Skip to main content

Forest Canopies as Earth’s Support Systems: Priorities for Research and Conservation

  • Chapter
  • First Online:
Treetops at Risk

Abstract

In this chapter we address three sets of questions about the present and future role of canopy science within the larger context of forest science. First we review research that either promotes or constrains canopy science as a distinct field. Second, we examine what is known about how canopies are being altered by human use of tropical forests, and consider priorities for research in human interactions with forest canopies. Third, we ask how canopy science can help address the urgent need to understand patterns of human impacts and global environmental changes, specifically in tropical forest ecosystems. It is evident from this volume that canopy researchers are shifting their priorities toward forest canopy conservation by embracing whole-forest approaches with reference to ecosystem services, forest health, climate change, sustainability science, economics, education, and the social sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agarwal A, Chhatre A, Hardin R (2008) Changing governance of the world’s forests. Science 320:1460–1462

    Article  Google Scholar 

  • Agarwal A et al (2012) Cool heads for a hot world–Social sciences under a changing sky. Global Environmental Change 22:329

    Article  Google Scholar 

  • Ashton PS, Hall P (1992) Comparisons of structure among mixed dipterocarp forests of north–western Borneo. J Ecol 80:459–481

    Article  Google Scholar 

  • Ashton PS, Seidler RG (in press) Reflections on the forests of tropical asia: lest the memory fade. Arnold Arboretum at Harvard University/Royal Botanic Gardens at Kew/Natural History Publications Sdn. Bhd., Cambridge, MA/London/Borneo

    Google Scholar 

  • Asner G, Martin RE, Knapp DE et al (2011) Spectroscopy of canopy chemicals in humid tropical forests. Remote Sens Environ 115:3587–3598

    Article  Google Scholar 

  • Baker PJ, Wilson JS (2000) A quantitative technique for the identification of canopy stratification in tropical and temperate forests. For Ecol Manage 127:77–86

    Article  Google Scholar 

  • Balooni K, Singh K (2007) Prospects and problems of afforestation of wastelands in India: A synthesis of macro- and micro-perspectives. Geoforum. doi:10.1016/j.geoforum.2007.02.007

    Google Scholar 

  • Barrett CB, Gibson CC, Hoffman G, Mc Cubbins MD (2006) The complex links between governance and biodiversity. Conserv Biol 20:1358–1366

    Article  PubMed  Google Scholar 

  • Basset Y et al (2003) Vertical stratification of arthropod assemblages. In: Basset Y, Novotny V, Miller S, Kitching RL (eds) Arthropods of tropical forests: spatio-temporal dynamics and resource use in the canopy. Cambridge University Press, Cambridge

    Google Scholar 

  • Bawa KS (1990) Plant pollinator interactions in tropical rain forests. Ann Rev Ecol Syst 21:399–422

    Article  Google Scholar 

  • Bawa KS, Balachander G, Raven P (2008) A case for new institutions. Science 319:136

    Google Scholar 

  • Bawa KS, Dayanandan S (1998) Climate change and tropical forest genetic resources. Clim Change 23:449–466

    Google Scholar 

  • Bawa KS, Kress WJ, Nadkarni NM, Lele S, Raven PH, Janzen H, Lugo AE, Ashton PS, Lovejoy TE (2004) Tropical ecosystems into the 21st. Science 306:227–228

    Article  PubMed  CAS  Google Scholar 

  • Bernard E (2001) Vertical stratification of bat communities in primary forests of Central Amazon, Brazil. J Trop Ecol 17:115–126

    Article  Google Scholar 

  • Cadenasso ML et al (2003) A framework for a theory of ecological boundaries. Bioscience 53:750–758

    Article  Google Scholar 

  • Cavaleri MA et al (2010) Height is more important than light in determining leaf morphology in a tropical forest. Ecology 91:1730–1739

    Article  PubMed  Google Scholar 

  • Chazdon RL (2008) Beyond deforestation: restoring forests and ecosystem services on degraded lands. Science 320:1458–1460

    Article  PubMed  CAS  Google Scholar 

  • Clark DB et al (2008) First direct landscape scale measurement of tropical rain forest leaf area index, a key driver of global primary productivity. Ecol Lett 11:163–172

    PubMed  Google Scholar 

  • Cochrane MA (2003) Fire science for rainforests. Nature 421(6926):913–919

    Article  PubMed  CAS  Google Scholar 

  • Costa MH, Foley JA (2000) Combined effects of deforestation and doubled atmospheric CO2 concentrations on the climate of Amazonia. J Clim 13:18–34

    Article  Google Scholar 

  • Cuddington K, Beisner BE (2005) Ecological paradigms lost: roots of theory change. Elsevier Academic, Burlington/London

