Skip to main content

Morphological Assessment of Oocytes, Pronuclear and Cleavage Stage Embryos

  • Chapter
  • First Online:
Human Gametes and Preimplantation Embryos

Abstract

The efficiency of human-assisted reproductive techniques (ART) is still low and most of the embryos transferred fail to implant. As a consequence, the policy of simultaneously replacing multiple embryos has been adopted but unfortunately this practice has led to an undesirable increase in multiple pregnancy rate. The ability to objectively assess gametes and embryos with the most developmental potential is challenging and would also represent a tool for troubleshooting. In fact, it would help reduce the number of embryos transferred without affecting the overall pregnancy rate but lowering, at the same time, multiple gestations. To date, the evaluation of embryo quality relies mainly on morphology and routine inverted microscopic investigations are performed at predetermined checkpoints. A number of different grading systems have been described in the literature but there are some concerns regarding the predictive value of these parameters. Recently, the Alpha Scientists in Reproductive Medicine and the ESHRE Special Group of Embryology stated that an international consensus on oocyte and embryo morphological assessment is needed. In fact, the standardization would help to validate the morphological criteria as end-points in clinical trials and other studies that assess the effect of new technologies and new products, improving the safety and efficacy of IVF treatments. The document produced by the two societies in collaboration will be referred to as the “Consensus document” and will be discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Edwards RG, Beard HK. Blastocyst stage transfer: pitfalls and benefits. Hum Reprod. 1999;14:1–6.

    Article  PubMed  CAS  Google Scholar 

  2. Rienzi L, Vajta G, Ubaldi F. Predictive value of oocyte morphology in human IVF: a systematic review of the literature. Hum Reprod Update. 2011;17:34–45.

    Article  PubMed  Google Scholar 

  3. Alpha Scientists in Reproductive Medicine and ESHRE Special Interest Group of Embryology. The Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Hum Reprod. 2011;26:1270–83.

    Article  Google Scholar 

  4. Dong J, Albertini DF, Nishimori K, et al. Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature. 1996;383:531–5.

    Article  PubMed  CAS  Google Scholar 

  5. Albertini DF, Combelles CMH, Benecchi E, et al. Cellular basis for paracrine regulation of ovarian follicle development. Reproduction. 2001;121:647–53.

    Article  PubMed  CAS  Google Scholar 

  6. Hutt KJ, Albertini DF. An oocentric view of folliculogenesis and embryogenesis. Reprod Biomed Online. 2007;14:758–64.

    Article  PubMed  CAS  Google Scholar 

  7. Gilchrist RB, Lane M, Thompson JG. Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality. Hum Reprod Update. 2008;14:159–77.

    Article  PubMed  CAS  Google Scholar 

  8. Testart J, Frydman R, De Mouzon J, et al. A study of factors affecting the success of human fertilization in vitro. I. Influence of ovarian stimulation upon the number and condition of oocytes collected. Biol Reprod. 1983;28:415–24.

    Article  PubMed  CAS  Google Scholar 

  9. Laufer N, Tarlatzis BC, DeCherney AH, et al. Asynchrony between human cumulus-corona cell complex and oocyte maturation after human menopausal gonadotropin treatment for in vitro fertilization. Fertil Steril. 1984;42:366–72.

    PubMed  CAS  Google Scholar 

  10. Rattanachaiyanont M, Leader A, Léveillé MC. Lack of correlation between oocyte-corona-cumulus complex morphology and nuclear maturity of oocytes collected in stimulated cycles for intracytoplasmic sperm injection. Fertil Steril. 1999;71:937–40.

    Article  PubMed  CAS  Google Scholar 

  11. Bar-Ami S, Gitay-Goren H, Brandes JM. Different morphological and steroidogenic patterns in oocyte/cumulus-corona cell complexes aspirated at in vitro fertilization. Biol Reprod. 1989;41:761–70.

    Article  PubMed  CAS  Google Scholar 

  12. Ng ST, Chang TH, Jackson Wu TC. Prediction of the rates of fertilization, cleavage and pregnancy success by cumulus-coronal morphology in an in vitro fertilization program. Fertil Steril. 1999;72:412–7.

    Article  PubMed  CAS  Google Scholar 

  13. Lin YC, Chang SY, Lan KC, et al. Human oocyte maturity in vivo determines the outcome of blastocyst development in vitro. J Assist Reprod Genet. 2003;20:506–12.

    Article  PubMed  Google Scholar 

  14. Veeck LL. The human oocyte. In: Veeck LL, editor. An atlas of human gametes and conceptuses. New York: Parthenon Publishing; 1999. p. 19–24.

