Skip to main content

The Study of Permanent Magnetic Synchronous Motor Control System Through the Combination of BP Neural Network and PID Control

  • Conference paper
  • First Online:
Intelligent Technologies and Engineering Systems

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 234))

Abstract

Modern manufacturing is not only more demanding on machining accuracy but also requires the equipment to have a better degree of wisdom. For PMSM control system, it generally uses traditional PID control method due to the control advantages of traditional PID control which are simple algorithm, strong bond, and high reliability. However, the actual industrial processes are often nonlinear, and many nonlinear systems have difficulties to determine the precise mathematical model, which causes PID controller to not achieve ideal control effect. Because BP neural network has arbitrary nonlinear express ability which can achieve the best combination of PID control through the study of system performance. Hence, the control accuracy, robustness, and adaptive capacity of the control system for permanent magnet synchronous motors are improved. Also, PMSM vector control model is established to be a controlled subject. The chapter proposes the advantages of PID control and BP neural network to develop BP neural network PID controller. By using double-layer neural network controller with three inputs and three outputs, and the input refers to deviation, input signal and system output. After correcting the weightings and adjusting the three parameters of PID controller, the purpose of eliminating transient error rapidly and reaching steady state can be achieved. The practical simulation results find that the proposed BP neural network PID controller has parameter self-tuning function, short system response time, no over shooting phenomenon, and stronger robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ang K, Chong G, Li Y (2005) PID control system analysis. Design and technology. IEEE Trans Control Syst Technol 13:559–576

    Article  Google Scholar 

  2. Shitao H, Zhijing F (2006) Design of optimal PID controller for liner servo system based on LQR approach. Manuf Technol Mach Tool:33–35

    Google Scholar 

  3. Jeng YF, Zhang L, Xu BJ, Wen KL (2012) The study of fuzzy PID controller in permanent magnetic synchronous motor. In: International conference on ICADE, pp 176–180

    Google Scholar 

  4. Hu HJ (2001) Stable and adaptive PID control based on neural network. J Beijing Univ Aeronaut Astronaut 27(2):153–156

    Google Scholar 

  5. Chen WB, Zeng GH, Zou HJ, Zhang HB, Tan CW (2012) Study of a single neuron fuzzy PID DC motor control method. In: International conference on intelligent systems design and engineering application, pp 1125–1128

    Google Scholar 

  6. Ablameyko S, Goras L, Gor M (2001) Neural networks for instrumentation. Measurement and related. Ios Press, Amsterdam

    Google Scholar 

  7. Chen YL, Chen WL et al (2005) Development of the FES system with neural network + PID controller for the stroke circuits and systems. In: International conference on IEEE ISCAS, Kobe, 2005, pp 5119–5121

    Google Scholar 

  8. Guo BT, Liu HY, Luo Z, Wang F (2009) Adaptive PID controller based on BP neural network. In: International joint conference on artificial intelligence, Pasadena, 2009, pp 148–150

    Google Scholar 

  9. Jang JSR (2008) Matlab program design. TeraSoft Inc, Hsinchhu

    Google Scholar 

  10. Lee YD (2011) The design and simulation of control system: use Matlab/Simulink. CHWA, Taipei

    Google Scholar 

Download references

Acknowledgments

The authors want to heartily thank Beijing Information Science & Technology University and Chienkuo Technology University for the financial supporting of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun-Li Wen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Zhang, L., Xu, BJ., Wen, KL., Li, YH. (2013). The Study of Permanent Magnetic Synchronous Motor Control System Through the Combination of BP Neural Network and PID Control. In: Juang, J., Huang, YC. (eds) Intelligent Technologies and Engineering Systems. Lecture Notes in Electrical Engineering, vol 234. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6747-2_38

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6747-2_38

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6746-5

  • Online ISBN: 978-1-4614-6747-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics