Skip to main content

Cross-Talk Between Antibodies, IgG Fc Receptors, and the Complement System

  • Chapter
  • First Online:
Molecular and Cellular Mechanisms of Antibody Activity

Abstract

Complement is one of the oldest parts of the immune system. It has evolved during the past 1,000 million years to form a network of more than 30 serum and cell surface proteins with pleiotropic functions. Primarily, complement has been considered as an important danger sensing system, recognizing and flagging pathogens and eventually eliminating the intruders. Further, complement senses and eliminates endogenous danger such as apoptotic cells or cell debris. In addition to these well-appreciated properties, complement plays an integral role in the regulation of innate and adaptive immune responses and is involved in tissue regeneration, angiogenesis, lipid metabolism, solubilization and clearance of immune complexes (IC), mobilization of hematopoietic progenitor cells, and neurologic synapse maturation among other functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adu D, Williams DG (1984) Complement activating cryoglobulins in the nephritis of systemic lupus erythematosus. Clin Exp Immunol 55:495–501

    PubMed  CAS  Google Scholar 

  • Agarwal S, Cunningham-Rundles C (2009) Autoimmunity in common variable immunodeficiency. Curr Allergy Asthma Rep 9:347–352

    PubMed  CAS  Google Scholar 

  • Aggarwal A, Bhardwaj A, Alam S, Misra R (2000) Evidence for activation of the alternate complement pathway in patients with juvenile rheumatoid arthritis. Rheumatology (Oxford) 39:189–192

    CAS  Google Scholar 

  • Agnello V (1978) Association of systemic lupus erythematosus and SLE-like syndromes with hereditary and acquired complement deficiency states. Arthritis Rheum 21:S146–S152

    PubMed  CAS  Google Scholar 

  • Ahearn JM, Fearon DT (1989) Structure and function of the complement receptors, CR1 (CD35) and CR2 (CD21). Adv Immunol 46:183–219

    PubMed  CAS  Google Scholar 

  • Alexander JJ, Hack BK, Cunningham PN, Quigg RJ (2001) A protein with characteristics of factor H is present on rodent platelets and functions as the immune adherence receptor. J Biol Chem 276:32129–32135

    PubMed  CAS  Google Scholar 

  • Amara U et al (2010) Molecular intercommunication between the complement and coagulation systems. J Immunol 185:5628–5636

    PubMed  CAS  Google Scholar 

  • Anthony RM, Wermeling F, Karlsson MC, Ravetch JV (2008) Identification of a receptor required for the anti-inflammatory activity of IVIG. Proc Natl Acad Sci USA 105:19571–19578

    PubMed  CAS  Google Scholar 

  • Arnaout MA, Dana N, Melamed J, Medicus R, Colten HR (1983) Low ionic strength or chemical cross-linking of monomeric C3b increases its binding affinity to the human complement C3b receptor. Immunology 48:229–237

    PubMed  CAS  Google Scholar 

  • Arnold JN, Wormald MR, Sim RB, Rudd PM, Dwek RA (2007) The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu Rev Immunol 25:21–50

    PubMed  CAS  Google Scholar 

  • Arthus M (1903) Inections repetees de serum de cheval chez le lapin. C R Soc Biol 55:817

    Google Scholar 

  • Arya S et al (1994) Mapping of amino acid residues in the C mu 3 domain of mouse IgM important in macromolecular assembly and complement-dependent cytolysis. J Immunol 152:1206–1212

    PubMed  CAS  Google Scholar 

  • Atkinson JP (2006) C5a and Fcgamma receptors: a mutual admiration society. J Clin Invest 116:304–306

    PubMed  CAS  Google Scholar 

  • Bandukwala HS et al (2007) Signaling through Fc gamma RIII is required for optimal T helper type (Th)2 responses and Th2-mediated airway inflammation. J Exp Med 204:1875–1889

    PubMed  CAS  Google Scholar 

  • Barrington RA, Pozdnyakova O, Zafari MR, Benjamin CD, Carroll MC (2002) B lymphocyte memory: role of stromal cell complement and FcgammaRIIB receptors. J Exp Med 196:1189–1199

    PubMed  CAS  Google Scholar 

  • Barrington RA et al (2005) CD21/CD19 coreceptor signaling promotes B cell survival during primary immune responses. J Immunol 175:2859–2867

    PubMed  CAS  Google Scholar 

  • Basta M et al (2003) F(ab)′2-mediated neutralization of C3a and C5a anaphylatoxins: a novel effector function of immunoglobulins. Nat Med 9:431–438

    PubMed  CAS  Google Scholar 

  • Baumann U et al (2000) A codominant role of Fc gamma RI/III and C5aR in the reverse Arthus reaction. J Immunol 164:1065–1070

    PubMed  CAS  Google Scholar 

  • Bokisch VA, MÅller-Eberhard HJ (1970) Anaphylatoxin inactivator of human plasma: its isolation and characterization as a carboxypeptidase. J Clin Invest 49:2427–2436

    PubMed  CAS  Google Scholar 

  • Bolton WK (1996) Goodpasture’s syndrome. Kidney Int 50:1753–1766

    PubMed  CAS  Google Scholar 

  • Bond A et al (1997) A detailed lectin analysis of IgG glycosylation, demonstrating disease specific changes in terminal galactose and N-acetylglucosamine. J Autoimmun 10:77–85

    PubMed  CAS  Google Scholar 

  • Borsos T, Rapp HJ (1965) Complement fixation on cell surfaces by 19S and 7S antibodies. Science 150:505–506