    Google Scholar 

  15. Ebner T, Moser M, Shebl O, et al. Blood clots in the cumulus-oocyte complex predict poor oocyte quality and post-fertilization development. Reprod Biomed Online. 2008;16:801–7.

    Article  PubMed  CAS  Google Scholar 

  16. Rienzi L, Ubaldi F. Oocyte retrieval and selection. In: Gardner DK, Weissman A, Howles CM, Shoham Z, editors. Textbook of assisted reproductive technologies. Laboratory and clinical perspectives. 3rd ed. London, UK: Informa Healthcare; 2009. p. 85–101.

    Google Scholar 

  17. Oldenbourg R. Polarized light microscopy of spindles. Methods Cell Biol. 1999;61:175–208.

    Article  PubMed  CAS  Google Scholar 

  18. Montag M, Schimming T, Van der Ven H. Spindle imaging in human oocytes: the impact of the meiotic cell cycle. Reprod Biomed Online. 2006;12:442–6.

    Article  PubMed  Google Scholar 

  19. Montag M, Köster M, Van der Ven K, et al. Gamete competence assessment by polarizing optics in assisted reproduction. Hum Reprod Update. 2011;17:654–66.

    Article  PubMed  Google Scholar 

  20. Pickering SJ, Brande PR, Johnson MH, et al. Transient cooling to room temperature can cause irreversible disruption of the meiotic spindle in human oocyte. Fertil Steril. 1990;54:102–8.

    PubMed  CAS  Google Scholar 

  21. Almeida PA, Bolton VN. The effect of temperature fluctuations on the cytoskeletal organisation and chromosomal constitution of the human oocyte. Zygote. 1995;3:357–65.

    Article  PubMed  CAS  Google Scholar 

  22. Zenzes MT, Bielecki R, Casper RF, et al. Effects of chilling to 0 degrees C on the morphology of meiotic spindles in human metaphase II oocytes. Fertil Steril. 2001;75:769–77.

    Article  PubMed  CAS  Google Scholar 

  23. Wang WH, Meng L, Hackett RJ, et al. Limited recovery of meiotic spindles in living human oocytes after cooling-rewarming observed using polarized light microscopy. Hum Reprod. 2001;16:2374–8.

    PubMed  CAS  Google Scholar 

  24. Sun XF, Wang WH, Keefe DL. Overheating is detrimental to meiotic spindles within in vitro matured oocytes. Zygote. 2004;12:65–70.

    Article  PubMed  Google Scholar 

  25. Rienzi L, Martinez F, Ubaldi F, et al. Polscope analysis of meiotic spindle changes in living metaphase II human oocytes during the freezing and thawing procedures. Hum Reprod. 2004;19:655–9.

    Article  PubMed  CAS  Google Scholar 

  26. Rienzi L, Ubaldi F, Martinez F, et al. Relationship between meiotic spindle location with regard to the polar body position and oocyte developmental potential after ICSI. Hum Reprod. 2003;18:1289–93.

    Article  PubMed  CAS  Google Scholar 

  27. Cooke S, Tyler JPP, Driscoll GL. Meiotic spindle location and identification and its effect on embryonic cleavage plane and early development. Hum Reprod. 2003;18:2397–405.

    Article  PubMed  CAS  Google Scholar 

  28. Cohen Y, Malcov M, Schwartz T, et al. Spindle imaging: a new marker for optimal timing of ICSI? Hum Reprod. 2004;19:649–54.

    Article  PubMed  CAS  Google Scholar 

  29. Petersen C. Relationship between visualization of meiotic spindle in human oocytes and ICSI outcomes: a meta-analysis. Reprod Biomed Online. 2009;18:235–43.

    Article  PubMed  CAS  Google Scholar 

  30. Maro B, Verlhac MH. Polar body formation: new rules for asymmetric divisions. Nat Cell Biol. 2002;4:E281–3.

    Article  PubMed  CAS  Google Scholar 

  31. Payne D, Flaherty SP, Barry MF, et al. Preliminary observations on polar body extrusion and pronuclear formation in human oocytes using time-lapse video cinematography. Hum Reprod. 1997;12:532–41.

    Article  PubMed  CAS  Google Scholar 

  32. Moon JH, Hyun CS, Lee SW, et al. Visualization of the metaphase II meiotic spindle in living human oocytes using the Polscope enables the prediction of embryonic developmental competence after ICSI. Hum Reprod. 2003;18:817–20.

    Article  PubMed  CAS  Google Scholar 

  33. Silva CP, Kommineni K, Oldenbourg R, et al. The first polar body does not predict accurately the location of the metaphase II meiotic spindle in mammalian oocytes. Fertil Steril. 1999;71:719–21.

