Skip to main content

Overcoming Drug Resistance Through Elevation of ROS in Cancer

  • Chapter
  • First Online:
Molecular Mechanisms of Tumor Cell Resistance to Chemotherapy

Part of the book series: Resistance to Targeted Anti-Cancer Therapeutics ((RTACT,volume 1))

Abstract

Drug resistance is the most devastating problem in treating cancer and drug-resistant cells are harder to kill with the same drug. The mechanism of drug resistance is believed to differ in various cancers for different anticancer drugs. Most of the anticancer agents induce the generation of Reactive Oxygen Species (ROS) to kill cancer cells by apoptosis. However, prolonged treatment with the same drug reduces the ROS level and this reduced ROS level causes drug-sensitive cancer cells to become drug-resistant. Exogenous ROS in conjunction with the same drug resensitizes these drug-resistant cells. Thus, the apoptosis of cancer cells by inducing ROS generation or drug resistance by lack of ROS could be the principle mechanisms of drug sensitivity or drug resistance in various cancer cells. The genetic mechanism of ROS-induced drug sensitivity and ROS depletion leading to drug resistance in various cancer cells with most of the anticancer drugs could involve ‘common molecular pathways’. Understanding the molecular mechanism of ROS generation and maintenance could identify distinct targets for subsequent manipulation to elevate ROS levels in cancer cells. Thus, a ‘combinational chemotherapy’ could be designed using an anticancer drug while maintaining an elevated level of ROS in the cell during the drug treatment for developing a successful chemotherapy.

An erratum to this chapter is available at 10.1007/978-1-4614-7070-0_13

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-1-4614-7070-0_13

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ABCB1:

ATP-binding cassette sub-family B member 1

APEX1:

APEX nuclease (multifunctional DNA repair enzyme) 1

CASPs:

Caspases

CAT:

Catalase

CDDO-ME:

C-28 methyl ester derivative methyl-2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oate

ERK1/2:

Extracellular-signal-regulated kinases

IPA:

Ingenuity Pathway Analysis

GST:

Glutathione-S-transferase

HIF 2-alpha:

Hypoxia-inducible factor 2, alpha subunit

hTERT:

Human telomerase reverse transcriptase

JUN:

Jun proto-oncogene

KEAP1:

Kelch-like ECH-associated protein 1

MAPK8:

Mitogen-activated protein kinase 8

MCTS:

Multi-cellular tumor spheroids

MDR1:

Multi drug resistance protein 1

NFE2L2:

Nuclear factor (erythroid-derived 2)-like 2

NF-κB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

PEITC:

Phynyl isothiocyanate

ROS:

Reactive Oxygen Species

SOD:

Superoxide dismutase

References

  1. Higginson IJ, Costantini M. Dying with cancer, living well with advanced cancer. Eur J Cancer. 2008;44:1414–24.

    Article  PubMed  Google Scholar 

  2. Fung-Kee-Fung M, Oliver T, Elit L, Oza A, Hirte HW, Bryson P. Optimal chemotherapy treatment for women with recurrent ovarian cancer. Curr Oncol. 2007;14:195–208.

    Article  PubMed  CAS  Google Scholar 

  3. Lai D, Visser-Grieve S, Yang X. Tumour suppressor genes in chemotherapeutic drug response. Biosci Rep. 2012;32:361–74.

    Article  PubMed  CAS  Google Scholar 

  4. Donnenberg VS, Donnenberg AD. Multiple drug resistance in cancer revisited: the cancer stem cell hypothesis. J Clin Pharmacol. 2005;45:872–7.

    Article  PubMed  CAS  Google Scholar 

  5. Berlett BS, Stadtman ER. Protein oxidation in aging, disease, and oxidative stress. J Biol Chem. 1997;272:20313–6.

    Article  PubMed  CAS  Google Scholar 

  6. Ralph SJ, Rodriguez-Enriquez S, Neuzil J, Moreno-Sanchez R. Bioenergetic pathways in tumor mitochondria as targets for cancer therapy and the importance of the ROS-induced apoptotic trigger. Mol Aspects Med. 2010;31:29–59.