    PubMed  CAS  Google Scholar 

  • Bottazzi B, Doni A, Garlanda C, Mantovani A (2010) An integrated view of humoral innate immunity: pentraxins as a paradigm. Annu Rev Immunol 28:157–183

    PubMed  CAS  Google Scholar 

  • Botto M et al (1998) Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies. Nat Genet 19:56–59

    PubMed  CAS  Google Scholar 

  • Boyd PN, Lines AC, Patel AK (1995) The effect of the removal of sialic acid, galactose and total carbohydrate on the functional activity of Campath-1H. Mol Immunol 32:1311–1318

    PubMed  CAS  Google Scholar 

  • Bozic CR, Lu B, Hopken UE, Gerard C, Gerard NP (1996) Neurogenic amplification of immune complex inflammation. Science 273:1722–1725

    PubMed  CAS  Google Scholar 

  • Bradbury LE, Kansas GS, Levy S, Evans RL, Tedder TF (1992) The CD19/CD21 signal transducing complex of human B lymphocytes includes the target of antiproliferative antibody-1 and Leu-13 molecules. J Immunol 149:2841–2850

    PubMed  CAS  Google Scholar 

  • Brekke OH, Michaelsen TE, Sandlie I (1995) The structural requirements for complement activation by IgG: does it hinge on the hinge? Immunol Today 16:85–90

    PubMed  CAS  Google Scholar 

  • Brockman MA, Verschoor A, Zhu J, Carroll MC, Knipe DM (2006) Optimal long-term humoral responses to replication-defective herpes simplex virus require CD21/CD35 complement receptor expression on stromal cells. J Virol 80:7111–7117

    PubMed  CAS  Google Scholar 

  • Burton DR, Woof JM (1992) Human antibody effector function. Adv Immunol 51:1–84

    PubMed  CAS  Google Scholar 

  • Carrasco YR, Batista FD (2007) B cells acquire particulate antigen in a macrophage-rich area at the boundary between the follicle and the subcapsular sinus of the lymph node. Immunity 27:160–171

    PubMed  CAS  Google Scholar 

  • Carroll MC et al (1988) Organization of the genes encoding complement receptors type 1 and 2, decay-accelerating factor, and C4-binding protein in the RCA locus on human chromosome 1. J Exp Med 167:1271–1280

    PubMed  CAS  Google Scholar 

  • Carter RH, Fearon DT (1992) CD19: lowering the threshold for antigen receptor stimulation of B lymphocytes. Science 256:105–107

    PubMed  CAS  Google Scholar 

  • Chen M, Muckersie E, Luo C, Forrester JV, Xu H (2010) Inhibition of the alternative pathway of complement activation reduces inflammation in experimental autoimmune uveoretinitis. Eur J Immunol 40:2870–2881

    PubMed  CAS  Google Scholar 

  • Chevalier J, Kazatchkine MD (1989) Distribution in clusters of complement receptor type one (CR1) on human erythrocytes. J Immunol 142:2031–2036

    PubMed  CAS  Google Scholar 

  • Clynes R, Dumitru C, Ravetch JV (1998) Uncoupling of immune complex formation and kidney damage in autoimmune glomerulonephritis. Science 279:1052–1054

    PubMed  CAS  Google Scholar 

  • Clynes R et al (1999) Modulation of immune complex-induced inflammation in vivo by the coordinate expression of activation and inhibitory Fc receptors. J Exp Med 189:179–185

    PubMed  CAS  Google Scholar 

  • Cohen PL et al (2002) Delayed apoptotic cell clearance and lupus-like autoimmunity in mice lacking the c-mer membrane tyrosine kinase. J Exp Med 196:135–140

    PubMed  CAS  Google Scholar 

  • Collins C, Tsui FW, Shulman MJ (2002) Differential activation of human and guinea pig complement by pentameric and hexameric IgM. Eur J Immunol 32:1802–1810

    PubMed  CAS  Google Scholar 

  • Colten HR (1994) Immunology. Drawing a double-edged sword. Nature 371:474–475

    PubMed  CAS  Google Scholar 

  • Colten HR, Strunk RC (1993) Synthesis of complement components in liver and at extrahepatic sites. In: Whaley K, Loos M, Weiler JM (eds) Complement in health and disease, vol 2. Kluwer Academic, Dordrecht, pp 127–158

    Google Scholar 

  • Cornacoff JB et al (1983) Primate erythrocyte-immune complex-clearing mechanism. J Clin Invest 71:236–247

    PubMed  CAS  Google Scholar 

  • Davis AC, Roux KH, Shulman MJ (1988) On the structure of polymeric IgM. Eur J Immunol 18:1001–1008

    PubMed  CAS  Google Scholar 

  • Dempsey PW, Allison ME, Akkaraju S, Goodnow CC, Fearon DT (1996) C3d of complement as a molecular adjuvant: bridging innate and acquired immunity. Science 271:348–350

    PubMed  CAS  Google Scholar 

  • Dharajiya N et al (2010) FcgammaRIIb inhibits allergic lung inflammation in a murine model of allergic asthma. PLoS One 5:e9337

    PubMed  Google Scholar 

  • Duncan AR, Woof JM, Partridge LJ, Burton DR, Winter G (1988) Localization of the binding site for the human high-affinity Fc receptor on IgG. Nature 332:563–564

    PubMed  CAS  Google Scholar 

  • Fearon DT, Locksley RM (1996) The instructive role of innate immunity in the acquired immune response. Science 272:50–53

    PubMed  CAS  Google Scholar 

  • Ferguson AR, Youd ME, Corley RB (2004) Marginal zone B cells transport and deposit IgM-containing immune complexes onto follicular dendritic cells. Int Immunol 16:1411–1422

    PubMed  CAS  Google Scholar 

  • Fischer MB et al (1998) Dependence of germinal center B cells on expression of CD21/CD35 for survival. Science 280:582–585

    PubMed  CAS  Google Scholar 

  • Floege J (2011) The pathogenesis of IgA nephropathy: what is new and how does it change therapeutic approaches? Am J Kidney Dis 58:992–1004

    PubMed  CAS  Google Scholar 

  • Fu W, Wojtkiewicz G, Weissleder R, Benoist C, Mathis D (2012) Early window of diabetes determinism in NOD mice, dependent on the complement receptor CRIg, identified by noninvasive imaging. Nat Immunol 13:361–368

    PubMed  CAS  Google Scholar 

  • Fujita T, Matsushita M, Endo Y (2004) The lectin-complement pathway – its role in innate immunity and evolution. Immunol Rev 198:185–202

    PubMed  CAS  Google Scholar 

  • Garred P et al (2000) Two edged role of mannose binding lectin in rheumatoid arthritis: a cross sectional study. J Rheumatol 27:26–34

    PubMed  CAS  Google Scholar 

  • Geijtenbeek TB, Gringhuis SI (2009) Signalling through C-type lectin receptors: shaping immune responses. Nat Rev Immunol 9:465–479

    PubMed  CAS  Google Scholar 

  • Gerard C, Gerard NP (1994) C5A anaphylatoxin and its seven transmembrane-segment receptor. Annu Rev Immunol 12:775–808

    PubMed  CAS  Google Scholar 

  • Ghebrehiwet B, Randazzo BP, Dunn JT, Silverberg M, Kaplan AP (1983) Mechanisms of activation of the classical pathway of complement by Hageman factor fragment. J Clin Invest 71:1450–1456

    PubMed  CAS  Google Scholar 

  • Ghiran I et al (2000) Complement receptor 1/CD35 is a receptor for mannan-binding lectin. J Exp Med 192:1797–1808

    PubMed  CAS  Google Scholar 

  • Godau J et al (2004) C5a initiates the inflammatory cascade in immune complex peritonitis. J Immunol 173:3437–3445

    PubMed  CAS  Google Scholar 

  • Gonzalez SF et al (2010a) Capture of influenza by medullary dendritic cells via SIGN-R1 is essential for humoral immunity in draining lymph nodes. Nat Immunol 11:427–434

    PubMed  CAS  Google Scholar 

  • Gonzalez SF et al (2010b) Complement-dependent transport of antigen into B cell follicles. J Immunol 185:2659–2664

    PubMed  CAS  Google Scholar 

  • Gonzalez SF et al (2011) Trafficking of B cell antigen in lymph nodes. Annu Rev Immunol 29:215–233

    PubMed  CAS  Google Scholar 

  • Gorgani NN et al (2008) Complement receptor of the Ig superfamily enhances complement-mediated phagocytosis in a subpopulation of tissue resident macrophages. J Immunol 181:7902–7908

    PubMed  CAS  Google Scholar 

  • Grant EP et al (2002) Essential role for the C5a receptor in regulating the effector phase of synovial infiltration and joint destruction in experimental arthritis. J Exp Med 196:1461–1471

    PubMed  CAS  Google Scholar 

  • Greenwood J, Clark M, Waldmann H (1993) Structural motifs involved in human IgG antibody effector functions. Eur J Immunol 23:1098–1104

    PubMed  CAS  Google Scholar 

  • Gregory SH et al (2002) Complementary adhesion molecules promote neutrophil-Kupffer cell interaction and the elimination of bacteria taken up by the liver. J Immunol 168:308–315

    PubMed  CAS  Google Scholar 

  • Gros P, Milder FJ, Janssen BJ (2008) Complement driven by conformational changes. Nat Rev Immunol 8:48–58

    PubMed  CAS  Google Scholar 

  • Guddat LW, Herron JN, Edmundson AB (1993) Three-dimensional structure of a human immunoglobulin with a hinge deletion. Proc Natl Acad Sci USA 90:4271–4275

    PubMed  CAS  Google Scholar 

  • Hazenbos WL et al (1996) Impaired IgG-dependent anaphylaxis and Arthus reaction in Fc gamma RIII (CD16) deficient mice. Immunity 5:181–188

    PubMed  CAS  Google Scholar 

  • Hebert LA et al (1994) Effect of chronically increased erythrocyte complement receptors on immune complex nephritis. Kidney Int 45:493–499

    PubMed  CAS  Google Scholar 

  • Heidelberger M (1941) Quantitative chemical studies on complement or alexin: I. A method. J Exp Med 73:681–694

    PubMed  CAS  Google Scholar 

  • Heidelberger M, Mayer M (1942) Quantitative chemical studies on complement or alexin: IV. Addition of human complement to specific precipitates. J Exp Med 75:285–295

    PubMed  CAS  Google Scholar 

  • Heidelberger M, Rocha ESM, Mayer M (1941a) Quantitative chemical studies on complement or alexin: III. Uptake of complement nitrogen under varying experimental conditions. J Exp Med 74:359–367

    PubMed  CAS  Google Scholar 

  • Heidelberger M, Weil AJ, Treffers HP (1941b) Quantitative chemical studies on complement or alexin: II. The interrelation of complement with antigen-antibody compounds and with sensitized red cells. J Exp Med 73:695–709

    PubMed  CAS  Google Scholar 

  • Heller T et al (1999) Selection of a C5a receptor antagonist from phage libraries attenuating the inflammatory response in immune complex disease and ischemia/reperfusion injury. J Immunol 163:985–994