    Article  PubMed  CAS  Google Scholar 

  34. Sato H, Ellis GW, Inoue S. Microtubular origin of meiotic spindle from birifrangence. Demonstration of the applicability of Wiener’s equation. J Cell Biol. 1975;67:501–17.

    Article  PubMed  CAS  Google Scholar 

  35. Trimarchi JR, Karin RA, Keefe DL. Average spindle retardance observed using the polscope predicts cell number in day 3 embryos. Fertil Steril. 2004;82 Suppl 2:S268.

    Article  Google Scholar 

  36. Shen Y, Stalf T, De Santis L, et al. Light retardance by human oocyte spindle is positively related to pronuclear score after ICSI. Reprod Biomed Online. 2006;6:737–51.

    Article  Google Scholar 

  37. Raju R, Prakash GJ, Krishna KM, et al. Meiotic spindle and zona pellucida characteristics as predictors of embryonic development: a preliminary study using Polscope imaging. Reprod Biomed Online. 2007;14:166–74.

    Article  Google Scholar 

  38. Kilani S, Cooke S, Kan A, et al. Are there non-invasive markers in human oocytes that can predict pregnancy outcome? Reprod Biomed Online. 2009;18:674–80.

    Article  PubMed  Google Scholar 

  39. De Santis L, Cino I, Rabellotti E, et al. Polar body morphology and spindle imaging as predictors of oocyte quality. Reprod Biomed Online. 2005;11:36–42.

    Article  PubMed  Google Scholar 

  40. Ebner T, Moser M, Tews G. Is oocyte morphology prognostic of embryo developmental potential after ICSI? Reprod Biomed Online. 2006;12:507–12.

    Article  PubMed  Google Scholar 

  41. Rosenbusch B, Schneider M, Glaser B, et al. Cytogenetic analysis of giant oocytes and zygotes to assess their relevance for the development of digynic triploidy. Hum Reprod. 2002;17:2388–93.

    Article  PubMed  CAS  Google Scholar 

  42. Balakier H, Bouman D, Sojecki A, et al. Morphological and cytogenetic analysis of human giant oocytes and giant embryos. Hum Reprod. 2002;17:2394–401.

    Article  PubMed  Google Scholar 

  43. Ebner T, Shebl O, Moser M, et al. Developmental fate of ovoid oocytes. Hum Reprod. 2008;23:62–6.

    Article  PubMed  CAS  Google Scholar 

  44. Pelletier C, Keefe DL, Trimarchi JR. Noninvasive polarized light microscopy quantitatively distinguishes the multilaminar structure of the zona pellucida of living human eggs and embryos. Fertil Steril. 2004;81:850–6.

    Article  PubMed  Google Scholar 

  45. Shen Y, Mehnert C, Eichenlaub-Ritter U, et al. High magnitude of light retardation by the zona pellucida is associated with conception cycles. Hum Reprod. 2005;20:1596–606.

    Article  PubMed  CAS  Google Scholar 

  46. Montag M, Schimming T, Koster M, et al. Oocyte zona birefringence intensity is associated with embryonic implantation potential in ICSI cycles. Reprod Biomed Online. 2008;16:239–44.

    Article  PubMed  CAS  Google Scholar 

  47. Xia P. Intracytoplasmic sperm injection: correlation of oocyte grade based on polar body, perivitelline space and cytoplasmic inclusions with fertilization rate and embryo quality. Hum Reprod. 1997;12:1750–5.

    Article  PubMed  CAS  Google Scholar 

  48. Ortiz M, Lucero P, Croxatto H. Post ovulatory aging of human ova: spontaneous division of the first polar body. Gamete Res. 1983;7:269–76.

    Article  Google Scholar 

  49. Scott L. The biological basis of non-invasive strategies for selection of human oocytes and embryos. Hum Reprod Update. 2003;9:237–49.

    Article  PubMed  Google Scholar 

  50. Ebner T, Moser M, Yaman C, et al. Elective transfer of embryos selected on the basis of first polar body morphology is associated with increased rates of implantation and pregnancy. Fertil Steril. 1999;72:599–603.

    Article  PubMed  CAS  Google Scholar 

  51. Ebner T, Yaman C, Moser M, et al. Prognostic value of first polar body morphology on fertilization rate and embryo quality in intracytoplasmic sperm injection. Hum Reprod. 2000;15:427–30.

    Article  PubMed  CAS  Google Scholar 

  52. Ebner T, Moser M, Sommergruber M, et al. First polar body morphology and blastocyst formation rate in ICSI patients. Hum Reprod. 2002;17:2415–8.