    Google Scholar 

  • Davidar P et al (2010) Assessing the extent and causes of forest degradation in India: Where do we stand? Biol Cons 143:2937–2944

    Google Scholar 

  • DeVries PJ et al (1997) Species diversity in vertical, horizontal, and temporal dimensions of a fruit–feeding butterfly community in an Ecuadorian rainforest. Biol J Linn Soc 62:343–364

    Article  Google Scholar 

  • Devy MS, Ganesh T (2003) Canopy science and its relevance to India. Curr Sci 85:581–584

    Google Scholar 

  • Diez JM et al (2012) Forecasting phenology: from species variability to community patterns. Ecol Lett 15:545–553

    Article  PubMed  Google Scholar 

  • Ellison D et al (2011) On the forest cover–water yield debate: from demand– to supply–side thinking. Glob Chang Biol. doi:10.1111/j.1365-2486.2011.02589.x

    Google Scholar 

  • Ellwood F, Manica A, Foster WA (2009) Stochastic and deterministic processes jointly structure tropical arthropod communities. Ecol Lett 12:277–284

    Article  PubMed  Google Scholar 

  • Foley JA, DeFries R, Asner GP et al (2005) Global consequences of land use. Science 309:570–574

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez P et al (2010) Forest carbon densities and uncertainties from Lidar, QuickBird, and field measurements in California. Rem Sens Envi 114:1561–1575

    Article  Google Scholar 

  • Grelle CEV (2003) Forest structure and vertical stratification of small mammals in a secondary Atlantic forest, Southeastern Brazil. Stud Neotrop Fauna Environ 38:81–85

    Article  Google Scholar 

  • Grimbacher PS, Stork NE (2007) Vertical stratification of feeding guilds and body size in beetle assemblages from an Australian tropical rainforest. Austral Ecol 32:77–85

    Article  Google Scholar 

  • Guardiola-Claramonte M et al (2008) Local hydrologic effects of introducing non–native vegetation in a tropical catchment. Ecohydrology 1:13–22

    Article  Google Scholar 

  • Hansen MC et al (2008) Humid tropical forest clearing from 2000 to 2005 quantified by using multitemporal and multiresolution remotely sensed data. Proc Nat Acad Sci 105:9439–9444

    Article  Google Scholar 

  • Harris N et al (2012) Progress toward a consensus on carbon emissions from tropical deforestation. Policy Brief. Winrock International, WHOI & Meridian Institute

    Google Scholar 

  • Hobbs RJ et al (2006) Novel ecosystems: theoretical and management aspects of the new ecological world order. Glob Ecol Biogeogr 15:1–7

    Article  Google Scholar 

  • Hodgkison R (2004) Habitat structure, wing morphology, and the vertical stratification of Malaysian fruit bats (Megachiroptera: Pteropodidae). J Trop Ecol 20:667–673

    Article  Google Scholar 

  • Intachat J, Holloway JD (2000) Is there stratification in diversity or preferred flight height of geometroid moths in Malaysian lowland tropical forest? Biodivers Conserv 9:1417–1439

    Article  Google Scholar 

  • Jain M, Balakrishnan R (2012) Does acoustic adaptation drive vertical stratification? A test in a tropical cricket assemblage. Behav Ecol 23:343–354

    Article  Google Scholar 

  • Kang SH, Bawa KS (2003) Effects of successional status, habit, sexual systems, and pollinators on flowering patterns in tropical rain forest trees. Am J Bot 90:865–876

    Article  PubMed  Google Scholar 

  • Koltunov A et al (2009) Selective logging changes forest phenology in the Brazilian Amazon: evidence from MODIS image time series analysis. Remote Sens Environ 113:2431–2440

    Article  Google Scholar 

  • Komposch H et al (2000) Diversity and vertical distribution of lichens in a Venezuelan tropical lowland rain forest. Selbyana 21:11–24

    Google Scholar 

  • Lal R (2005) Forest soils and carbon sequestration. For Ecol Manage 220:242–258

    Article  Google Scholar 

  • Laurance WF, Kakul T, Keenan RJ, Sayer J, Passingan S, Clements GR, Villegas F, Sodhi NS (2010) Predatory corporations, failing governance, and the fate of forests in Papua New Guinea. Conservation Letters, Published online:16 Dec 2010, dOI:10.1111/j.1755–263X.2010.00156.x

    Google Scholar 

  • Lele S, Wilshusen P, Brockington R, Seidler R, Bawa KS (2010) Beyond exclusion: alternative approaches to biodiversity conservation in the developing tropics. Curr Opin Environ Sustain 2:1–7

    Article  Google Scholar 

  • Lodge DJ, Cantrell S (1995) Fungal communities in wet tropical variation in time and space. Can J Bot 73(supp. 1):S1391–S1398