    PubMed  CAS  Google Scholar 

  • Helmy KY et al (2006) CRIg: a macrophage complement receptor required for phagocytosis of circulating pathogens. Cell 124:915–927

    PubMed  CAS  Google Scholar 

  • Hess C, Schifferli JA (2003) Immune adherence revisited: novel players in an old game. News Physiol Sci 18:104–108

    PubMed  CAS  Google Scholar 

  • Hess C et al (2002) Association of a pool of HIV-1 with erythrocytes in vivo: a cohort study. Lancet 359:2230–2234

    PubMed  Google Scholar 

  • Hiemstra PS, Gorter A, Stuurman ME, Van Es LA, Daha MR (1987) Activation of the alternative pathway of complement by human serum IgA. Eur J Immunol 17:321–326

    PubMed  CAS  Google Scholar 

  • Hodoniczky J, Zheng YZ, James DC (2005) Control of recombinant monoclonal antibody effector functions by Fc N-glycan remodeling in vitro. Biotechnol Prog 21:1644–1652

    PubMed  CAS  Google Scholar 

  • Holers VM (2005) Complement receptors and the shaping of the natural antibody repertoire. Springer Semin Immunopathol 26:405–423

    PubMed  CAS  Google Scholar 

  • Hong K et al (1984) Inhibition of immune precipitation by complement. J Immunol 133:1464–1470

    PubMed  CAS  Google Scholar 

  • Höpken UE, Lu B, Gerard NP, Gerard C (1997) Impaired inflammatory responses in the reverse arthus reaction through genetic deletion of the C5a receptor. J Exp Med 186:749–756

    PubMed  CAS  Google Scholar 

  • Huber R, Deisenhofer J, Colman PM, Matsushima M, Palm W (1976) Crystallographic structure studies of an IgG molecule and an Fc fragment. Nature 264:415–420

    PubMed  CAS  Google Scholar 

  • Huber-Lang M et al (2002) Generation of C5a by phagocytic cells. Am J Pathol 161:1849–1859

    PubMed  CAS  Google Scholar 

  • Huber-Lang M et al (2006) Generation of C5a in the absence of C3: a new complement activation pathway. Nat Med 12:682–687

    PubMed  CAS  Google Scholar 

  • Huber-Lang M et al (2012) Cathepsin D is released after severe tissue trauma in vivo and is capable of generating C5a in vitro. Mol Immunol 50:60–65

    PubMed  CAS  Google Scholar 

  • Iida K, Mornaghi R, Nussenzweig V (1982) Complement receptor (CR1) deficiency in erythrocytes from patients with systemic lupus erythematosus. J Exp Med 155:1427–1438

    PubMed  CAS  Google Scholar 

  • Ishizaka T, Ishizaka K, Salmon S, Fudenberg H (1967) Biologic activities of aggregated gamma-globulin. 8. Aggregated immunoglobulins of different classes. J Immunol 99:82–91

    PubMed  CAS  Google Scholar 

  • Janssen BJ et al (2005) Structures of complement component C3 provide insights into the function and evolution of immunity. Nature 437:505–511

    PubMed  CAS  Google Scholar 

  • Ji H et al (2002) Arthritis critically dependent on innate immune system players. Immunity 16:157–168

    PubMed  CAS  Google Scholar 

  • Junt T et al (2007) Subcapsular sinus macrophages in lymph nodes clear lymph-borne viruses and present them to antiviral B cells. Nature 450:110–114

    PubMed  CAS  Google Scholar 

  • Karsten CM et al (2012) Anti-inflammatory activity of IgG1 mediated by Fc galactosylation and association of FcγRIIB and dectin-1. Nat Med 18:1401–1406

    PubMed  CAS  Google Scholar 

  • Kimberly RP et al (1989) In vivo handling of soluble complement fixing Ab/dsDNA immune complexes in chimpanzees. J Clin Invest 84:962–970

    PubMed  CAS  Google Scholar 

  • Klaus GG, Pepys MB, Kitajima K, Askonas BA (1979) Activation of mouse complement by different classes of mouse antibody. Immunology 38:687–695

    PubMed  CAS  Google Scholar 

  • Klein M et al (1981) Expression of biological effector functions by immunoglobulin G molecules lacking the hinge region. Proc Natl Acad Sci USA 78:524–528

    PubMed  CAS  Google Scholar 

  • Klein MA et al (2001) Complement facilitates early prion pathogenesis. Nat Med 7:488–492

    PubMed  CAS  Google Scholar 

  • Klickstein LB et al (1987) Human C3b/C4b receptor (CR1). Demonstration of long homologous repeating domains that are composed of the short consensus repeats characteristics of C3/C4 binding proteins. J Exp Med 165:1095–1112

    PubMed  CAS  Google Scholar 

  • Klickstein LB, Barbashov SF, Liu T, Jack RM, Nicholson-Weller A (1997) Complement receptor type 1 (CR1, CD35) is a receptor for C1q. Immunity 7:345–355

    PubMed  CAS  Google Scholar 

  • Knutzen Steuer KL et al (1989) Lysis of sensitized sheep erythrocytes in human sera deficient in the second component of complement. J Immunol 143:2256–2261

    PubMed  CAS  Google Scholar 

  • Kobata A (2008) The N-linked sugar chains of human immunoglobulin G: their unique pattern, and their functional roles. Biochim Biophys Acta 1780:472–478

    PubMed  CAS  Google Scholar 

  • Köhl J (2006) The role of complement in danger sensing and transmission. Immunol Res 34:157–176

