Skip to main content

The Random Graph

  • Chapter
  • First Online:
The Mathematics of Paul Erdős II

Summary

Erdős and Rényi showed the paradoxical result that there is a unique (and highly symmetric) countably infinite random graph. This graph, and its automorphism group, form the subject of the present survey.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. N. Ackerman, C. Freer and R. Patel (to appear), Invariant measures concentrated on countable structures, arXiv:1206.4011.

    Google Scholar 

  2. P. Bankston and W. Ruitenberg (1990), Notions of relative ubiquity for invariant sets of relational structures, J. Symbolic Logic 55, 948–986.

    Google Scholar 

  3. S. Barbina and D. Machperson (2007), Reconstruction of homogeneous relational structures, J. Symbolic Logic 72, 792–802.

    Google Scholar 

  4. A. Blass and F. Harary (1979), Properties of almost all graphs and complexes, J. Graph Theory 3, 225–240.

    Google Scholar 

  5. B. Bollobás (1985), Random Graphs, Academic Press, London.

    MATH  Google Scholar 

  6. M. Bodirsky (to appear), New Ramsey classes from old, arXiv:1204.3258

    Google Scholar 

  7. J. Böttcher and J. Foniok (to appear), Ramsey properties of permutations, arXiv:1103.5686.

    Google Scholar 

  8. P. J. Cameron (1976), Transitivity of permutation groups on unordered sets, Math. Z. 148, 127–139.

    Google Scholar 

  9. P. J. Cameron (1987), On the structure of a random sum-free set, Probab. Thy. Rel. Fields 76, 523–531.

    Google Scholar 

  10. P. J. Cameron (1990), Oligomorphic Permutation Groups, London Math. Soc. Lecture Notes 152, Cambridge Univ. Press, Cambridge.

    Google Scholar 

  11. P. J. Cameron (1992), The age of a relational structure, pp. 49–67 in Directions in Infinite Graph Theory and Combinatorics (ed. R. Diestel), Topics in Discrete Math. 3, North-Holland, Amsterdam.

    Google Scholar 

  12. P. J. Cameron (2002), Homogeneous permutations, Electronic J. Combinatorics 9(2), #R2.

    Google Scholar 

  13. P. J. Cameron (2005), The random graph has the strong small index property, Discrete Math. 291, 41–43

    Google Scholar 

  14. P. J. Cameron and P. Erdős (1990), On the number of sets of integers with various properties, pp. 61–79 in Number Theory (ed. R. A. Mollin), de Gruyter, Berlin.

    Google Scholar 

  15. P. J. Cameron and K. W. Johnson (1987), An investigation of countable B-groups, Math. Proc. Cambridge Philos. Soc. 102, 223–231.

    Google Scholar 

  16. P. J. Cameron, C. Laflamme, M. Pouzet, S. Tarzi and R. E. Woodrow (to appear), Overgroups of the automorphism group of the Rado graph, Proc. Fields Institute.

    Google Scholar 

  17. P. J. Cameron and D. Lockett (2010), Posets, homomorphisms and homogeneity, Discrete Math. 310, 604–613.

    Google Scholar 

  18. P. J. Cameron and C. Martins (1993), A theorem on reconstructing random graphs, Combinatorics, Probability and Computing 2, 1–9.

    Google Scholar 

  19. P. J. Cameron and A. M. Vershik (2006), Some isometry groups of the Urysohn space, Ann. Pure Appl. Logic 143, 70–78.

    Google Scholar 

  20. G. Cantor (1895), Beiträge zur Begründung der transfiniten Mengenlehre, Math. Ann. 46, 481–512.

    Google Scholar 

  21. G. L. Cherlin (1998), The classification of countable homogeneous directed graphs and countable homogeneous n-tournaments, Memoirs Amer. Math. Soc. 621. (See also Homogeneous directed graphs, J. Symbolic Logic 52, (1987), 296.)

    Google Scholar 

  22. W. Deuber (1975), Partitionstheoreme für Graphen, Math. Helvetici 50, 311–320.

    Google Scholar 

  23. M. Droste (1985), Structure of partially ordered sets with transitive automorphism groups, Mem. Amer. Math. Soc. 57.

    Google Scholar 

  24. M. El-Zahar and N. W. Sauer (1991), Ramsey-type properties of relational structures, Discrete Math 94, 1–10.

    Google Scholar 

  25. E. Engeler (1959), Äquivalenz von n-Tupeln, Z. Math. Logik Grundl. Math. 5, 126–131.

    Google Scholar 

  26. P. Erdős, D. J. Kleitman and B. L. Rothschild (1977), Asymptotic enumeration of K n -free graphs, pp. 19–27 in Colloq. Internat. Teorie Combinatorie, Accad. Naz. Lincei, Roma.