    Article  PubMed  CAS  Google Scholar 

  53. Ciotti PM, Notarangelo L, Morselli-Labate AM, et al. First polar body morphology before ICSI is not related to embryo quality or pregnancy rate. Hum Reprod. 2004;19:2334–9.

    Article  PubMed  CAS  Google Scholar 

  54. Eichenlaub-Ritter U, Schmiady H, Kentenich H, et al. Recurrent failure in polar body formation and premature chromosome condensation in oocytes from a human patient: indicators of asynchrony in nuclear and cytoplasmic maturation. Hum Reprod. 1995;10:2343–9.

    PubMed  CAS  Google Scholar 

  55. Verlhac MH, Lefebvre C, Guillard P, et al. Asymmetric division in mouse oocytes: with or without Mos. Curr Biol. 2000;10:1303–6.

    Article  PubMed  CAS  Google Scholar 

  56. Otsuki J, Okada A, Morimoto K, et al. The relationship between pregnancy outcome and smooth endoplasmic reticulum clusters in MII human oocytes. Hum Reprod. 2004;19:1591–7.

    Article  PubMed  CAS  Google Scholar 

  57. Ebner T, Moser M, Shebl O, et al. Prognosis of oocytes showing aggregation of smooth endoplasmic reticulum. Reprod Biomed Online. 2008;16:113–8.

    Article  PubMed  Google Scholar 

  58. Akarsu C, Caglar G, Vikdan K, et al. Smooth endoplasmatic reticulum aggregations in all retrieved oocytes causing recurrent multiple anomalies: case report. Fertil Steril. 2009;92:1496–8.

    Article  PubMed  Google Scholar 

  59. Scott L, Smith S. The successful use of pronuclear embryo transfers the day following oocyte retrieval. Hum Reprod. 1998;13:1003–13.

    Article  PubMed  CAS  Google Scholar 

  60. Tesarik J, Greco E. The probability of abnormal preimplantation development can be predicted by a single static observation on pronuclear stage morphology. Hum Reprod. 1999;14:1318–23.

    Article  PubMed  CAS  Google Scholar 

  61. Ludwig M, Schopper B, Al-Hasani S, et al. Clinical use of a pronuclear stage score following intracytoplasmic sperm injection: impact on pregnancy rates under the conditions of the German embryo protection law. Hum Reprod. 2000;15:325–9.

    Article  PubMed  CAS  Google Scholar 

  62. Tesarik J, Junca AM, Hazout A, et al. Embryos with high implantation potential after intracytoplasmic sperm injection can be recognized by simple, non-invasive examination of pronuclear morphology. Hum Reprod. 2000;15:1396–9.

    Article  PubMed  CAS  Google Scholar 

  63. Scott L, Alvero R, Leondires M, et al. The morphology of human pronuclear embryos is positively related to blastocyst development and implantation. Hum Reprod. 2000;15:2394–403.

    Article  PubMed  CAS  Google Scholar 

  64. Wittemer C, Bettahar-Lebugle K, Ohl J, et al. Zygote evaluation: an efficient tool for embryo selection. Hum Reprod. 2000;15:2591–7.

    Article  PubMed  CAS  Google Scholar 

  65. Balaban B, Urman B, Isiklar A, et al. The effect of pronuclear morphology on embryo quality parameters and blastocyst transfer outcome. Hum Reprod. 2001;16:2357–61.

    Article  PubMed  CAS  Google Scholar 

  66. Scott L. Pronuclear scoring as a predictor of embryo development. Reprod Biomed Online. 2003;6:201–14.

    Article  PubMed  Google Scholar 

  67. Scott L, Finn A, O’Learyt T, et al. Morphologic parameters of early cleavage-stage embryos that correlate with fetal development and delivery: prospective and applied data for increased pregnancy rates. Hum Reprod. 2007;22:230–40.

    Article  PubMed  CAS  Google Scholar 

  68. Nagy ZP, Janssenswillen C, Janssens R, et al. Timing of oocyte activation, pronucleus formation and cleavage in humans after intracytoplasmic sperm injection (ICSI) with testicular spermatozoa and after ICSI or in-vitro fertilization on sibling oocytes with ejaculated spermatozoa. Hum Reprod. 1998;13:1606–12.

    Article  PubMed  CAS  Google Scholar 

  69. Rienzi L, Ubaldi F, Iacobelli M, et al. Significance of morphological attributes of the early embryo. Reprod Biomed Online. 2005;10:669–81.

    Article  PubMed  Google Scholar 

  70. Sathananthan AH, Kola I, Osborne J, et al. Centrioles in the beginning of human development. Proc Natl Acad Sci USA. 1991;88:4806–10.