    PubMed  CAS  Google Scholar 

  • Koide N, Nose M, Muramatsu T (1977) Recognition of IgG by Fc receptor and complement: effects of glycosidase digestion. Biochem Biophys Res Commun 75:838–844

    PubMed  CAS  Google Scholar 

  • Konrad S, Baumann U, Schmidt RE, Gessner JE (2006) Intravenous immunoglobulin (IVIG)-mediated neutralisation of C5a: a direct mechanism of IVIG in the maintenance of a high Fc gammaRIIB to Fc gammaRIII expression ratio on macrophages. Br J Haematol 134:345–347

    PubMed  CAS  Google Scholar 

  • Konrad S et al (2008) Phosphoinositide 3-kinases gamma and delta, linkers of coordinate C5a receptor-Fcgamma receptor activation and immune complex-induced inflammation 99. J Biol Chem 283:33296–33303

    PubMed  CAS  Google Scholar 

  • Korganow AS et al (1999) From systemic T cell self-reactivity to organ-specific autoimmune disease via immunoglobulins. Immunity 10:451–461

    PubMed  CAS  Google Scholar 

  • Kouskoff V et al (1996) Organ-specific disease provoked by systemic autoimmunity. Cell 87:811–822

    PubMed  CAS  Google Scholar 

  • Kovacsovics T, Tschopp J, Kress A, Isliker H (1985) Antibody-independent activation of C1, the first component of complement, by cardiolipin. J Immunol 135:2695–2700

    PubMed  CAS  Google Scholar 

  • Krych-Goldberg M, Atkinson JP (2001) Structure-function relationships of complement receptor type 1. Immunol Rev 180:112–122

    PubMed  CAS  Google Scholar 

  • Kuhn SE, Nardin A, Klebba PE, Taylor RP (1998) Escherichia coli bound to the primate erythrocyte complement receptor via bispecific monoclonal antibodies are transferred to and phagocytosed by human monocytes in an in vitro model. J Immunol 160:5088–5097

    PubMed  CAS  Google Scholar 

  • Kulics J, Rajnavolgyi E, Fust G, Gergely J (1983) Interaction of C3 and C3b with immunoglobulin G. Mol Immunol 20:805–810

    PubMed  CAS  Google Scholar 

  • Kumar V et al (2006) Cell-derived anaphylatoxins as key mediators of antibody-dependent type II autoimmunity in mice. J Clin Invest 116:512–520

    PubMed  CAS  Google Scholar 

  • Kurtz CB, O’Toole E, Christensen SM, Weis JH (1990) The murine complement receptor gene family. IV. Alternative splicing of Cr2 gene transcripts predicts two distinct gene products that share homologous domains with both human CR2 and CR1. J Immunol 144:3581–3591

    PubMed  CAS  Google Scholar 

  • Lutz HU, Jelezarova E (2006) Complement amplification revisited. Mol Immunol 43:2–12

    PubMed  CAS  Google Scholar 

  • Madaio MP (1999) The role of autoantibodies in the pathogenesis of lupus nephritis. Semin Nephrol 19:48–56

    PubMed  CAS  Google Scholar 

  • Malhotra R et al (1995) Glycosylation changes of IgG associated with rheumatoid arthritis can activate complement via the mannose-binding protein. Nat Med 1:237–243

    PubMed  CAS  Google Scholar 

  • Manderson AP, Botto M, Walport MJ (2004) The role of complement in the development of systemic lupus erythematosus. Annu Rev Immunol 22:431–456

    PubMed  CAS  Google Scholar 

  • Matthews KW, Mueller-Ortiz SL, Wetsel RA (2004) Carboxypeptidase N: a pleiotropic regulator of inflammation. Mol Immunol 40:785–793

    PubMed  CAS  Google Scholar 

  • May JE, Frank MM (1973a) A new complement-mediated cytolytic mechanism – the C1-bypass activation pathway. Proc Natl Acad Sci USA 70:649–652

    PubMed  CAS  Google Scholar 

  • May JE, Frank MM (1973b) Hemolysis of sheep erythrocytes in guinea pig serum deficient in the fourth component of complement. I. Antibody and serum requirements. J Immunol 111:1671–1677

    PubMed  CAS  Google Scholar 

  • May JE, Frank MM (1973c) Hemolysis of sheep erythrocytes in guinea pig serum deficient in the fourth component of complement. II. Evidence for involvement of C1 and components of the alternate complement pathway. J Immunol 111:1668–1676

    PubMed  CAS  Google Scholar 

  • McGuire TC, Musoke AJ, Kurtti T (1979) Functional properties of bovine IgG1 and IgG2: interaction with complement, macrophages, neutrophils and skin. Immunology 38:249–256

    PubMed  CAS  Google Scholar 

  • Medgyesi GA, Fust G, Gergely J, Bazin H (1978) Classes and subclasses of rat immunoglobulins: interaction with the complement system and with staphylococcal protein A. Immunochemistry 15:125–129

    PubMed  CAS  Google Scholar 

  • Miller GW, Nussenzweig V (1975) A new complement function: solubilization of antigen-antibody aggregates. Proc Natl Acad Sci USA 72:418–422

    PubMed  CAS  Google Scholar 

  • Miller GW, Steinberg AD, Green I, Nussenzweig V (1975) Complement-dependent alterations in the handling of immune complexes by NZB/W mice. J Immunol 114:1166–1170

    PubMed  CAS  Google Scholar 

  • Molina H, Kinoshita T, Inoue K, Carel JC, Holers VM (1990) A molecular and immunochemical characterization of mouse CR2. Evidence for a single gene model of mouse complement receptors 1 and 2. J Immunol 145:2974–2983