    Article  PubMed  CAS  Google Scholar 

  7. Weinberg F, Hamanaka R, Wheaton WW, Weinberg S, Joseph J, Lopez M, Kalyanaraman B, Mutlu GM, Budinger GR, Chandel NS. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci USA. 2010;107:8788–93.

    Article  PubMed  CAS  Google Scholar 

  8. Wallace DC. Mitochondria and cancer. Warburg addressed. Cold Spring Harb Symp Quant Biol. 2005;70:363–74.

    Article  PubMed  CAS  Google Scholar 

  9. Warburg O. On the origin of cancer cells. Science. 1956;123:309–14.

    Article  PubMed  CAS  Google Scholar 

  10. Gottlieb E, Tomlinson IP. Mitochondrial tumour suppressors. A genetic and biochemical update. Nat Rev Cancer. 2005;5:857–66.

    Article  PubMed  CAS  Google Scholar 

  11. Funes JM, Quintero M, Henderson S, Martinez D, Qureshi U, Westwood C, Clements MO, Bourboulia D, Pedley RB, Moncada S, Boshoff C. Transformation of human mesenchymal stem cells increases their dependency on oxidative phosphorylation for energy production. Proc Natl Acad Sci USA. 2007;104:6223–8.

    Article  PubMed  CAS  Google Scholar 

  12. Singh KK, Kulawiec M. Mitochondrial DNA polymorphism and risk of cancer. Methods Mol Biol. 2009;471:291–303.

    Article  PubMed  CAS  Google Scholar 

  13. Taylor RW, Turnbull DM. Mitochondrial DNA mutations in human disease. Nat Rev Genet. 2005;6:389–402.

    Article  PubMed  CAS  Google Scholar 

  14. Ralph SJ, Rodriguez-Enriquez S, Neuzil J, Saavedra E, Moreno-Sanchez R. The causes of cancer revisited: “mitochondrial malignancy” and ROS-induced oncogenic transformation—why mitochondria are targets for cancer therapy. Mol Aspects Med. 2010;31:145–70.

    Article  PubMed  CAS  Google Scholar 

  15. Trachootham D, Alexandre J, Huang P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov. 2009;8:579–91.

    Article  PubMed  CAS  Google Scholar 

  16. Rushmore TH, Morton MR, Pickett CB. The antioxidant responsive element. Activation by oxidative stress and identification of the DNA consensus sequence required for functional activity. J Biol Chem. 1991;266:11632–9.

    PubMed  CAS  Google Scholar 

  17. Nioi P, McMahon M, Itoh K, Yamamoto M, Hayes JD. Identification of a novel Nrf2-regulated antioxidant response element (ARE) in the mouse NAD(P)H: quinone oxidoreductase 1 gene: reassessment of the ARE consensus sequence. Biochem J. 2003;374:337–48.

    Article  PubMed  CAS  Google Scholar 

  18. Wasserman WW, Fahl WE. Functional antioxidant responsive elements. Proc Natl Acad Sci USA. 1997;94:5361–6.

    Article  PubMed  CAS  Google Scholar 

  19. Nguyen T, Sherratt PJ, Pickett CB. Regulatory mechanisms controlling gene expression mediated by the antioxidant response element. Annu Rev Pharmacol Toxicol. 2003;43:233–60.

    Article  PubMed  CAS  Google Scholar 

  20. Liou GY, Storz P. Reactive oxygen species in cancer. Free Radical Res. 2010;44:479–96.

    Article  CAS  Google Scholar 

  21. Wondrak GT. Redox-directed cancer therapeutics: molecular mechanisms and opportunities. Antioxid Redox Signal. 2009;11:3013–69.

    Article  PubMed  CAS  Google Scholar 

  22. Bechtel W, Bauer G. Modulation of intercellular ROS signaling of human tumor cells. Anticancer Res. 2009;29:4559–70.

    PubMed  CAS  Google Scholar 

  23. Lau AT, Wang Y, Chiu JF. Reactive oxygen species: current knowledge and applications in cancer research and therapeutic. J Cell Biochem. 2008;104:657–67.

