Skip to main content

The Source Zone Remediation Challenge

  • Chapter
  • First Online:
Chlorinated Solvent Source Zone Remediation

Part of the book series: SERDP ESTCP Environmental Remediation Technology ((SERDP/ESTCP,volume 7))

  • 2160 Accesses

Abstract

Remediating groundwater contaminated by chlorinated solvents in the form of dense nonaqueous phase liquids (DNAPLs) poses major technical, economic and institutional challenges. This chapter summarizes those challenges and discusses the developments needed to improve management of DNAPL source zones. There are over 10,000 such sites in the United States, and only a few examples of cleanup to levels allowing unrestricted use and exposure. DNAPLs migrate downward through aquifers in complex patterns. Over time, the solvents can diffuse into low permeability materials, and the later back diffusion can contaminate groundwater for decades or even centuries. Finally, typical cleanup levels are 5 to 6 orders of magnitude below the solubilities, so complete remediation of a source often requires removal or destruction of over 99% of the mass. Such partial mass depletion from DNAPL source zones has been a viable remediation strategy at certain sites, but it has proven difficult to decide when and how to undertake DNAPL depletion, and how best to transition DNAPL sites to passive long term management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

REFERENCES

  • AFCEE (Air Force Center for Engineering and the Environment). 2006. Monitoring and Remediation Optimization System (MAROS), Software version 2.2, User’s guide. http://www.gsi-net.com/es/software/software-gratis/maros.html. Accessed September 20, 2013.

  • AFCEE. 2007. AFCEE Source Zone Initiative Final Report. http://www.clu-in.org/download/contaminantfocus/dnapl/Chemistry_and_Behavior/AFCEE-szi-2007a.pdf. Accessed September 20, 2013.

  • Alexandra R, Gerhard JI, Kueper BH. 2012. Hydraulic displacement of dense nonaqueous phase liquids for source zone stabilization. Ground Water 50:765–774.

    Article  CAS  Google Scholar 

  • Amos BK, Suchomel EJ, Pennell KD, Löffler FE. 2008. Microbial activity and distribution during enhanced contaminant dissolution from a NAPL source zone. Water Res 42:2963–2974.

    Article  CAS  Google Scholar 

  • Basu NB, Fure AD, Jawitz JW. 2008. Predicting dense nonaqueous phase liquid dissolution using a simplified source depletion model parameterized with partitioning tracers. Water Resour Res 44:W07414. doi 10.1029/2007WR006008.

    Article  Google Scholar 

  • Berge ND, Ramsburg CA. 2009. Oil-in-water emulsions for encapsulated delivery of reactive iron particles. Environ Sci Technol 43:5060–5066.

    Article  CAS  Google Scholar 

  • Beyke G, Powell T. 2005. Heat enhanced bioremediation of chlorinated solvents using electrical resistance heating. In Abstracts of the 8th International In Situ and Onsite Bioremediation Symposium, Baltimore, MD, USA, June 6–9.

    Google Scholar 

  • Brusseau ML, Nelson NT, Zhang Z, Blue JE, Rohrer J, Allen T. 2007. Source-zone characterization of a chlorinated-solvent contaminated Superfund site in Tucson, AZ. J Contam Hydrol 90:21–40

    Article  CAS  Google Scholar 

  • Chapelle FH, Bradley PM, Casey CC. 2004. Accelerated cleanup follows Fenton’s ISCO and substrate addition. USEPA Technology News and Trends. December. http://clu-in.org/products/newsltrs/tnandt/view.cfm?issue=1204.cfm#3. Accessed September 20, 2013.

  • Charsky M. 2012. Joint technical presentation and panel discussion: Technical impracticability (TI) waivers. In Abstracts of the 2012 meeting of the Technical Support Project, Oklahoma City, OK, USA, May 1–3.