    PubMed  CAS  Google Scholar 

  • Molina H, Kinoshita T, Webster CB, Holers VM (1994) Analysis of C3b/C3d binding sites and factor I cofactor regions within mouse complement receptors 1 and 2. J Immunol 153:789–795

    PubMed  CAS  Google Scholar 

  • Moller NP (1979) Fc-mediated immune precipitation. I. A new role of the Fc-portion of IgG. Immunology 38:631–640

    PubMed  CAS  Google Scholar 

  • Moller NP, Steensgaard J (1979) Fc-mediated immune precipitation. II. Analysis of precipitating immune complexes by rate-zonal ultracentrifugation. Immunology 38:641–648

    PubMed  CAS  Google Scholar 

  • Nardin A, Lindorfer MA, Taylor RP (1999) How are immune complexes bound to the primate erythrocyte complement receptor transferred to acceptor phagocytic cells? Mol Immunol 36:827–835

    PubMed  CAS  Google Scholar 

  • Nelson RA Jr (1953) The immune-adherence phenomenon; an immunologically specific reaction between microorganisms and erythrocytes leading to enhanced phagocytosis. Science 118:733–737

    PubMed  Google Scholar 

  • Nimmerjahn F, Ravetch JV (2005) Divergent immunoglobulin g subclass activity through selective Fc receptor binding. Science 310:1510–1512

    PubMed  CAS  Google Scholar 

  • Nimmerjahn F, Ravetch JV (2006) Fcgamma receptors: old friends and new family members. Immunity 24:19–28

    PubMed  CAS  Google Scholar 

  • Nimmerjahn F et al (2010) FcgammaRIV deletion reveals its central role for IgG2a and IgG2b activity in vivo. Proc Natl Acad Sci USA 107:19396–19401

    PubMed  CAS  Google Scholar 

  • Nonaka M, Kimura A (2006) Genomic view of the evolution of the complement system. Immunogenetics 58:701–713

    PubMed  CAS  Google Scholar 

  • Norderhaug L et al (1991) Chimeric mouse human IgG3 antibodies with an IgG4-like hinge region induce complement-mediated lysis more efficiently than IgG3 with normal hinge. Eur J Immunol 21:2379–2384

    PubMed  CAS  Google Scholar 

  • Nose M, Wigzell H (1983) Biological significance of carbohydrate chains on monoclonal antibodies. Proc Natl Acad Sci USA 80:6632–6636

    PubMed  CAS  Google Scholar 

  • Nussenzweig V, Bianco C, Dukor P, Eden A. Receptors for C3 on B lymphocytes: possible role in the immune system, vol 59 (ed. Amos, B.) 73–81 (Academic Press, 1971)

    Google Scholar 

  • Oortwijn BD et al (2008) The role of secretory IgA and complement in IgA nephropathy. Semin Nephrol 28:58–65

    PubMed  CAS  Google Scholar 

  • Paccaud JP, Steiger G, Sjoholm AG, Spaeth PJ, Schifferli JA (1987) Tetanus toxoid-anti-tetanus toxoid complexes: a potential model to study the complement transport system for immune complex in humans. Clin Exp Immunol 69:468–476

    PubMed  CAS  Google Scholar 

  • Paccaud JP, Carpentier JL, Schifferli JA (1988) Direct evidence for the clustered nature of complement receptors type 1 on the erythrocyte membrane. J Immunol 141:3889–3894

    PubMed  CAS  Google Scholar 

  • Paccaud JP, Carpentier JL, Schifferli JA (1990) Difference in the clustering of complement receptor type 1 (CR1) on polymorphonuclear leukocytes and erythrocytes: effect on immune adherence. Eur J Immunol 20:283–289

    PubMed  CAS  Google Scholar 

  • Pangburn MK, Muller-Eberhard HJ (1980) Relation of putative thioester bond in C3 to activation of the alternative pathway and the binding of C3b to biological targets of complement. J Exp Med 152:1102–1114

    PubMed  CAS  Google Scholar 

  • Pangburn MK, Schreiber RD, Muller-Eberhard HJ (1981) Formation of the initial C3 convertase of the alternative complement pathway. Acquisition of C3b-like activities by spontaneous hydrolysis of the putative thioester in native C3. J Exp Med 154:856–867

    PubMed  CAS  Google Scholar 

  • Papamichail M et al (1975) Complement dependence of localisation of aggregated IgG in germinal centres. Scand J Immunol 4:343–347

    PubMed  CAS  Google Scholar 

  • Parekh RB et al (1985) Association of rheumatoid arthritis and primary osteoarthritis with changes in the glycosylation pattern of total serum IgG. Nature 316:452–457

    PubMed  CAS  Google Scholar 

  • Parekh R et al (1989) A comparative analysis of disease-associated changes in the galactosylation of serum IgG. J Autoimmun 2:101–114

    PubMed  CAS  Google Scholar 

  • Park SY et al (1998) Resistance of Fc receptor- deficient mice to fatal glomerulonephritis. J Clin Invest 102:1229–1238

    PubMed  CAS  Google Scholar 

  • Parker CJ (2012) Paroxysmal nocturnal hemoglobinuria. Curr Opin Hematol 19:141–148

    PubMed  CAS  Google Scholar 

  • Peitsch MC, Tschopp J, Kress A, Isliker H (1988) Antibody-independent activation of the complement system by mitochondria is mediated by cardiolipin. Biochem J 249:495–500

    PubMed  CAS  Google Scholar 

  • Perkins SJ, Nealis AS, Sutton BJ, Feinstein A (1991) Solution structure of human and mouse immunoglobulin M by synchrotron X-ray scattering and molecular graphics modelling. A possible mechanism for complement activation. J Mol Biol 221:1345–1366