    Article  Google Scholar 

  • Longino JT, Nadkarni NM (1990) A comparison of ground and canopy leaf litter ants (Hymenoptera: Formicidae) in a neotropical montane forest. Psyche 97:81–93

    Article  Google Scholar 

  • Lowman MD (1999) Life in the treetops. Yale University Press, New Haven

    Google Scholar 

  • Lowman MD (2009) Canopy research in the twenty-first century: a review of arboreal research. J Trop Ecol 50:125–136

    Google Scholar 

  • Lowman MD, Bouricius B, Coley P, Halle F, Nadkarni NM, Parker G, Saterson K, Wright J (1995) What’s up? Perspectives from the 1st international forest canopy conference at Sarasota FL. Selbyana 26:1–11

    Google Scholar 

  • Lugo AE (2009) The emerging era of novel tropical forests. Biotropica 41(5):589–591

    Article  Google Scholar 

  • Makarieva AM, Gorshkov VG, Li BL (2009) Precipitation on land versus distance from the ocean: evidence for a forest pump of atmospheric moisture. Ecol Complex 6:302–307

    Article  Google Scholar 

  • Malhi Y (2010) The carbon balance of tropical forest regions, 1990–2005. Curr Opin Environ Sustain 2:237–244

    Article  Google Scholar 

  • Martinez-Garza C, Howe HF (2003) Restoring tropical diversity: beating the time tax on species loss. J Appl Ecol 40(3):423–429

    Article  Google Scholar 

  • Mawdsley NA, Stork NE (1997) Host–specificity and the effective specialization of tropical canopy beetles. In: Stork NE, Adis J, Didham RK (eds) Canopy arthropods. Chapman and Hall, London

    Google Scholar 

  • Mitchell A, Secoy WK, Jackson T (eds) (2002) Global canopy handbook. Global Canopy Programme, Oxford, UK

    Google Scholar 

  • Motzer T (2005) Micrometeorological aspects of a tropical mountain forest. Agr Forest Meteorol 135(1):230–240

    Article  Google Scholar 

  • Murcia C (1995) Edge effects in fragmented forests: implications for conservation. Trends Ecol Evol 10:58–62

    Article  Google Scholar 

  • Nadkarni NM (2001) Enhancement of forest canopy research, education, and conservation in the new millennium. Plant Ecol 153:361–367

    Article  Google Scholar 

  • Nadkarni NM, Parker GG (1994) A profile of forest canopy science and scientists–who we are, what we want to know, and obstacles we face: results of an international survey. Selbyana 15:38–50

    Google Scholar 

  • Nadkarni M, Parker GG, Lowman MD (2011) Forest canopy studies as an emerging field of science. Ann Forest Sci 68:217–224

    Article  Google Scholar 

  • National Remote Sensing Centre (NRSC), India (2010) Wastelands atlas of India. Ministry of Rural Development, Government of India, New Delhi

    Google Scholar 

  • Novotny V et al (2007) Low beta diversity of herbivorous insects in tropical forests. Nature 448

    Google Scholar 

  • Novotny V et al (2002) Low host specificity of herbivorous insects in a tropical forest. Nature 416:841–844

    Article  PubMed  CAS  Google Scholar 

  • Novotny V et al (2006) Why are there so many species of herbivorous insects in tropical rainforests? Science 313:1115

    Article  PubMed  CAS  Google Scholar 

  • Ostrom E (2000) People and forests: communities, institutions, and governance. MIT Press, Cambridge, MA

    Google Scholar 

  • Ozanne CMP et al (2003) Biodiversity meets the atmosphere: a global view of forest canopies. Science 301:183–186

    Article  PubMed  CAS  Google Scholar 

  • Parker GG, Brown MJ (2000) Forest canopy stratification—is it useful? Am Nat 155(4)

    Google Scholar 

  • Pau S et al (2011) Predicting phenology by integrating ecology, evolution and climate science. Glob Chang Biol 17:3633–3643

    Article  Google Scholar 

  • Pearson DL (1971) Vertical stratification of birds in a tropical dry forest. Condor 73:46–55

    Article  Google Scholar 

  • Phelps J, Webb E, Agarwal A (2010) Does REDD + threaten to recentralize forest governance? Science 328:312–313

    Article  PubMed  CAS  Google Scholar 

  • Popma J et al (1988) Patterns in the vertical structure of the tropical lowland rain forest of Los Tuxtlas, Mexico. Vegetatio 74:81–91

    Article  Google Scholar 

  • Porter AL, Rafols I (2009) Is science becoming more interdisciplinary? Measuring and mapping six research fields over time. Scientometrics 81(3):719–745

    Article  Google Scholar 

  • Powers TO et al (2009) Tropical nematode diversity: vertical stratification of nematode communities in a Costa Rican humid lowland rainforest. Mol Ecol. doi:10.1111/j.1365-294X.2008.04075.x