    Google Scholar 

  • Childs J, Acosta E, Annable MD, Brooks MC, Enfield CG, Harwell JH, Hasegawa M, Knox RC, Rao PSC, Sabatini DA, Shiau B, Szekeres E, Wood AL. 2006. Field demonstration of surfactant-enhanced solubilization of DNAPL at Dover Air Force Base, Delaware. J Contam Hydrol 82:1–22.

    Article  CAS  Google Scholar 

  • Christ JA, Ramsburg CA, Abriola LM, Pennell KD, Löffler FE. 2005. Coupling aggressive mass removal with microbial reductive dechlorination for remediation of DNAPL source zones: A review and assessment. Environ Health Perspect 113:465–477.

    Article  CAS  Google Scholar 

  • Christ JA, Ramsburg CA, Pennell KD, Abriola LM. 2010. Predicting DNAPL mass discharge from pool-dominated source zones. J Contam Hydrol 114:18–34.

    Article  CAS  Google Scholar 

  • Cohen RM, Mercer JW. 1993. DNAPL Site Evaluation. CRC Press, Boca Raton, FL, USA. 384 p.

    Google Scholar 

  • Costanza J, Pennell KD. 2007. Distribution and abiotic degradation of chlorinated solvents in heated field samples. Environ Sci Technol 41:1729–1734.

    Article  CAS  Google Scholar 

  • Costanza J, Fletcher KE, Löffler FE, Pennell KD. 2009. Fate of TCE in heated Fort Lewis soil. Environ Sci Technol 43:909–914.

    Article  CAS  Google Scholar 

  • Danielsen KM, Hayes KF. 2004. pH dependence of carbon tetrachloride reductive dechlorination by magnetite. Environ Sci Technol 38:4745–4752.

    Article  CAS  Google Scholar 

  • Dugan PJ, Siegrist RL, Crimi M. 2010. Coupling surfactants/cosolvents with oxidants for enhanced DNAPL removal: A review. Remediat J 20:27–49.

    Article  Google Scholar 

  • Einarson MD, Cherry JA. 2002. A new multilevel ground water monitoring system using multichannel tubing. Ground Water Monit Remediat 22:52–65.

    Article  CAS  Google Scholar 

  • ESTCP (Environmental Security Technology Certification Program). 2005. Bioaugmentation for Remediation of Chlorinated Solvents: Technology Development, Status, and Research Needs. http://www.serdp.org/. Accessed January 23, 2014.

  • ESTCP. 2010. Cost and Performance Report: Remediation of DNAPL Through Sequential In Situ Chemical Oxidation and Bioaugmentation. ESTCP Project 200116. http://www.serdp.org/. Accessed January 23, 2014.

  • ESTCP. 2011. Alternative Endpoints and Approaches Selected for the Remediation of Contaminated Groundwater. ESTCP Project ER-200832. Final Report. http://www.serdp.org/. Accessed January 23, 2014.

  • ESTCP. 2012. Improved Field Evaluation of NAPL Dissolution and Source Longevity. ESTCP Project ER-200833. http://www.serdp.org/. Accessed January 23, 2014.

  • ESTCP. 2013. Basic research addressing contaminants in low permeability zones. ESTCP Project ER-1740. http://www.serdp.org/. Accessed January 23, 2014.

  • Falta RW. 2008. Methodology for comparing source and plume remediation alternatives. Ground Water 46:272–285.

    Article  CAS  Google Scholar 

  • Falta RW, Javandel I, Pruess K, Witherspoon P. 1989. Density driven flow of gas in the unsaturated zone due to evaporation of volatile organic compounds. Water Resour Res 25:2159–2169.

    Article  CAS  Google Scholar 

  • Falta RW, Rao PSC, Basu N. 2005a. Assessing the impacts of partial mass depletion in DNAPL source zones. 1. Analytical modeling of source strength functions and plume response. J Contam Hydrol 78:259–280.

    Article  CAS  Google Scholar 

  • Falta RW, Basu N, Rao PSC. 2005b. Assessing impacts of partial mass depletion in DNAPL source zones. 2. Coupling source strength functions to plume evolution. J Contam Hydrol 79:45–66.

    Article  CAS  Google Scholar 

  • Feenstra S, Cherry JA, Parker BL. 1996. Conceptual models for the behavior of dense nonaqueous phase liquids (DNAPLs) in the subsurface. In Pankow JF, Cherry JA, eds, Dense Chlorinated Solvents in Groundwater. Waterloo Press, Portland, OR, USA, pp 53–88.

    Google Scholar 

  • Fountain JC, Starr RC, Middleton T, Beikirch M, Taylor C, Hodge D. 1996. A controlled field test of surfactant-enhanced aquifer remediation. Ground Water 34:910–916.

    Article  CAS  Google Scholar 

  • Freeze RA, Cherry JA. 1979. Groundwater. Prentice Hall, Englewood Cliffs, NJ, USA. 604 p.

    Google Scholar 

  • Fure AD, Jawitz JW, Annable MD. 2006. DNAPL source depletion: Linking architecture and flux response. J Contam Hydrol 85:118–140.

    Article  CAS  Google Scholar 

  • Gavaskar A, Tatar L, Condit W. 2004. Cost and performance report: Nanoscale zero-valent iron technologies for source remediation. NAVFAC Contract Report No. CR-05-007-ENV. NAVFAC, Port Hueneme, CA, USA. http://www.cluin.org/download/remed/cr-05-007-env.pdf. Accessed January 23, 2014.

  • Geosyntec, LFR, Tetra Tech NUS. 2007. Launch Complex 34 SWMU No. CC054 corrective measures study report, Cape Canaveral Air Force Station, Florida, USA, February.

    Google Scholar 

  • Gerhard JI, Kueper BH, Hecox G. 1998. Waterflooding for the removal of pooled DNAPL. Ground Water 36:283–292.

    Article  CAS  Google Scholar 

  • Gerhard JI, Kueper BH, Hecox G, Schwarz R. 2001. Site-specific waterflood design for the recovery and stabilization of pooled DNAPL. Ground Water Monit Remediat 21:71–88.

    Article  CAS  Google Scholar 

  • Gillham R, Vogan J. 2010. Iron barrier walls for chlorinated solvent remediation. In Stroo HF, Ward CH, eds, In Situ Remediation of Chlorinated Solvent Plumes. Springer, New York, NY, USA, pp 537–571.

    Chapter  Google Scholar 

  • ITRC (Interstate Technology and Regulatory Council). 2002. DNAPL Source Reduction: Facing the Challenge. Washington, DC, USA. http://www.itrcweb.org. Accessed September 20, 2013.

  • ITRC. 2004. Strategies for Monitoring the Performance of DNAPL Source Zone Remedies. Washington, DC, USA. http://www.itrcweb.org. Accessed September 20, 2013.

  • ITRC. 2005a. Technical and Regulatory Guidance for In Situ Chemical Oxidation of Contaminated Soil and Groundwater. Washington, DC, USA. http://www.itrcweb.org. Accessed September 20, 2013.

  • ITRC. 2005b. Overview of In Situ Bioremediation of Chlorinated Ethene DNAPL Source Zones. BioDNAPL-1. Washington, DC, USA. http://www.itrcweb.org. Accessed September 20, 2013.

  • ITRC. 2008. Technical and Regulatory Guidance: In Situ Bioremediation of Chlorinated Ethene DNAPL Source Zones. BioDNAPL-2. Washington, DC, USA. http://www.itrcweb.org. Accessed September 20, 2013.

  • ITRC. 2010. Technology Overview: Use and Measurement of Mass Flux and Mass Discharge at Contaminated Sites. Washington, DC, USA. http://www.itrcweb.org. Accessed September 20, 2013.