    PubMed  CAS  Google Scholar 

  • Phan TG, Grigorova I, Okada T, Cyster JG (2007) Subcapsular encounter and complement-dependent transport of immune complexes by lymph node B cells. Nat Immunol 8:992–1000

    PubMed  CAS  Google Scholar 

  • Phan TG, Green JA, Gray EE, Xu Y, Cyster JG (2009) Immune complex relay by subcapsular sinus macrophages and noncognate B cells drives antibody affinity maturation. Nat Immunol 10:786–793

    PubMed  CAS  Google Scholar 

  • Pickering MC, Botto M, Taylor PR, Lachmann PJ, Walport MJ (2000) Systemic lupus erythematosus, complement deficiency, and apoptosis. Adv Immunol 76:227–324

    PubMed  CAS  Google Scholar 

  • Pozdnyakova O, Guttormsen HK, Lalani FN, Carroll MC, Kasper DL (2003) Impaired antibody response to group B streptococcal type III capsular polysaccharide in C3- and complement receptor 2-deficient mice. J Immunol 170:84–90

    PubMed  CAS  Google Scholar 

  • Raby AC et al (2011) TLR activation enhances C5a-induced pro-inflammatory responses by negatively modulating the second C5a receptor, C5L2. Eur J Immunol 41(9):2741–2752

    PubMed  CAS  Google Scholar 

  • Raju TS (2008) Terminal sugars of Fc glycans influence antibody effector functions of IgGs. Curr Opin Immunol 20:471–478

    PubMed  CAS  Google Scholar 

  • Reinagel ML, Taylor RP (2000) Transfer of immune complexes from erythrocyte CR1 to mouse macrophages. J Immunol 164:1977–1985

    PubMed  CAS  Google Scholar 

  • Ren Y et al (2003) Increased apoptotic neutrophils and macrophages and impaired macrophage phagocytic clearance of apoptotic neutrophils in systemic lupus erythematosus. Arthritis Rheum 48:2888–2897

    PubMed  Google Scholar 

  • Ricklin D, Hajishengallis G, Yang K, Lambris JD (2010) Complement: a key system for immune surveillance and homeostasis. Nat Immunol 11:785–797

    PubMed  CAS  Google Scholar 

  • Riedemann NC et al (2002) Increased C5a receptor expression in sepsis. J Clin Invest 110:101–108

    PubMed  CAS  Google Scholar 

  • Roos A et al (2001) Human IgA activates the complement system via the mannan-binding lectin pathway. J Immunol 167:2861–2868

    PubMed  CAS  Google Scholar 

  • Roos A et al (2006) Glomerular activation of the lectin pathway of complement in IgA nephropathy is associated with more severe renal disease. J Am Soc Nephrol 17:1724–1734

    PubMed  CAS  Google Scholar 

  • Ross GD et al (1985) Disease-associated loss of erythrocyte complement receptors (CR1, C3b receptors) in patients with systemic lupus erythematosus and other diseases involving autoantibodies and/or complement activation. J Immunol 135:2005–2014

    PubMed  CAS  Google Scholar 

  • Royle L et al (2003) Secretory IgA N- and O-glycans provide a link between the innate and adaptive immune systems. J Biol Chem 278:20140–20153

    PubMed  CAS  Google Scholar 

  • Sahu A, Kozel TR, Pangburn MK (1994) Specificity of the thioester-containing reactive site of human C3 and its significance to complement activation. Biochem J 302(Pt 2):429–436

    PubMed  CAS  Google Scholar 

  • Schifferli JA, Bartolotti SR, Peters DK (1980) Inhibition of immune precipitation by complement. Clin Exp Immunol 42:387–394

    PubMed  CAS  Google Scholar 

  • Schifferli JA, Steiger G, Paccaud JP (1986) Complement mediated inhibition of immune precipitation and solubilization generate different concentrations of complement anaphylatoxins (C4a, C3a, C5a). Clin Exp Immunol 64:407–414

    PubMed  CAS  Google Scholar 

  • Schur PH, Christian GD (1964) The role of disulfide bonds in the complement-fixing and precipitating properties of 7s rabbit and sheep antibodies. J Exp Med 120:531–545

    PubMed  CAS  Google Scholar 

  • Schwaeble WJ, Reid KB (1999) Does properdin crosslink the cellular and the humoral immune response? Immunol Today 20:17–21

    PubMed  CAS  Google Scholar 

  • Shohet JM, Pemberton P, Carroll MC (1993) Identification of a major binding site for complement C3 on the IgG1 heavy chain. J Biol Chem 268:5866–5871

    PubMed  CAS  Google Scholar 

  • Shulman MJ, Collins C, Pennell N, Hozumi N (1987) Complement activation by IgM: evidence for the importance of the third constant domain of the mu heavy chain. Eur J Immunol 17:549–554

    PubMed  CAS  Google Scholar 

  • Shushakova N et al (2002) C5a anaphylatoxin is a major regulator of activating versus inhibitory FcgammaRs in immune complex-induced lung disease. J Clin Invest 110:1823–1830

    PubMed  CAS  Google Scholar 

  • Silverton EW, Navia MA, Davies DR (1977) Three-dimensional structure of an intact human immunoglobulin. Proc Natl Acad Sci USA 74:5140–5144

    PubMed  CAS  Google Scholar 

  • Skattum L, van Deuren M, van der Poll T, Truedsson L (2011) Complement deficiency states and associated infections. Mol Immunol 48:1643–1655