    Google Scholar 

  27. P. Erdős and A. Rényi (1963), Asymmetric graphs, Acta Math. Acad. Sci. Hungar. 14, 295–315.

    Google Scholar 

  28. P. Erdős and J. Spencer (1974), Probabilistic Methods in Combinatorics, Academic Press, New York/Akad. Kiadó, Budapest.

    Google Scholar 

  29. R. Fagin (1976), Probabilities on finite models, J. Symbolic Logic 41, 50–58.

    Google Scholar 

  30. R. Fraïssé (1953), Sur certains relations qui généralisent l’ordre des nombres rationnels, C. R. Acad. Sci. Paris 237, 540–542.

    Google Scholar 

  31. R. Fraïssé (1986), Theory of Relations, North-Holland, Amsterdam.

    MATH  Google Scholar 

  32. A. Gardiner (1976), Homogeneous graphs, J. Combinatorial Theory (B) 20, 94–102.

    Google Scholar 

  33. E. Glasner and B. Weiss (2002), Minimal actions of the group \(S(\mathbb{Z})\) of permutations of the integers, Geom. and Functional Analysis 12, 964–988.

    Google Scholar 

  34. Y. V. Glebskii, D. I. Kogan, M. I. Liogon’kii and V. A. Talanov (1969), Range and degree of realizability of formulas in the restricted predicate calculus, Kibernetika 2, 17–28.

    Google Scholar 

  35. F. Hausdorff (1914), Grundzügen de Mengenlehre, Leipzig.

    Google Scholar 

  36. C. W. Henson (1971), A family of countable homogeneous graphs, Pacific J. Math. 38, 69–83.

    Google Scholar 

  37. C. W. Henson (1972), Countable homogeneous relational structures and 0-categorical theories, J. Symbolic Logic 37, 494–500.

    Google Scholar 

  38. B. Herwig (1997), Extending partial isomorphisms for the small index property of many ω-categorical structures, Israel J. Math. 107, 933–123.

    Google Scholar 

  39. W. A. Hodges (1993), Model Theory, Cambridge Univ. Press, Cambridge.

    Book  MATH  Google Scholar 

  40. W. A. Hodges, I. M. Hodkinson, D. Lascar and S. Shelah (1993), The small index property for ω-stable, ω-categorical structures and for the random graph, J. London Math. Soc. (2) 48, 204–218.

    Google Scholar 

  41. E. Hrushovski (1992), Extending partial isomorphisms of graphs, Combinatorica 12, 411–416.

    Google Scholar 

  42. E. Hrushovski (1993), A new strongly minimal set, Ann. Pure Appl. Logic 62, 147–166.

    Google Scholar 

  43. J. Hubička and J. Nešetřil (2005), Finite presentation of homogeneous graphs, posets and Ramsey classes. Probability in mathematics. Israel J. Math. 149, 21–44.

    Article  MATH  Google Scholar 

  44. E. V. Huntington (1904), The continuum as a type of order: an exposition of the model theory, Ann. Math. 6, 178–179.

    Google Scholar 

  45. A. S. Kechris, V. G. Pestov and S. Todorcevic (2005), Fraïssé limits, Ramsey theory, and topological dynamics of automorphism groups, Geom. Funct. Anal. 15, no. 1, 106–189.

    Article  MathSciNet  MATH  Google Scholar 

  46. P. Komjáth and J. Pach (1992), Universal elements and the complexity of certain classes of graphs, pp. 255–270 in Directions in Infinite Graph Theory and Combinatorics (ed. R. Diestel), Topics in Discrete Math. 3, North-Holland, Amsterdam.

    Google Scholar 

  47. A. H. Lachlan (1984), Countable homogeneous tournaments, Trans. Amer. Math. Soc. 284, 431–461.

    Google Scholar 

  48. A. H. Lachlan and R. E. Woodrow (1980), Countable ultrahomogeneous undirected graphs, Trans. Amer. Math. Soc. 262, 51–94.

    Google Scholar 

  49. H. D. Macpherson and K. Tent (2011), Simplicity of some automorphism groups, J. Algebra 342, 40–52.

    Google Scholar 

  50. A. H. Mekler (1986), Groups embeddable in the autohomeomorphisms of \(\mathbb{Q}\), J. London Math. Soc. (2) 33, 49–58.

    Google Scholar 

  51. J. Nešetřil (1989), For graphs there are only four types of hereditary Ramsey classes, J. Combinatorial Theory (B) 46, 127–132.

