into the host genome by the viral enzyme integrase. Both of these steps are essential for the viral life cycle; both are targets for important anti-HIV drugs. There are two broad classes of drugs that block reverse transcription: nucleoside/nucleotide analogs (NRTIs) and nonnucleoside inhibitors (NNRTIs). The conversion of the RNA genome into DNA involves the collaboration of the two enzymatic activities of RT, a DNA polymerase that can copy either an RNA or a DNA substrate, and an RNase H that cleaves RNA if, and only if, it is part of an RNA/DNA duplex (see Chap. 1). The first anti-HIV drugs to be identified and used in clinic were NRTIs (see Chap. 2); the second class were the NNRTIs. NNRTIs bind to RT and allosterically block its polymerase activity. NRTIs and NNRTIs are both used extensively to treat HIV-1 infected patients in the highly active antiviral therapies (HAART); both classes of drugs hold the promise that they can be used to reduce the transmission of the virus (Chap. 15). Because HIV infections cannot be cured by drug treatment, patients who begin drug therapy are usually on therapy for the rest of their lives. This makes the problem of developing anti-HIV drugs particularly challenging and places special emphasis on two fundamental considerations: the toxicity of long-term therapy and the development of resistance. As will be discussed in more detail later, for NNRTIs, the development of resistance has been the larger issue; in contrast to NRTIs, the toxicity of most NNRTIs has been a lesser concern. This chapter will discuss NNRTIs and will be divided into three parts: (1) mechanism of action, (2) the problem of resistance, and (3) a brief look forward at what the future might hold, both in terms of the development of new NNRTIs and in their uses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbondanzieri EA, Bokinsky G, Rausch JW, Zhang JX, Le Grice SF, Zhuang X (2008) Dynamic binding orientations direct activity of HIV reverse transcriptase. Nature 453(7192):184–189

    Article  PubMed  CAS  Google Scholar 

  • Ambrose Z, Julias JG, Boyer PL, Kewalramani VN, Hughes SH (2006) The level of reverse transcriptase (RT) in human immunodeficiency virus type 1 particles affects susceptibility to nonnucleoside RT inhibitors but not to lamivudine. J Virol 80(5):2578–2581

    Article  PubMed  Google Scholar 

  • Armstrong KL, Lee TH, Essex M (2011) Replicative fitness costs of nonnucleoside reverse transcriptase inhibitor drug resistance mutations on HIV subtype C. Antimicrob Agents Chemother 55(5):2146–2153

    Article  PubMed  CAS  Google Scholar 

  • Arnold E, Das K, Ding J, Yadav PNS, Hsiou Y, Boyer PL, Hughes SH (1996) Targeting HIV reverse transcriptase for anti-AIDS drug design: Structural and biological considerations for chemotherapeutic strategies. Drug Design and Discovery 13(3–4):29–47

    Article  PubMed  Google Scholar 

  • Barber AM, Hizi A, Maizel JV Jr, Hughes SH (1990) HIV-1 reverse transcriptase: structure predictions for the polymerase domain. AIDS Res Hum Retroviruses 6(9):1061–1072

    Article  PubMed  CAS  Google Scholar 

  • Boyer PL, Ding J, Arnold E, Hughes SH (1994) Subunit specificity of mutations that confer resistance to nonnucleoside inhibitors in human immunodeficiency virus type 1 reverse transcriptase. Antimicrob Agents Chemother 38(9):1909–1914

    Article  PubMed  CAS  Google Scholar 

  • Cohen CJ, Andrade-Villanueva J, Clotet B, Fourie J, Johnson MA, Ruxrungtham K et al (2011) Rilpivirine versus efavirenz with two background nucleoside or nucleotide reverse transcriptase inhibitors in treatment-naive adults infected with HIV-1 (THRIVE): a phase 3, randomised, non-inferiority trial. Lancet 378(9787):229–237