  • ITRC. 2011. Technical and Regulatory Guidance: Integrated Strategies for Chlorinated Solvent Sites. Washington, DC, USA. http://www.itrcweb.org. Accessed September 20, 2013.

  • Johnson P, Dahlen P, Triplett Kingston J, Foote E, Williams S. 2009. State of Practice Overview: Critical Evaluation of State-of-the-Art In Situ Thermal Treatment Technologies for DNAPL Source Zone Treatment. http://www.serdp.org/. Accessed January 23, 2014.

  • Kavanaugh MC, Rao PSC, Abriola L, Cherry J, Newell C, Sale T, Destouni G, Falta R, Shoemaker S, Siegrist R, Major D, Mercer J, Teusch G, Udell K. 2003. The DNAPL Remediation Challenge: Is There a Case for Source Depletion? EPA/600/R-03/143. U.S. Environmental Protection Agency, Washington, DC, USA.

    Google Scholar 

  • Kram ML, Keller AA, Rossabi J, Everett LG. 2002. DNAPL characterization methods and approaches, Part 2: Cost comparisons. Ground Water Monit Remediat 22:46–61.

    Article  Google Scholar 

  • Krembs FJ, Siegrist RL, Crimi M, Furrer RF, Petri BG. 2010. ISCO for groundwater remediation: Analysis of field applications and performance. Ground Water Monit Remediat 30:42-53.

    Article  Google Scholar 

  • Kueper BH, Davies KL. 2009. Assessment and delineation of DNAPL source zones at hazardous waste sites. EPA/600/R-09/119. USEPA, Cincinnati, OH, USA.

    Google Scholar 

  • Kueper BH, Redman D, Starr RC, Reitsma S, Mah M. 1993. A field experiment to study the behavior of tetrachloroethylene below the water table: Spatial distribution of residual and pooled DNAPL. Ground Water 31:756–766.

    Article  CAS  Google Scholar 

  • Lemke LD, Abriola LM, Lang JR. 2004. Influence of hydraulic property correlation on predicted dense nonaqueous phase liquid source zone architecture, mass recovery and contaminant flux. Water Resour Res 40:W12417/doi 10.1029/2004WR003061.

  • Liu C, Ball WP. 2002. Back diffusion of chlorinated solvents from a natural aquitard to a remediated aquifer under well-controlled field conditions: Predictions and measurements. Ground Water 40:175–184.

    Article  CAS  Google Scholar 

  • McDade JM, McGuire TM, Newell CJ. 2005. Analysis of DNAPL source depletion costs at 36 field sites. Remediat J 15:9–18.

    Article  Google Scholar 

  • McGuire TM, McDade JM, Newell CJ. 2006. Performance of DNAPL source depletion technologies at 59 chlorinated solvent-impact sites. Ground Water Monit Remediat 26:73–84.

    Article  CAS  Google Scholar 

  • Mercer JW, Cohen RM. 1993. DNAPL Site Evaluation. CRC Press, Boca Raton, FL, USA.

    Google Scholar 

  • Mercer JW, Cohen RM, Noel MR. 2010. DNAPL site characterization issues at chlorinated solvent sites. In Stroo HF, Ward CH, eds, In Situ Remediation of Chlorinated Solvent Plumes. Springer, New York, NY, USA. 805 p.

    Google Scholar 

  • NAVFAC (Naval Facilities Engineering Command). 2007. Lessons Learned on Bioaugmentation of DNAPL Source Zone Areas. ESTCP Project ER-0008. http://www.clu-in.org/download/techfocus/biochlor/ER-0008-Less-Learned.pdf. Accessed January 23, 2014.

  • Newell CJ, Adamson DT. 2005. Planning-level source decay models to evaluate impact of source depletion on remediation timeframe. Remediat 15:27–47.

    Article  Google Scholar 

  • Newell CJ, McDade J, Seyedabbasi A, Gandhi D, Gallinatti J, Cocianni V, Ferguson DJ. 2011. Potential impact of matrix diffusion on a large pump-and-treat system. In International Symposium on Bioremediation and Sustainable Environmental Technologies. Reno, NV, USA, June 27–30.