    Article  PubMed  CAS  Google Scholar 

  24. Chaiswing L, Oberley TD. Extracellular/microenvironmental redox state. Antioxid Redox Signal. 2010;13:449–65.

    Article  PubMed  CAS  Google Scholar 

  25. Maulucci G, Pani G, Fusco S, Papi M, Arcovito G, Galeotti T, Fraziano M, De Spirito M. Compartmentalization of the redox environment in PC-12 neuronal cells. Eur Biophys J. 2010;39:993–9.

    Article  PubMed  CAS  Google Scholar 

  26. Gottlieb E, Vousden KH. p53 regulation of metabolic pathways. Cold Spring Harb Perspect Biol. 2010;2:a001040.

    Article  PubMed  Google Scholar 

  27. Han YH, Moon HJ, You BR, Park WH. The effects of MAPK inhibitors on pyrogallol-treated Calu-6 lung cancer cells in relation to cell growth, reactive oxygen species and glutathione. Food Chem Toxicol. 2010;48:271–6.

    Article  PubMed  CAS  Google Scholar 

  28. Horak P, Crawford AR, Vadysirisack DD, Nash ZM, DeYoung MP, Sgroi D, Ellisen LW. Negative feedback control of HIF-1 through REDD1-regulated ROS suppresses tumorigenesis. Proc Natl Acad Sci USA. 2010;107:4675–80.

    Article  PubMed  CAS  Google Scholar 

  29. Chattopadhyay R, Das S, Maiti AK, Boldogh I, Xie J, Hazra TK, Kohno K, Mitra S, Bhakat KK. Regulatory role of human AP-endonuclease (APE1/Ref-1) in YB-1-mediated activation of the multidrug resistance gene MDR1. Mol Cell Biol. 2008;28:7066–80.

    Article  PubMed  CAS  Google Scholar 

  30. DeNicola GM, Karreth FA, Humpton TJ, Gopinathan A, Wei C, Frese K, Mangal D, Yu KH, Yeo CJ, Calhoun ES, Scrimieri F, Winter JM, Hruban RH, Iacobuzio-Donahue C, Kern SE, Blair IA, Tuveson DA. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature. 2011;475:106–9.

    Article  PubMed  CAS  Google Scholar 

  31. Hayes JD, McMahon M. NRF2 and KEAP1 mutations: permanent activation of an adaptive response in cancer. Trends Biochem Sci. 2009;34:176–88.

    Article  PubMed  CAS  Google Scholar 

  32. Wakabayashi N, Itoh K, Wakabayashi J, Motohashi H, Noda S, Takahashi S, Imakado S, Kotsuji T, Otsuka F, Roop DR, Harada T, Engel JD, Yamamoto M. Keap1-null mutation leads to postnatal lethality due to constitutive Nrf2 activation. Nat Genet. 2003;35:238–45.

    Article  PubMed  CAS  Google Scholar 

  33. Sablina AA, Budanov AV, Ilyinskaya GV, Agapova LS, Kravchenko JE, Chumakov PM. The antioxidant function of the p53 tumor suppressor. Nat Med. 2005;11:1306–13.

    Article  PubMed  CAS  Google Scholar 

  34. Levine AJ. Tumor suppressor genes. Bioessays. 1990;12:60–6.

    Article  PubMed  CAS  Google Scholar 

  35. Hollstein M, Sidransky D, Vogelstein B, Harris CC. p53 mutations in human cancers. Science. 1991;253:49–53.

    Article  PubMed  CAS  Google Scholar 

  36. Ladiges W, Wanagat J, Preston B, Loeb L, Rabinovitch P. A mitochondrial view of aging, reactive oxygen species and metastatic cancer. Aging Cell. 2010;9:462–5.

    Article  PubMed  CAS  Google Scholar 

  37. Pani G, Galeotti T, Chiarugi P. Metastasis: cancer cell’s escape from oxidative stress. Cancer Metastasis Rev. 2010;29:351–78.

    Article  PubMed  CAS  Google Scholar 

  38. Itoh K, Ishii T, Wakabayashi N, Yamamoto M. Regulatory mechanisms of cellular response to oxidative stress. Free Radical Res. 1999;31:319–24.