    Article  PubMed  CAS  Google Scholar 

  • Das K, Ding J, Hsiou Y, Clark AD Jr, Moereels H, Koymans L et al (1996) Crystal structures of 8-Cl and 9-Cl TIBO complexed with wild-type HIV-1 RT and 8-Cl TIBO complexed with the Tyr181Cys HIV-1 RT drug-resistant mutant. J Mol Biol 264(5):1085–1100

    Article  PubMed  CAS  Google Scholar 

  • Das K, Clark AD Jr, Lewi PJ, Heeres J, De Jonge MR, Koymans LM et al (2004) Roles of conformational and positional adaptability in structure-based design of TMC125-R165335 (etravirine) and related non-nucleoside reverse transcriptase inhibitors that are highly potent and effective against wild-type and drug-resistant HIV-1 variants. J Med Chem 47(10): 2550–2560

    Article  PubMed  CAS  Google Scholar 

  • Das K, Lewi PJ, Hughes SH, Arnold E (2005) Crystallography and the design of anti-AIDS drugs: conformational flexibility and positional adaptability are important in the design of non-nucleoside HIV-1 reverse transcriptase inhibitors. Prog Biophys Mol Biol 88(2):209–231

    Article  PubMed  CAS  Google Scholar 

  • Das K, Bauman JD, Clark AD Jr, Frenkel YV, Lewi PJ, Shatkin AJ et al (2008) High-resolution structures of HIV-1 reverse transcriptase/TMC278 complexes: strategic flexibility explains potency against resistance mutations. Proc Natl Acad Sci USA 105(5):1466–1471

    Article  PubMed  CAS  Google Scholar 

  • Das K, Bauman JD, Rim AS, Dharia C, Clark AD Jr, Camarasa MJ et al (2011) Crystal structure of tert-butyldimethylsilyl-spiroaminooxathioledioxide-thymine (TSAO-T) in complex with HIV-1 reverse transcriptase (RT) redefines the elastic limits of the non-nucleoside inhibitor-binding pocket. J Med Chem 54(8):2727–2737

    Article  PubMed  CAS  Google Scholar 

  • Das K, Martinez SE, Bauman JD, Arnold E (2012) HIV-1 reverse transcriptase complex with DNA and nevirapine reveals non-nucleoside inhibition mechanism. Nat Struct Mol Biol 19(2):253–259

    Article  PubMed  CAS  Google Scholar 

  • Deeks SG (2001) International perspectives on antiretroviral resistance. Nonnucleoside reverse transcriptase inhibitor resistance. J Acquir Immune Defic Syndr 26(Suppl 1):S25–S33

    PubMed  CAS  Google Scholar 

  • Ding J, Das K, Moereels H, Koymans L, Andries K, Janssen PA et al (1995) Structure of HIV-1 RT/TIBO R 86183 complex reveals similarity in the binding of diverse nonnucleoside inhibitors. Nat Struct Biol 2(5):407–415

    Article  PubMed  CAS  Google Scholar 

  • Farr SL, Nelson JA, Ng’ombe TJ, Kourtis AP, Chasela C, Johnson JA et al (2010) Addition of 7 days of zidovudine plus lamivudine to peripartum single-dose nevirapine effectively reduces nevirapine resistance postpartum in HIV-infected mothers in Malawi. J Acquir Immune Defic Syndr 54(5):515–523

    Article  PubMed  CAS  Google Scholar 

  • Ford N, Calmy A, Mofenson L (2011) Safety of efavirenz in the first trimester of pregnancy: an updated systematic review and meta-analysis. AIDS 25(18):2301–2304

    Article  PubMed  CAS  Google Scholar 

  • Gazzard B, Duvivier C, Zagler C, Castagna A, Hill A, van Delft Y et al (2011) Phase 2 double-blind, randomized trial of etravirine versus efavirenz in treatment-naive patients: 48-week results. AIDS 25(18):2249–2258