    Google Scholar 

  • NRC (National Research Council). 1994. Alternatives for Ground Water Cleanup. National Academies Press, Washington, DC, USA.

    Google Scholar 

  • NRC. 1997. Valuing Groundwater. Economic Concepts and Approaches. National Academies Press, Washington, DC, USA.

    Google Scholar 

  • NRC. 2005. Contaminants in the Subsurface: Source Zone Assessment and Remediation. National Academies Press, Washington, DC, USA.

    Google Scholar 

  • Pankow JF, Cherry JA, eds. 1996. Dense Chlorinated Solvents and Other DNAPLs in Groundwater. Waterloo Press, Portland, OR, USA.

    Google Scholar 

  • Park E, Parker JC. 2008. Effects of mass reduction, flow reduction and enhanced biodecay of DNAPL source zones. Transport Porous Media 73:95–108.

    Article  Google Scholar 

  • Parker BL, Cherry JA, Gillham RW. 1996. Effects of molecular diffusion on organic chemical flow and transport in fractured geologic porous media. In Pankow JF, Cherry JA, eds, Dense Chlorinated Solvents and Other DNAPLs in Groundwater. Waterloo Press, Portland, OR, USA. 522 p.

    Google Scholar 

  • Payne F, Quinnan JA, Potter ST. 2008. Remediation Hydraulics. CRC Press, Boca Raton, FL, USA.

    Book  Google Scholar 

  • Pennell KD, Löffler FE, Costanza J, Fletcher KE, Ramaswamy NS, Otaño G, Callaghan J. 2009. Investigation of Chemical Reactivity, Mass Recovery and Biological Activity during Thermal Treatment of DNAPL Source Zones. SERDP Project 1419 Final Report. ESTCP, Washington, DC, USA.

    Google Scholar 

  • Poulsen M, Kueper BH. 1992. A field experiment to study the behavior of tetrachloroethylene in unsaturated porous media. Environ Sci Technol 26:889–895.

    Article  CAS  Google Scholar 

  • Ramsburg CA, Abriola LM, Pennell KD, Löffler FE, Gamache M, Amos BK, Petrovskis EA. 2004. Stimulated microbial reductive dechlorination following surfactant treatment at the Bachman Road site. Environ Sci Technol 38:5902–5914.

    Article  CAS  Google Scholar 

  • Ramsburg CA, Pennell KD, Abriola LM, Daniels G, Drummond CD, Gamache M, Hsu HL, Petrovskis EA, Rathfelder KM, Ryder JL, Yavaraski TP. 2005. A pilot-scale demonstration of surfactant-enhanced PCE solubilization at the Bachman Road site. 2. System operation and evaluation. Environ Sci Technol 39:1791–1801.

    Article  CAS  Google Scholar 

  • Rao PSC, Jawitz JW. 2003. Comment on “Steady-state mass transfer from single-component dense non-aqueous phase liquids in uniform flow fields” by Sale TC and McWhorter DB. Water Resour Res 39:1069.doi:10.1029/2002WR001423.

    Article  Google Scholar 

  • Rao PSC, Jawitz JW, Enfield CG, Falta RW, Annable MD, Wood AL. 2001. Technology integration for contaminated site remediation: Cleanup goals and performance criteria. In Thornton S, Oswald S, eds, Groundwater Quality: Natural and Enhanced Restoration of Groundwater Pollution. Publication No. 275. International Association of Hydrological Sciences, Wallingford, UK, pp 571–578.

    Google Scholar 

  • Saenton S, Illangasekare TH, Soga K, Saba TA. 2002. Effects of source zone heterogeneity on surfactant-enhanced NAPL dissolution and resulting remediation end-points. J Contam Hydrol 59:27–44.