    Google Scholar 

  52. J. Nešetřil (2005), Ramsey classes and homogeneous structures, Combinatorics, Probability and Computing 14, 171–189.

    Google Scholar 

  53. J. Nešetřil and Rödl (1978), The structure of critical Ramsey graphs, Colloq. Internat. C.N.R.S. 260, 307–308.

    Google Scholar 

  54. P. M. Neumann (1985), Automorphisms of the rational world, J. London Math. Soc. (2) 32, 439–448.

    Google Scholar 

  55. J. C. Oxtoby (1971), Measure and Category, Springer, Berlin.

    Book  MATH  Google Scholar 

  56. J. Pach (1981), A problem of Ulam on planar graphs, Europ. J. Combinatorics 2, 351–361.

    Google Scholar 

  57. F. Petrov and A. M. Vershik (2010), Uncountable graphs and invariant measures on the set of universal countable graphs. Random Structures Algorithms 37, 389–406.

    Article  MathSciNet  MATH  Google Scholar 

  58. J. Plotkin (1993), Who put the “back” in back-and-forth? Logical methods (Ithaca, NY, 1992), 705–12, Progr. Comput. Sci. Appl. Logic, 12, Birkhuser Boston, Boston, MA.

    Google Scholar 

  59. R. Rado (1964), Universal graphs and universal functions, Acta Arith, 9, 393–407.

    MathSciNet  Google Scholar 

  60. R. Rado (1967), Universal graphs, in A Seminar in Graph Theory (ed. F. Harary and L. W. Beineke), Holt, Rinehard & Winston, New York.

    Google Scholar 

  61. C. Ryll-Nardzewski (1959), On the categoricity in power 0, Bull. Acad. Polon, Sci. Ser. Math. 7, 545–548.

    Google Scholar 

  62. J. H. Schmerl (1979), Countable homogeneous partially ordered sets, Algebra Universalis 9, 317–321.

    Google Scholar 

  63. T. Schoen (1999), On the density of universal sum-free sets, Combin. Probab. Comput. 8 (1999), 277–280.

    Google Scholar 

  64. J. J. Seidel (1977), A survey of two-graphs, pp. 481–511 in Colloq. Internat. Teorie Combinatorie, Accad. Naz. Lincei, Roma.

    Google Scholar 

  65. S. Shelah and J. Spencer (1988), Zero-one laws for sparse random graphs, J. American. Math. Soc. 1, 97–115.

    Google Scholar 

  66. W. Sierpiński (1920), Une propriété topologique des ensembles dénombrables denses en soi, Fund. Math. 1, 11–16.

    Google Scholar 

  67. M. Sokić (to appear), Ramsey property, ultrametric spaces, finite posets, and universal minimal flows, Israel J. Math.

    Google Scholar 

  68. L. Svenonius (1955), 0-categoricity in first-order predicate calculus, Theoria 25, 82–94.

    Google Scholar 

  69. S. Thomas (1991), Reducts of the random graph, J. Symbolic Logic 56, 176–181.

    Google Scholar 

  70. S. Thomas (1996), Reducts of random hypergraphs, Ann. Pure Appl. Logic 80, 165–193.

    Google Scholar 

  71. J. K. Truss (1985), The group of the countable universal graph, Math. Proc. Cambridge Philos. Soc. 98, 213–245.

    Google Scholar 

  72. J. K. Truss (1989), Infinite permutation groups, I, Products of conjugacy classes, J. Algebra 120, 454–493; II, Subgroups of small index, ibid. 120, 494–515.

    Google Scholar 

  73. J. K. Truss (1992), Generic automorphisms of homogeneous structures, Proc. London Math. Soc. (3) 65, 121–141.

    Google Scholar 

  74. P. S. Urysohn (1927), Sur un espace metrique universel, Bull. Sci. Math. 51, 1–38.

    Google Scholar 

  75. A. M. Vershik (1998), The universal Urysohn space, Gromov metric triples and random metrics on the natural numbers, Russ. Math. Surv. 53, 921–928; translation from Usp. Mat. Nauk. 53, 57–64.

    Google Scholar 

  76. F. O. Wagner (1994), Relational structures and dimensions, Automorphisms of First-Order Structures (ed. R. Kaye and H. D. Macpherson), Oxford University Press, pp. 153–180.

    Google Scholar 

  77. P. Winkler (1993), Random structures and zero-one laws, Finite and Infinite Combinatorics in Sets and Logic (ed. N. W. Sauer, R. E. Woodrow and B. Sands), NATO Advanced Science Institutes Series, Kluwer Academic Publishers, pp. 399–420.

    Google Scholar 

Download references

Acknowledgements

I am grateful to J. Schmerl and the editors for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Cameron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cameron, P.J. (2013). The Random Graph. In: Graham, R., Nešetřil, J., Butler, S. (eds) The Mathematics of Paul Erdős II. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7254-4_22

Download citation

Publish with us

Policies and ethics