    Article  PubMed  CAS  Google Scholar 

  • Gopalakrishnan V, Benkovic S (1994) Effect of a thiobenzimidazolone derivative on DNA strand transfer catalyzed by HIV-1 reverse transcriptase. J Biol Chem 269(6):4110–4115

    PubMed  CAS  Google Scholar 

  • Hopkins AL, Ren J, Esnouf RM, Willcox BE, Jones EY, Ross C et al (1996) Complexes of HIV-1 reverse transcriptase with inhibitors of the HEPT series reveal conformational changes relevant to the design of potent non-nucleoside inhibitors. J Med Chem 39(8):1589–1600

    Article  PubMed  CAS  Google Scholar 

  • Hsiou Y, Ding J, Das K, Clark AD Jr, Hughes SH, Arnold E (1996) Structure of unliganded HIV-1 reverse transcriptase at 2.7 A resolution: implications of conformational changes for polymerization and inhibition mechanisms. Structure 4(7):853–860

    Article  PubMed  CAS  Google Scholar 

  • Hsiou Y, Das K, Ding J, Clark AD Jr, Kleim JP, Rosner M et al (1998) Structures of Tyr188Leu mutant and wild-type HIV-1 reverse transcriptase complexed with the non-nucleoside inhibitor HBY 097: inhibitor flexibility is a useful design feature for reducing drug resistance. J Mol Biol 284(2):313–323

    Article  PubMed  CAS  Google Scholar 

  • Hsiou Y, Ding J, Das K, Clark AD Jr, Boyer PL, Lewi P et al (2001) The Lys103Asn mutation of HIV-1 RT: a novel mechanism of drug resistance. J Mol Biol 309(2):437–445

    Article  PubMed  CAS  Google Scholar 

  • Huang H, Chopra R, Verdine GL, Harrison SC (1998) Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance. Science 282(5394):1669–1675

    Article  PubMed  CAS  Google Scholar 

  • Jacobo-Molina A, Ding J, Nanni RG, Clark AD Jr, Lu X, Tantillo C et al (1993) Crystal structure of human immunodeficiency virus type 1 reverse transcriptase complexed with double-stranded DNA at 3.0 A resolution shows bent DNA. Proc Natl Acad Sci USA 90(13):6320–6324

    Article  PubMed  CAS  Google Scholar 

  • Janssen PA, Lewi PJ, Arnold E, Daeyaert F, de Jonge M, Heeres J et al (2005) In search of a novel anti-HIV drug: multidisciplinary coordination in the discovery of 4-[[4-[[4-[(1E)-2-cyanoethenyl]-2,6-dimethylphenyl]amino]-2- pyrimidinyl]amino]benzonitrile (R278474, rilpivirine). J Med Chem 48(6):1901–1909

    Article  PubMed  CAS  Google Scholar 

  • Jilek BL, Zarr M, Sampah ME, Rabi SA, Bullen CK, Lai J et al (2012) A quantitative basis for antiretroviral therapy for HIV-1 infection. Nat Med 18(3):446–451

    Article  PubMed  CAS  Google Scholar 

  • Joly V, Descamps D, Peytavin G, Touati F, Mentre F, Duval X et al (2004) Evolution of human immunodeficiency virus type 1 (HIV-1) resistance mutations in nonnucleoside reverse transcriptase inhibitors (NNRTIs) in HIV-1-infected patients switched to antiretroviral therapy without NNRTIs. Antimicrob Agents Chemother 48(1):172–175

    Article  PubMed  CAS  Google Scholar 

  • Julias JG, Ferris AL, Boyer PL, Hughes SH (2001) Replication of phenotypically mixed human immunodeficiency virus type 1 virions containing catalytically active and catalytically inactive reverse transcriptase. J Virol 75(14):6537–6546

    Article  PubMed  CAS  Google Scholar 

  • Keele BF, Giorgi EE, Salazar-Gonzalez JF, Decker JM, Pham KT, Salazar MG et al (2008) Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection. Proc Natl Acad Sci USA 105(21):7552–7557