    Article  CAS  Google Scholar 

  • Sale TC, McWhorter DB. 2001. Steady state mass transfer from single-component DNAPLs in uniform flow fields, Water Resour Res 37:393–404.

    Article  Google Scholar 

  • Sale TC, Newell CJ. 2010. Impacts of source management on chlorinated solvent plumes. In Stroo HF, Ward CH, eds, In Situ Remediation of Chlorinated Solvent Plumes. Springer, New York, NY, USA, pp 185–216.

    Chapter  Google Scholar 

  • Sale T, Newell C, Stroo H, Hinchee R, Johnson P. 2008a. Frequently Asked Questions Regarding Management of DNAPL Sites. ESTCP, Arlington, VA, USA. http://www.serdp.org/. Accessed January 23, 2014.

  • Sale TC, Zimbron J, Dandy D. 2008b. Effects of reduced contaminant loading on downgradient water quality in an idealized two layer system. J Contam Hydrol 102:72–85.

    Article  CAS  Google Scholar 

  • Saleh N, Sirk K, Liu Y, Phenrat T, Dufour B, Matyjaszewski K, Tilton R, Lowry GV. 2007. Surface modifications enhance nanoiron transport and DNAPL targeting in saturated porous media. Environ Eng Sci 24:45–57.

    Article  CAS  Google Scholar 

  • Schwarzenbach R, Gschwend PM, Imboden DM. 1993. Environmental Organic Chemistry. John Wiley and Sons, New York, NY, USA. 681 p.

    Google Scholar 

  • Siegrist RL, Crimi, M, Brown RA. 2011. In situ chemical oxidation: Technology description and status. In Siegrist RL, Crimi M, Simpkin TJ, eds, In Situ Chemical Oxidation for Groundwater Remediation. Springer, New York, NY, USA. 545 p.

    Google Scholar 

  • Sleep BE, Seeperstad DJ, Mo K, Heidorn CM, Hrapovic L, Morrill PL, McMaster ML, Hood ED, Lebrón C, Lollar BS, Major DW, Edwards EA. 2006. Biological enhancement of tetrachloroethene dissolution and associated microbial community changes. Environ Sci Technol 40:3623–3633.

    Article  CAS  Google Scholar 

  • Smith MM, Silva JAK, Munakata-Marr J, McCray JE. 2008. Compatibility of polymers and chemical oxidants for enhanced groundwater remediation. Environ Sci Technol 42:9296–9301.

    Article  CAS  Google Scholar 

  • Stroo HF, Leeson A, Marqusee JA, Johnson PC, Ward CH, Kavanaugh MC, Sale TC, Newell CJ, Pennel KD, Lebrón CA, Unger M. 2012. Chlorinated ethene source remediation: Lessons learned. Environ Sci Technol 46:6438–6447.

    Article  CAS  Google Scholar 

  • Suchomel EJ, Pennell KD. 2006. Reductions in contaminant mass discharge following partial mass removal from DNAPL source zones. Environ Sci Technol 40:6110–6116.

    Article  CAS  Google Scholar 

  • Suchomel EJ, Ramsburg CA, Pennell KD. 2007. Evaluation of trichloroethene recovery processes in heterogeneous aquifer cells flushed with biodegradable surfactants. J Contam Hydrol 94:195–214.

    Article  CAS  Google Scholar 

  • Taghavy A, Costanza J, Pennell KD, Abriola LM. 2010. Effectiveness of nanoscale zero-valent iron for treatment of a PCE-DNAPL source zone. J Contam Hydrol 118:143–151.

    Google Scholar 

  • USEPA (U.S. Environmental Protection Agency). 1992. Estimating potential for occurrence of DNAPL at superfund sites. OSWER Publication 9355.4-07FS. Office of Solid Waste and Emergency Response, Washington, DC, USA.

    Google Scholar 

  • USEPA. 1993a. Evaluation of the likelihood of DNAPL presence at NPL sites – national results. EPA 540R-93-073. Washington, DC, USA.