    Article  PubMed  CAS  Google Scholar 

  71. Schatten G. The centrosome and its mode of inheritance: the reduction of the centrosome during gametogenesis and its restoration during fertilization. Dev Biol. 1994;165:299–335.

    Article  PubMed  CAS  Google Scholar 

  72. Gianaroli L, Magli MC, Ferraretti AP, et al. Pronuclear morphology and chromosomal abnormalities as scoring criteria for embryo selection. Fertil Steril. 2003;80:341–9.

    Article  PubMed  Google Scholar 

  73. Sadowy S, Tomkin G, Munnè S, et al. Impaired development of zygotes with uneven pronuclear size. Zygote. 1998;63:137–41.

    Article  Google Scholar 

  74. Munnè S, Cohen J. Chromosome abnormalities in human embryos. Hum Reprod Update. 1998;4:842–55.

    Article  PubMed  Google Scholar 

  75. Edirisinghe WR, Jemmott R, Smith C, et al. Association of pronuclear Z scores with rates of aneuploidy in in vitro-fertilised embryos. Reprod Fertil Dev. 2005;17:529–34.

    Article  PubMed  CAS  Google Scholar 

  76. Ogura A, Matsuda J, Yanagimachi R. Birth of normal young after electrofusion of mouse oocytes with round spermatids. Proc Natl Acad Sci USA. 1994;91:7460–2.

    Article  PubMed  CAS  Google Scholar 

  77. Tesarik J, Mendoza C. Spermatid injection into human oocytes. I. Laboratory techniques and special features of zygote development. Hum Reprod. 1996;11:772–9.

    Article  PubMed  CAS  Google Scholar 

  78. Edwards RG, Beard HG. Oocyte polarity and cell determination in early mammalian embryos. Mol Hum Reprod. 1997;3:863–905.

    Article  PubMed  CAS  Google Scholar 

  79. Gardner RL. Specification of embryonic axes begins before cleavage in normal mouse development. Development. 2001;128:839–47.

    PubMed  CAS  Google Scholar 

  80. Garello C, Baker H, Rai J, et al. Pronuclear orientation, polar body placement, and embryo quality after intracytoplasmic sperm injection and in-vitro fertilization: further evidence for polarity in human oocytes? Hum Reprod. 1999;14:2588–95.

    Article  PubMed  CAS  Google Scholar 

  81. Goessens G. Nucleolar structure. Int Rev Cytol. 1984;87:107–58.

    Article  PubMed  CAS  Google Scholar 

  82. Schwarzacher H, Mosgoeller W. Ribosome biogenesis in man: current views on nucleolar structures and function. Cytogenet Cell Genet. 2000;91:243–52.

    Article  PubMed  CAS  Google Scholar 

  83. Crozet N, Kanka J, Motlik J, et al. Nucleolar fine structure and RNA synthesis in bovine oocytes from antral follicles. Gamete Res. 1986;14:65–73.

    Article  CAS  Google Scholar 

  84. Tesarik J, Kopecny V. Development of human male pronucleus: ultrastructure and timing. Gamete Res. 1989;24:135–49.

    Article  PubMed  CAS  Google Scholar 

  85. Tesarik J, Kopecny V. Assembly of the nuclear precursor bodies in human male pronuclei is correlated with an early RNA synthetic activity. Exp Cell Res. 1990;191:153–6.

    Article  PubMed  CAS  Google Scholar 

  86. Flechon J, Kopecny V. The nature of the “nucleulus precursor body” in early preimplantation embryos: a review of fine-structure cytochemical, immunocytochemical and autoradiographic data related to nucleolar function. Zygote. 1998;6:183–91.

    Article  PubMed  CAS  Google Scholar 

  87. Hyttel P, Viuff D, Laurincik J, et al. Risk of in-vitro production of cattle and swine embryos: aberrations in chromosome numbers, ribosomal RNA gene activation and perinatal physiology. Hum Reprod. 2000;15 Suppl 5:87–97.

    Article  PubMed  CAS  Google Scholar 

  88. Salumets A, Hyden-Granskog C, Suikkari AM, et al. The predictive value of pronuclear morphology of zygotes in the assessment of human embryo quality. Hum Reprod. 2001;16:2177–81.

    Article  PubMed  CAS  Google Scholar 

  89. James AN, Hennessy S, Reggio B, et al. The limited importance of pronuclear scoring of human zygotes. Hum Reprod. 2006;21:1599–604.

    Article  PubMed  Google Scholar 

  90. Stalf T, Herrero J, Mehnert C, et al. Influence of polarization effects in ooplasma and pronuclei on embryo quality and implantation in an IVF program. J Assist Reprod Genet. 2002;19:355–62.