    Article  PubMed  CAS  Google Scholar 

  • Kohlstaedt LA, Wang J, Friedman JM, Rice PA, Steitz TA (1992) Crystal structure at 3.5 A resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science 256(5065): 1783–1790

    Article  PubMed  CAS  Google Scholar 

  • Lansdon EB, Samuel D, Lagpacan L, Brendza KM, White KL, Hung M et al (2010) Visualizing the molecular interactions of a nucleotide analog, GS-9148, with HIV-1 reverse transcriptase-DNA complex. J Mol Biol 397(4):967–978

    Article  PubMed  CAS  Google Scholar 

  • Micek MA, Blanco AJ, Carlsson J, Beck IA, Dross S, Matunha L et al (2012) Effects of short-course zidovudine on the selection of nevirapine-resistant HIV-1 in women taking single-dose nevirapine. J Infect Dis 205(12):1811–1815

    Article  PubMed  CAS  Google Scholar 

  • Molina JM, Cahn P, Grinsztejn B, Lazzarin A, Mills A, Saag M et al (2011) Rilpivirine versus efavirenz with tenofovir and emtricitabine in treatment-naive adults infected with HIV-1 (ECHO): a phase 3 randomised double-blind active-controlled trial. Lancet 378(9787): 238–246

    Article  PubMed  CAS  Google Scholar 

  • Palaniappan C, Fay PJ, Bambara RA (1995) Nevirapine alters the cleavage specificity of ribonuclease H of human immunodeficiency virus 1 reverse transcriptase. J Biol Chem 270(9): 4861–4869

    Article  PubMed  CAS  Google Scholar 

  • Palmer S, Boltz V, Martinson N, Maldarelli F, Gray G, McIntyre J et al (2006) Persistence of nevirapine-resistant HIV-1 in women after single-dose nevirapine therapy for prevention of maternal-to-fetal HIV-1 transmission. Proc Natl Acad Sci USA 103(18):7094–7099

    Article  PubMed  CAS  Google Scholar 

  • Palmer S, Boltz VF, Chow JY, Martinson NA, McIntyre JA, Gray GE et al (2012) Short-course Combivir after single-dose nevirapine reduces but does not eliminate the emergence of nevirapine resistance in women. Antivir Ther 17(2):327–336

    Article  PubMed  CAS  Google Scholar 

  • Pelemans H, Esnouf R, De Clercq E, Balzarini J (2000) Mutational analysis of trp-229 of human immunodeficiency virus type 1 reverse transcriptase (RT) identifies this amino acid residue as a prime target for the rational design of new non-nucleoside RT inhibitors. Mol Pharmacol 57(5):954–960

    PubMed  CAS  Google Scholar 

  • Ren J, Esnouf R, Hopkins A, Ross C, Jones Y, Stammers D et al (1995) The structure of HIV-1 reverse transcriptase complexed with 9-chloro-TIBO: lessons for inhibitor design. Structure 3(9):915–926

    Article  PubMed  CAS  Google Scholar 

  • Ren J, Esnouf RM, Hopkins AL, Stuart DI, Stammers DK (1999) Crystallographic analysis of the binding modes of thiazoloisoindolinone non-nucleoside inhibitors to HIV-1 reverse transcriptase and comparison with modeling studies. J Med Chem 42(19):3845–3851

    Article  PubMed  CAS  Google Scholar 

  • Ren J, Bird LE, Chamberlain PP, Stewart-Jones GB, Stuart DI, Stammers DK (2002) Structure of HIV-2 reverse transcriptase at 2.35-A resolution and the mechanism of resistance to non-nucleoside inhibitors. Proc Natl Acad Sci USA 99(22):14410–14415