    Google Scholar 

  • USEPA. 1993b. Guidance for evaluating the technical impracticability of groundwater restoration. OSWER Directive 9234.2-25. Office of Solid Waste and Emergency Response, Washington, DC, USA.

    Google Scholar 

  • USEPA. 1994. DNAPL site characterization quick reference fact sheet. EPA 540/F-94/049. Office of Solid Waste and Emergency Response, Washington, DC, USA.

    Google Scholar 

  • USEPA. 1998. Evaluation of subsurface engineered barriers at waste sites. EPA 542/R-98/005. Office of Solid Waste and Emergency Response, Washington, DC, USA.

    Google Scholar 

  • USEPA. 1999. Groundwater cleanup: Overview of operating experience at 28 sites. EPA 542/R-99/006. Washington, DC, USA.

    Google Scholar 

  • USEPA. 2004. In-situ thermal treatment of chlorinated solvents: Fundamentals and field applications. EPA 542/R-04/010. Washington, DC, USA.

    Google Scholar 

  • USEPA. 2006. Engineering forum issue paper: In situ treatment technologies for contaminated soil. EPA 542/F-06/013. Washington, DC, USA.

    Google Scholar 

  • USEPA. 2009. DNAPL remediation: Selected projects where regulatory closure goals have been achieved. EPA 542/R-09/008. Washington, DC, USA.

    Google Scholar 

  • USEPA. 2010. Superfund remedy report, 13th ed. EPA 542/R/10/004. Washington, DC, USA.

    Google Scholar 

  • USEPA. 2011a. Environmental cleanup best management practices: Effective use of the project life cycle conceptual site model. EPA 542 F/11/011. Washington, DC, USA.

    Google Scholar 

  • USEPA. 2011b. Groundwater road map. Recommended process for restoring contaminated groundwater at Superfund sites. OSWER directive 9283.1-34. Washington, DC, USA.

    Google Scholar 

  • USEPA. 2011c. Clarification of OSWER’s 1995 technical impracticability waiver policy, OSWER Directive 9355.5-32. Washington, DC, USA.

    Google Scholar 

  • USEPA. 2012. What is long-term stewardship? Washington DC, USA. http://www.epa.gov/landrevitalization/ltstf_report/whatis_longterm_stewardship.htm. Accessed January 23, 2014.

  • Wadley SL, Gillham RW, Gui L. 2005. Remediation of DNAPL source zones with granular iron: Laboratory and field tests. Ground Water 43:9–18.

    Article  CAS  Google Scholar 

  • Waldemer RH, Tratnyek PG, Johnson RL, Nurmi JT. 2007. Oxidation of chlorinated ethenes by heat-activated persulfate: Kinetics and products. Environ Sci Technol 41:1010–1015.

    Article  CAS  Google Scholar 

  • Watts RJ, Teel AL. 2006. Treatment of contaminated soils and groundwater using ISCO. Pract Period Hazard Toxic Radioacti Waste Manage 10:2–9.

    Article  CAS  Google Scholar 

  • West MR, Kueper B. 2010. Plume detachment and recession times in fractured rock. Ground Water 48:416–426.

    Article  CAS  Google Scholar 

  • Wiedemeier TH, Swanson MA, Moutoux DE, Gordon EK, Wilson JT, Wilson BWH, Kampbell DH, Hansen JE, Hass P, Chapelle FH. 1998. Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Groundwater. EPA 600/R-98/128. Washington, DC, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Suchomel, E.J., Kavanaugh, M.C., Mercer, J.W., Johnson, P.C. (2014). The Source Zone Remediation Challenge. In: Kueper, B., Stroo, H., Vogel, C., Ward, C. (eds) Chlorinated Solvent Source Zone Remediation. SERDP ESTCP Environmental Remediation Technology, vol 7. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6922-3_2

Download citation

Publish with us

Policies and ethics