    Article  PubMed  Google Scholar 

  91. Ebner T, Moser M, Sommergruber M, et al. Presence, but not type or degree of extension, of a cytoplasmic halo has a significant influence on preimplantation development and implantation behaviour. Hum Reprod. 2003;18:2406–12.

    Article  PubMed  CAS  Google Scholar 

  92. Van Blerkom J, Davis P, Alexander S. Differential mitochondrial distribution in human pronuclear embryos leads to disproportionate inheritance between blastomeres: relationship to microtubular organization, ATP content and competence. Hum Reprod. 2000;15:2621–33.

    Article  PubMed  Google Scholar 

  93. Rienzi L, Ubaldi F, Iacobelli M, et al. Day 3 embryo transfer with combined evaluation at the pronuclear and cleavage stages compares favourably with day 5 blastocyst transfer. Hum Reprod. 2002;17:1852–5.

    Article  PubMed  Google Scholar 

  94. Nagy ZP, Dozortsev D, Diamond M, et al. Pronuclear morphology evaluation with subsequent evaluation of embryo morphology significantly increases implantation rates. Fertil Steril. 2003;80:67–74.

    Article  PubMed  Google Scholar 

  95. Weitzman VN, Schnee-Riesz J, Benadiva C, et al. Predictive value of embryo grading for embryos with known outcomes. Fertil Steril. 2010;93:658–62.

    Article  PubMed  Google Scholar 

  96. Shoukir Y, Campana A, Farley T, et al. Early cleavage of in-vitro fertilized human embryos to the 2-cell stage: a novel indicator of embryo quality and viability. Hum Reprod. 1997;12:1531–6.

    Article  PubMed  CAS  Google Scholar 

  97. Sakkas D, Shoukir Y, Chardonnens D, et al. Early cleavage of human embryos to the two-cell stage after intacytoplasmic sperm injection as an indicator of embryo viability. Hum Reprod. 1998;13:182–7.

    Article  PubMed  CAS  Google Scholar 

  98. Sakkas D, Percival G, D’Arcy Y, et al. Assessment of early cleaving in vitro fertilized human embryos at the 2-cell stage before transfer improves embryo selection. Fertil Steril. 2001;76:1150–6.

    Article  PubMed  CAS  Google Scholar 

  99. Salumets A, Hyden-Granskog C, Makinen S, et al. Early cleavage predicts the viability of human embryos in elective single embryo transfer procedures. Hum Reprod. 2003;18:821–5.

    Article  PubMed  Google Scholar 

  100. Neuber E, Rinaudo P, Trimarchi JR, et al. Sequential assessment of individually cultured human embryos as an indicator of subsequent good quality blastocyst development. Hum Reprod. 2003;18:1307–12.

    Article  PubMed  CAS  Google Scholar 

  101. Van Montfoort AP, Dumoulin JC, Kester AD, et al. Early cleavage is a valuable addition to existing embryo selection parameters: a study using single embryo transfers. Hum Reprod. 2004;19:2103–8.

    Article  PubMed  Google Scholar 

  102. Guerif E, Le Gouge A, Giraudeau B, et al. Limited value of morphological assessment at day 1 and 2 to predict blastocyst development potential: a prospective study based on 4042 embryos. Hum Reprod. 2007;22:1973–81.

    Article  PubMed  CAS  Google Scholar 

  103. Lewin A, Schenker JG, Safran A, et al. Embryo growth rate in vitro as an indicator of embryo quality in IVF cycles. J Assist Reprod Genet. 1994;11:500–3.

    Article  PubMed  CAS  Google Scholar 

  104. Giorgetti C, Terriou P, Auquier P, et al. Embryo score to predict implantation after in-vitro fertilization: based on 957 single embryo transfers. Hum Reprod. 1995;10:2427–31.

    PubMed  CAS  Google Scholar 

  105. Ziebe S, Petersen K, Lindberg S, et al. Embryo morphology or cleavage stage: how to select the best embryos for transfer after in-vitro fertilization. Hum Reprod. 1997;12:1545–9.

    Article  PubMed  CAS  Google Scholar 

  106. Desai NN, Goldstein J, Rowland DY, et al. Morphological evaluation of human embryos and derivation of an embryo quality scoring system specific for day 3 embryos: a preliminary study. Hum Reprod. 2000;15:2190–6.

    Article  PubMed  CAS  Google Scholar 

  107. Hardarson T, Hanson C, Sjögren A, et al. Human embryos with unevenly sized blastomeres have lower pregnancy and implantation rates: indications for aneuploidy and multinucleation. Hum Reprod. 2001;16:313–8.