    Article  PubMed  CAS  Google Scholar 

  • Restle T, Muller B, Goody RS (1990) Dimerization of human immunodeficiency virus type 1 reverse transcriptase. A target for chemotherapeutic intervention. J Biol Chem 265(16): 8986–8988

    PubMed  CAS  Google Scholar 

  • Rittinger K, Divita G, Goody RS (1995) Human immunodeficiency virus reverse transcriptase substrate-induced conformational changes and the mechanism of inhibition by nonnucleoside inhibitors. Proc Natl Acad Sci USA 92(17):8046–8049

    Article  PubMed  CAS  Google Scholar 

  • Sarafianos SG, Das K, Tantillo C, Clark AD Jr, Ding J, Whitcomb JM et al (2001) Crystal structure of HIV-1 reverse transcriptase in complex with a polypurine tract RNA:DNA. EMBO J 20(6):1449–1461

    Article  PubMed  CAS  Google Scholar 

  • Sarafianos SG, Clark AD Jr, Das K, Tuske S, Birktoft JJ, Ilankumaran P et al (2002) Structures of HIV-1 reverse transcriptase with pre- and post-translocation AZTMP-terminated DNA. EMBO J 21(23):6614–6624

    Article  PubMed  CAS  Google Scholar 

  • Spence RA, Kati WM, Anderson KS, Johnson KA (1995) Mechanism of inhibition of HIV-1 reverse transcriptase by nonnucleoside inhibitors. Science 267(5200):988–993

    Article  PubMed  CAS  Google Scholar 

  • Tachedjian G, Goff SP (2003) The effect of NNRTIs on HIV reverse transcriptase dimerization. Curr Opin Investig Drugs 4(8):966–973

    PubMed  Google Scholar 

  • Tachedjian G, Orlova M, Sarafianos SG, Arnold E, Goff SP (2001) Nonnucleoside reverse transcriptase inhibitors are chemical enhancers of dimerization of the HIV type 1 reverse transcriptase. Proc Natl Acad Sci USA 98(13):7188–7193

    Article  PubMed  CAS  Google Scholar 

  • Tachedjian G, Moore KL, Goff SP, Sluis-Cremer N (2005) Efavirenz enhances the proteolytic processing of an HIV-1 pol polyprotein precursor and reverse transcriptase homodimer formation. FEBS Lett 579(2):379–384

    Article  PubMed  CAS  Google Scholar 

  • Tu X, Das K, Han Q, Bauman JD, Clark AD Jr, Hou X et al (2010) Structural basis of HIV-1 resistance to AZT by excision. Nat Struct Mol Biol 17(10):1202–1209

    Article  PubMed  CAS  Google Scholar 

  • Tuske S, Sarafianos SG, Clark AD Jr, Ding J, Naeger LK, White KL et al (2004) Structures of HIV-1 RT-DNA complexes before and after incorporation of the anti-AIDS drug tenofovir. Nat Struct Mol Biol 11(5):469–474

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Bambara RA, Demeter LM, Dykes C (2010) Reduced fitness in cell culture of HIV-1 with nonnucleoside reverse transcriptase inhibitor-resistant mutations correlates with relative levels of reverse transcriptase content and RNase H activity in virions. J Virol 84(18):9377–9389

    Article  PubMed  CAS  Google Scholar 

  • Watts DH (2007) Teratogenicity risk of antiretroviral therapy in pregnancy. Curr HIV/AIDS Rep 4(3):135–140

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported (in part) by the Intramural Research Program of the National Institutes of Health, National Cancer Institute, Center for Cancer Research and an NIH R37 Merit Award AI 27690 to Eddy Arnold.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen H. Hughes Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Das, K., Arnold, E., Hughes, S.H. (2013). Nonnucleoside Reverse Transcriptase Inhibitors (NNRTIs). In: LeGrice, S., Gotte, M. (eds) Human Immunodeficiency Virus Reverse Transcriptase. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7291-9_6

Download citation

Publish with us

Policies and ethics