    PubMed  CAS  Google Scholar 

  • Skokowa J et al (2005) Macrophages induce the inflammatory response in the pulmonary Arthus reaction through G alpha i2 activation that controls C5aR and Fc receptor cooperation. J Immunol 174:3041–3050

    PubMed  CAS  Google Scholar 

  • Storrs SB, Kolb WP, Olson MS (1983) C1q binding and C1 activation by various isolated cellular membranes. J Immunol 131:416–422

    PubMed  CAS  Google Scholar 

  • Syed SN et al (2009) Both FcgammaRIV and FcgammaRIII are essential receptors mediating type II and type III autoimmune responses via FcRgamma-LAT-dependent generation of C5a. Eur J Immunol 39:3343–3356

    PubMed  CAS  Google Scholar 

  • Sylvestre DL, Ravetch JV (1994) Fc receptors initiate the Arthus reaction: redefining the inflammatory cascade. Science 265:1095–1098

    PubMed  CAS  Google Scholar 

  • Tack BF, Harrison RA, Janatova J, Thomas ML, Prahl JW (1980) Evidence for presence of an internal thiolester bond in third component of human complement. Proc Natl Acad Sci USA 77:5764–5768

    PubMed  CAS  Google Scholar 

  • Tan LK, Shopes RJ, Oi VT, Morrison SL (1990) Influence of the hinge region on complement activation, C1q binding, and segmental flexibility in chimeric human immunoglobulins. Proc Natl Acad Sci USA 87:162–166

    PubMed  CAS  Google Scholar 

  • Tao MH, Canfield SM, Morrison SL (1991) The differential ability of human IgG1 and IgG4 to activate complement is determined by the COOH-terminal sequence of the CH2 domain. J Exp Med 173:1025–1028

    PubMed  CAS  Google Scholar 

  • Tao MH, Smith RI, Morrison SL (1993) Structural features of human immunoglobulin G that determine isotype-specific differences in complement activation. J Exp Med 178:661–667

    PubMed  CAS  Google Scholar 

  • Tausk FA, McCutchan A, Spechko P, Schreiber RD, Gigli I (1986) Altered erythrocyte C3b receptor expression, immune complexes, and complement activation in homosexual men in varying risk groups for acquired immune deficiency syndrome. J Clin Invest 78:977–982

    PubMed  CAS  Google Scholar 

  • Taylor RP, Burge J, Horgan C, Shasby DM (1983) The complement-mediated binding of soluble antibody/dsDNA immune complexes to human neutrophils. J Immunol 130:2656–2662

    PubMed  CAS  Google Scholar 

  • Taylor RP et al (1997) Bispecific monoclonal antibody complexes facilitate erythrocyte binding and liver clearance of a prototype particulate pathogen in a monkey model. J Immunol 159:4035–4044

    PubMed  CAS  Google Scholar 

  • Thiel S, Gadjeva M (2009) Humoral pattern recognition molecules: mannan-binding lectin and ficolins. Adv Exp Med Biol 653:58–73

    PubMed  CAS  Google Scholar 

  • Tsuchiya N et al (1989) Effects of galactose depletion from oligosaccharide chains on immunological activities of human IgG. J Rheumatol 16:285–290

    PubMed  CAS  Google Scholar 

  • Utsumi S, Okada M, Udaka K, Amano T (1985) Preparation and biologic characterization of fragments containing dimeric and monomeric C gamma 2 domain of rabbit IgG. Mol Immunol 22:811–819

    PubMed  CAS  Google Scholar 

  • Vogt L et al (2006) VSIG4, a B7 family-related protein, is a negative regulator of T cell activation. J Clin Invest 116:2817–2826

    PubMed  CAS  Google Scholar 

  • Waxman FJ et al (1986) Differential binding of immunoglobulin A and immunoglobulin G1 immune complexes to primate erythrocytes in vivo. Immunoglobulin A immune complexes bind less well to erythrocytes and are preferentially deposited in glomeruli. J Clin Invest 77:82–89

    PubMed  CAS  Google Scholar 

  • Wiesmann C et al (2006) Structure of C3b in complex with CRIg gives insights into regulation of complement activation. Nature 444:217–220

    PubMed  CAS  Google Scholar 

  • Williams RC Jr, Osterland CK, Margherita S, Tokuda S, Messner RP (1973) Studies of biologic and serologic activities of rabbit-IgG antibody depleted of carbohydrate residues. J Immunol 111:1690–1698

    PubMed  CAS  Google Scholar 

  • Wright A, Morrison SL (1994) Effect of altered CH2-associated carbohydrate structure on the functional properties and in vivo fate of chimeric mouse-human immunoglobulin G1. J Exp Med 180:1087–1096

    PubMed  CAS  Google Scholar 

  • Xu Y, Oomen R, Klein MH (1994) Residue at position 331 in the IgG1 and IgG4 CH2 domains contributes to their differential ability to bind and activate complement. J Biol Chem 269:3469–3474

    PubMed  CAS  Google Scholar 

  • Xu S et al (2010) Induction of T cells suppression by dendritic cells transfected with VSIG4 recombinant adenovirus. Immunol Lett 128:46–50

    PubMed  CAS  Google Scholar 

  • Youd ME, Ferguson AR, Corley RB (2002) Synergistic roles of IgM and complement in antigen trapping and follicular localization. Eur J Immunol 32:2328–2337

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Köhl M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Karsten, C.M., Köhl, J. (2013). Cross-Talk Between Antibodies, IgG Fc Receptors, and the Complement System. In: Nimmerjahn, F. (eds) Molecular and Cellular Mechanisms of Antibody Activity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7107-3_7

Download citation

Publish with us

Policies and ethics