    Article  Google Scholar 

  108. Kligman I, Benavida C, Alikani M, et al. The presence of multinucleated blastomeres in human embryos is correlated with chromosomal abnormalities. Hum Reprod. 1996;11:1492–8.

    Article  PubMed  CAS  Google Scholar 

  109. Jackson KV, Ginsburg ES, Hornstein MD, et al. Multinucleation in normally fertilized embryos is associated with an accelerated ovulation induction response and lower implantation and pregnancy rates in in vitro fertilization-embryo transfer cycles. Fertil Steril. 1998;70:60–6.

    Article  PubMed  CAS  Google Scholar 

  110. Palmstierna M, Murkes D, Csemiczky G, et al. Zona pellucida thickness variation and occurrence of visible mononucleated blastomers in preembryos are associated with a high pregnancy rate in IVF treatment. J Assist Reprod Genet. 1998;15:70–5.

    Article  PubMed  CAS  Google Scholar 

  111. Pelinck MJ, De Vos M, Dekens M, et al. Embryos cultured in vitro with multinucleated blastomeres have poor implantation potential in human in-vitro fertilization and intracytoplasmic sperm injection. Hum Reprod. 1998;13:960–3.

    Article  PubMed  CAS  Google Scholar 

  112. Van Royen E, Mangelschots K, Vercruyssen M, et al. Multinucleation in cleavage stage embryos. Hum Reprod. 2003;18:1062–9.

    Article  PubMed  Google Scholar 

  113. Staessen C, Camus M, Bollen N, et al. The relationship between embryo quality and the occurrence of multiple pregnancies. Fertil Steril. 1992;57:626–30.

    PubMed  CAS  Google Scholar 

  114. Roseboom TJ, Vermeiden JP, Schoute E, et al. The probability of pregnancy after embryo transfer is affected by the age of the patient, cause of infertility, number of embryos transferred and the average morphology score, as revealed by multiple log-istic regression analysis. Hum Reprod. 1995;10:3035–41.

    PubMed  CAS  Google Scholar 

  115. Alikani M, Cohen J, Tomkin G, et al. Human embryo fragmentation in vitro and its implications for pregnancy and implantation. Fertil Steril. 1999;71:836–42.

    Article  PubMed  CAS  Google Scholar 

  116. Antczak M, Van Blerkom J. Temporal and spatial aspects of fragmentation in early human embryos: possible effects on developmental competence and association with the differential elimination of regulatory proteins from polarized domains. Hum Reprod. 1999;14:429–47.

    Article  PubMed  CAS  Google Scholar 

  117. Van Royen E, Mangelschots K, De Neuborg D, et al. Characterization of a top quality embryo, a step towards single-embryo transfer. Hum Reprod. 1999;14:2345–9.

    Article  PubMed  Google Scholar 

  118. Gardner DK, Lane M, Stevens J, et al. Blastocyst score affects implantation and pregnancy outcome: towards a single blastocyst transfer. Fertil Steril. 2000;73:1155–8.

    Article  PubMed  CAS  Google Scholar 

  119. Schoolcraft WB, Gardner DK. Blastocyst culture and transfer increases the efficiency of oocyte donation. Fertil Steril. 2000;74:482–6.

    Article  PubMed  CAS  Google Scholar 

  120. Langley MT, Marek DM, Gardner DK, et al. Extended embryo culture in human assisted reproduction treatments. Hum Reprod. 2001;16:902–8.

    Article  PubMed  CAS  Google Scholar 

  121. Schwarzler P, Zech H, Auer M, et al. Pregnancy outcome after blastocyst transfer as compared to early cleavage stage embryo transfer. Hum Reprod. 2004;19:2097–102.

    Article  PubMed  Google Scholar 

  122. Blake DA, Farquhar CM, Johnson N, et al. Cleavage stage versus blastocyst stage embryo transfer in assisted conception. Cochrane Database Syst Rev. 2007;(17):CD002118.

    Google Scholar 

  123. Coskun S, Hollanders J, Al-Hassan S, et al. Day 5 versus day 3 embryo transfer: a controlled randomized trial. Hum Reprod. 2000;15:1947–52.

    Article  PubMed  CAS  Google Scholar 

  124. Huisman GJ, Fauser BC, Eijkemans MJ, et al. Implantation rates after in vitro fertilization and transfer of a maximum of two embryos that have undergone three to five days of culture. Fertil Steril. 2000;73:117–22.

    Article  PubMed  CAS  Google Scholar 

  125. Alper M, Brinsden P, Fischer R, et al. To blastocyst or not to blastocyst? That is the question. Hum Reprod. 2001;16:617–9.