    Article  CAS  Google Scholar 

  39. Storz P. Reactive oxygen species in tumor progression. Front Biosci. 2005;10:1881–96.

    Article  PubMed  CAS  Google Scholar 

  40. Overmeyer JH, Maltese WA. Death pathways triggered by activated Ras in cancer cells. Front Biosci. 2011;16:1693–713.

    Article  PubMed  CAS  Google Scholar 

  41. Lebedeva IV, Su ZZ, Sarkar D, Gopalkrishnan RV, Waxman S, Yacoub A, Dent P, Fisher PB. Induction of reactive oxygen species renders mutant and wild-type K-ras pancreatic carcinoma cells susceptible to Ad.mda-7-induced apoptosis. Oncogene. 2005;24:585–96.

    Article  PubMed  CAS  Google Scholar 

  42. Ozben T. Oxidative stress and apoptosis: impact on cancer therapy. J Pharm Sci. 2007;96:2181–96.

    Article  PubMed  CAS  Google Scholar 

  43. Maiti AK. Genetic determinants of oxidative stress-mediated sensitization of drug-resistant cancer cells. Int J Cancer. 2012;130:1–9.

    Article  PubMed  CAS  Google Scholar 

  44. El-Najjar N, Chatila M, Moukadem H, Vuorela H, Ocker M, Gandesiri M, Schneider-Stock R, Gali-Muhtasib H. Reactive oxygen species mediate thymoquinone-induced apoptosis and activate ERK and JNK signaling. Apoptosis. 2010;15:183–95.

    Article  PubMed  CAS  Google Scholar 

  45. Meeran SM, Patel SN, Tollefsbol TO. Sulforaphane causes epigenetic repression of hTERT expression in human breast cancer cell lines. PLoS One. 2010;5:e11457.

    Article  PubMed  Google Scholar 

  46. Su Z, Emdad L, Sauane M, Lebedeva IV, Sarkar D, Gupta P, James CD, Randolph A, Valerie K, Walter MR, Dent P, Fisher PB. Unique aspects of mda-7/IL-24 antitumor bystander activity: establishing a role for secretion of MDA-7/IL-24 protein by normal cells. Oncogene. 2005;24:7552–66.

    Article  PubMed  CAS  Google Scholar 

  47. Maiti AK. Gene network analysis of oxidative stress-mediated drug sensitivity in resistant ovarian carcinoma cells. Pharmacogenomics J. 2010;10:94–104.

    Article  PubMed  CAS  Google Scholar 

  48. Deeb D, Gao X, Jiang H, Janic B, Arbab AS, Rojanasakul Y, Dulchavsky SA, Gautam SC. Oleanane triterpenoid CDDO-Me inhibits growth and induces apoptosis in prostate cancer cells through a ROS-dependent mechanism. Biochem Pharmacol. 2010;79:350–60.

    Article  PubMed  CAS  Google Scholar 

  49. Li MX, Shan JL, Wang D, He Y, Zhou Q, Xia L, Zeng LL, Li ZP, Wang G, Yang ZZ. Human AP endonuclease 1 translocalizes to mitochondria after photodynamic therapy and protects cells from apoptosis. Cancer Sci. 2012;103:882–8.

    Article  PubMed  CAS  Google Scholar 

  50. Kim SH, Dass CR. p53-targeted cancer pharmacotherapy: move towards small molecule compounds. J Pharm Pharmacol. 2011;63:603–10.

    Article  PubMed  CAS  Google Scholar 

  51. Filomeni G, Piccirillo S, Rotilio G, Ciriolo MR. p38(MAPK) and ERK1/2 dictate cell death/survival response to different pro-oxidant stimuli via p53 and Nrf2 in neuroblastoma cells SH-SY5Y. Biochem Pharmacol. 2012;83:1349–57.

    Article  PubMed  CAS  Google Scholar 

  52. Maiti A. Reactive oxygen species reduction is a key underlying mechanism of drug resistance in cancer chemotherapy. Chemotherapy 2012;1:104-8.

    Google Scholar 

  53. Bechtel W, Bauer G. Catalase protects tumor cells from apoptosis induction by intercellular ROS signaling. Anticancer Res. 2009;29:4541–57.

    PubMed  CAS  Google Scholar 

  54. Masgras I, Carrera S, de Verdier PJ, Brennan P, Majid A, Makhtar W, Tulchinksy E, Jones GD, Roninson IB, Macip S. Reactive oxygen species and mitochondrial sensitivity to oxidative stress determine induction of cancer cell death by p21. J Biol Chem. 2012;287:9845–54.

    Article  PubMed  CAS  Google Scholar 

  55. Goh J, Enns L, Fatemie S, Hopkins H, Morton J, Pettan-Brewer C, Ladiges W. Mitochondrial targeted catalase suppresses invasive breast cancer in mice. BMC Cancer. 2011;11:191–203.

    Article  PubMed  CAS  Google Scholar 

  56. Hayes JD, McMahon M, Chowdhry S, Dinkova-Kostova AT. Cancer chemoprevention mechanisms mediated through the Keap1-Nrf2 pathway. Antioxid Redox Signal. 2010;13:1713–48.

    Article  PubMed  CAS  Google Scholar 

  57. Konstantinopoulos PA, Spentzos D, Fountzilas E, Francoeur N, Sanisetty S, Grammatikos AP, Hecht JL, Cannistra SA. Keap1 mutations and Nrf2 pathway activation in epithelial ovarian cancer. Cancer Res. 2011;71:5081–9.

    Article  PubMed  CAS  Google Scholar 

  58. Syed Alwi SS, Cavell BE, Donlevy A, Packham G. Differential induction of apoptosis in human breast cancer cell lines by phenethyl isothiocyanate, a glutathione depleting agent. Cell Stress Chaperones 2012;17:529–38.

    Google Scholar 

  59. Fang J, Nakamura H, Iyer AK. Tumor-targeted induction of oxystress for cancer therapy. J Drug Target. 2007;15:475–86.

    Article  PubMed  CAS  Google Scholar 

  60. Miele E, Spinelli GP, Di Fabrizio E, Ferretti E, Tomao S, Gulino A. Nanoparticle-based delivery of small interfering RNA: challenges for cancer therapy. Int J Nanomed. 2012;7:3637–57.

    Google Scholar 

  61. Dreaden EC, Austin LA, Mackey MA, El-Sayed MA. Size matters: gold nanoparticles in targeted cancer drug delivery. Ther Deliv. 2012;3:457–78.

    Article  PubMed  CAS  Google Scholar 

  62. Ming X, Sato K, Juliano RL. Unconventional internalization mechanisms underlying functional delivery of antisense oligonucleotides via cationic lipoplexes and polyplexes. J Control Release. 2011;153:83–92.

    Article  PubMed  CAS  Google Scholar 

  63. Chen Y, Bathula SR, Li J, Huang L. Multi-functional nanoparticles delivering siRNA and doxorubicin overcome drug resistance in cancer. J Biol Chem. 2010;285:22639–50.

    Article  PubMed  CAS  Google Scholar 

  64. Shubayev VI, Pisanic TR 2nd, Jin S. Magnetic nanoparticles for theragnostics. Adv Drug Deliv Rev. 2009;61:467–77.

    Article  PubMed  CAS  Google Scholar 

  65. Khaitan D, Dwarakanath BS. Endogenous and induced oxidative stress in multi-cellular tumour spheroids: implications for improving tumour therapy. Indian J Biochem Biophys. 2009;46:16–24.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I thank Ms B. Mikkola for critically reading this manuscript.

Conflicts of Interest

No potential conflicts of interest were disclosed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit K. Maiti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Maiti, A.K. (2013). Overcoming Drug Resistance Through Elevation of ROS in Cancer. In: Bonavida, B. (eds) Molecular Mechanisms of Tumor Cell Resistance to Chemotherapy. Resistance to Targeted Anti-Cancer Therapeutics, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7070-0_7

Download citation

Publish with us

Policies and ethics