    PubMed  Google Scholar 

  • Ravindranath NH et al (2012) Deforestation and forest degradation in India – implications for REDD+. Current Sci 102(8):1117–1125

    Article  Google Scholar 

  • Ray D et al (2005) Micrometeorological and canopy controls of fire susceptibility in a forested Amazon landscape. Ecol App. 15(5):1664–1678

    Article  Google Scholar 

  • Richards PW (1996) The tropical rain forest: an ecological study, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Ricklefs RE (2008) Disintegration of the ecological community. Am Nat 172(6):741–750

    Article  PubMed  Google Scholar 

  • Rodgers DJ, Kitching RL (1998) Vertical stratification of rainforest collembolan (Collembola: Insecta) assemblages: description of ecological patterns and hypotheses concerning their generation. Ecography 21:392–400

    Article  Google Scholar 

  • Sanbord AF et al (2011) Thermal adaptation and diversity in tropical ecosystems: evidence from cicadas (Hemiptera, Cicadidae). PLoS One 6(12):e29368. doi:10.1371/journal.pone.0029368

    Article  Google Scholar 

  • Scharlemann J, Laurance WF (2008) How green are biofuels? Science 319:43–44

    Article  PubMed  CAS  Google Scholar 

  • Schulze CH et al (2001) Understorey versus canopy: patterns of vertical stratification and diversity among Lepidoptera in a Bornean rain forest. Plant Ecol 153:133–152

    Article  Google Scholar 

  • Smith AP (1973) Stratification of temperature and tropical forests. Am Nat 107(957):671–683

    Article  Google Scholar 

  • Sobek S et al (2009) Canopy vs. understory: does tree diversity affect bee and wasp communities and their natural enemies across forest strata? For Ecol Manag 258:609–615

    Article  Google Scholar 

  • Solomon D et al (2007) Long–term impacts of anthropogenic perturbations on dynamics and speciation of organic carbon in tropical forest and subtropical grassland ecosystems. Glob Chang Biol 13:1–20

    Article  Google Scholar 

  • Stenchly K et al (2012) Spider species richness in cocoa agroforestry systems, comparing vertical strata, local management and distance to forest. Agri Ecosys Environ 149:189–194

    Article  Google Scholar 

  • Stork NE et al (2009) Vulnerability and resilience of tropical forest species to land–use change. Conserv Biol 23(6):1438–1447

    Article  PubMed  Google Scholar 

  • Strayer DL et al (2003) A classification of ecological boundaries. Bioscience 53(8):723–729

    Article  Google Scholar 

  • Sukhdev P (2011) Putting a price on nature: the economics of ecosystems and biodiversity. Solutions 1:34–43

    Google Scholar 

  • Szarzynski J, Anhuf D (2001) Micrometeorological conditions and canopy energy exchanges of a neotropical rain forest (Surumoni–Crane Project, Venezuela). Plant Ecology 153:231–239

    Article  Google Scholar 

  • Tregidgo DJ et al (2010) Vertical stratification responses of an arboreal dung beetle species to tropical forest fragmentation in Malaysia. Biotropica 425:521–525

    Article  Google Scholar 

  • UN-FAO (2010) Global Forest Resources Assessment 2010: Main Report. FAO Forestry Paper 163. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Vittor AY et al (2006) The effect of deforestation on the human–biting rate of Anopheles darlingi, the primary vector of falciparum malaria in the Peruvian Amazon. Am J Trop Med Hyg 74(1):3–11

    PubMed  Google Scholar 

  • Wallace AR (1878) Tropical nature and other essays. Macmillan, New York/London

    Book  Google Scholar 

  • Walther BA (2002) Vertical stratification and use of vegetation and light habitats by neotropical forest birds. J Ornithol 143:64–81

    Article  Google Scholar 

  • Whitmore TC (1984) A vegetation map of Malesia at scale 1:5 million. J Biogeog 11(6):461–471

    Article  Google Scholar 

  • Wood TE, Cavaleri MA, Reed C (2012) Tropical forest carbon balance in a warmer world: a critical review spanning microbial– to ecosystem–scale processes. Biol Rev 87(4):912–927

    Article  PubMed  Google Scholar 

  • Wright SJ (2010) The future of tropical forests. Ann N Y Acad Sci 1195:1–27

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

 The Bangalore workshop and the work on this manuscript were supported by grants from the U.S. National Science Foundation (DEB 0542130 and DEB 0956301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinmar Seidler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Seidler, R., Bawa, K.S., Lowman, M., Nadkarni, N.M. (2013). Forest Canopies as Earth’s Support Systems: Priorities for Research and Conservation. In: Lowman, M., Devy, S., Ganesh, T. (eds) Treetops at Risk. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7161-5_4

Download citation

Publish with us

Policies and ethics