    Article  PubMed  CAS  Google Scholar 

  126. Bavister B. Culture of preimplantation embryos: facts and artefacts. Hum Reprod Update. 1995;1:91–148.

    Article  PubMed  CAS  Google Scholar 

  127. Almeida PA, Bolton VN. The relationship between chromosomal abnormality in the human preimplantation embryo and development in vitro. Reprod Fertil Dev. 1996;8:235–41.

    Article  PubMed  CAS  Google Scholar 

  128. Magli MC, Gianaroli L, Ferraretti AP, et al. Embryo morphology and development are dependent on the chromosomal complement. Fertil Steril. 2007;87:534–41.

    Article  PubMed  Google Scholar 

  129. Van Royen E, Mangelschots K, De Neuborg D, et al. Calculating the implantation potential of day 3 embryos in women younger than 38 years of age: a new model. Hum Reprod. 2001;16:326–32.

    Article  PubMed  Google Scholar 

  130. Balakier H, Cadesky K. The frequency and developmental capability of human embryos containing multinucleated blastomeres. Hum Reprod. 1997;12:800–4.

    Article  PubMed  CAS  Google Scholar 

  131. Winston NJ, Braude PR, Pickering SJ, et al. The incidence of abnormal morphology and nucleocytoplasmic ratios in 2-, 3- and 5-day human pre-embryos. Hum Reprod. 1991;6:17–24.

    PubMed  CAS  Google Scholar 

  132. Munnè S, Cohen J. Unsuitability of multinucleated human blastomeres for preimplantation genetic diagnosis. Hum Reprod. 1993;8:1120–5.

    PubMed  Google Scholar 

  133. Hartshorne G. The embryo. Hum Reprod. 2000;15:31–41.

    Article  PubMed  Google Scholar 

  134. Tesarik J, Kopecny V, Plachot M, et al. Early morphological signs of embryonic genome expression in human preimplantation development as revealed by quantitative electron microscopy. Dev Biol. 1988;128:15–20.

    Article  PubMed  CAS  Google Scholar 

  135. Wiemer KE, Garrisi J, Steuerwald N, et al. Beneficial aspects of co-culture with assisted hatching when applied to multiple-failure in-vitro fertilization patients. Hum Reprod. 1996;11:2429–33.

    Article  PubMed  CAS  Google Scholar 

  136. Rienzi L, Ubaldi F, Minasi MG, et al. Blastomere cytoplasmic granularity is unrelated to developmental potential of day 3 human embryos. J Assist Reprod Genet. 2003;20:314–7.

    Article  PubMed  Google Scholar 

  137. Veeck LL. Preembryo grading and degree of cytoplasmic fragmentation. In: Veeck LL, editor. An atlas of human gametes and conceptuses. New York: Parthenon publishing; 1999. p. 46–50.

    Google Scholar 

  138. Fisch JD, Rodriguez H, Ross R, et al. The Graduated Embryo Score (GES) predicts blastocyst formation and pregnancy rate from cleavage-stage embryos. Hum Reprod. 2001;16:1970–5.

    Article  PubMed  CAS  Google Scholar 

  139. Cutting R, Morrol D, Roberts SA, et al. Elective single embryo transfer: guidelines for practice British Fertility Society and Association of Clinical Embryologists. Hum Fertil. 2008;11:131–46.

    Article  Google Scholar 

  140. Stensen MH, Tanbo T, Storeng R, et al. Routine morphological scoring systems in assisted reproduction treatment fail to reflect age-related impairment of oocyte and embryo quality. Reprod Biomed Online. 2010;21:118–25.

    Article  PubMed  Google Scholar 

  141. Lemmen JG, Agerholm I, Ziebe S. Kinetic markers of human embryo quality using time-lapse recordings of IVF/ICSI-ferilized oocytes. Reprod Biomed Online. 2008;17:385–91.

    Article  PubMed  CAS  Google Scholar 

  142. Wong CC, Loewke KE, Bossert NL, et al. Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage. Nat Biotechnol. 2010;28:1115–21.

    Article  PubMed  CAS  Google Scholar 

  143. Meseguer M, Herrero J, Tejera A, et al. The use of morphokinetics as a predictor of embryo implantation. Hum Reprod. 2011;26:2658–71.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Rienzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rienzi, L., Iussig, B., Ubaldi, F. (2013). Morphological Assessment of Oocytes, Pronuclear and Cleavage Stage Embryos. In: Gardner, D., Sakkas, D., Seli, E., Wells, D. (eds) Human Gametes and Preimplantation Embryos. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6651-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6651-2_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6650-5

  • Online ISBN: 978-1-4614-6651-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics