Skip to main content

The Origins of Aneuploidy in Human Embryos

  • Chapter
  • First Online:
Human Gametes and Preimplantation Embryos

Abstract

One of the main causes of the relatively low reproductive success rates seen in humans is numerical chromosome abnormalities (aneuploidy). The advent of in vitro fertilisation (IVF) and associated diagnostic methods such as preimplantation genetic diagnosis and screening enabled a detailed investigation of the chromosome content of human gametes and embryos. Such investigations clearly showed that the incidence of numerical chromosome abnormalities was high and as would be expected had an adverse impact on the progress of embryo development and viability.

Embryonic aneuploidy can have a meiotic origin with chromosome malsegregation taking place during gametogenesis, and a post-zygotic origin with abnormalities occurring after fertilisation. Direct analysis of the human female gamete using a variety of cytogenetic methods has shown that the majority of meiotically derived aneuploidies arise during oogenesis. The close relationship between advancing female age and increasing aneuploidy rates was also confirmed, as more than 50 % of oocytes generated by women over the age of 40 years were demonstrated to be chromosomally abnormal. Graphs illustrating the changing oocyte aneuploidy rate with advancing maternal age are a mirror image of those showing the declining implantation rate of IVF embryos with age, suggesting that the increase in meiotic errors might explain the reduced success rate of IVF treatments for women in their late 30s and 40s.

The contribution of aneuploidy of male meiotic origin to the embryo is not as clear. Several studies have been carried out, and it was concluded that the incidence of chromosome anomalies ranged between 3 and 5 % in the sperm of fertile men, but significantly (approximately threefold) increased in the sperm obtained by infertile men.

Studies investigating two different preimplantation development stages, namely the cleavage stage and blastocyst stage, have suggested that post-zygotic chromosome anomalies take place even more frequently compared to the meiotic ones, especially at the cleavage stage. A result of post-zygotic anomalies is chromosome mosaicism, the presence of two or more karyotypically distinct cell lines within the same embryo.

During this chapter, the data obtained from cytogenetic investigations of human oocytes, sperm and also embryos at the cleavage and blastocyst stage of preimplantation development will be summarised. In addition, the different mechanisms leading to aneuploidy of meiotic and post-zygotic origin will be described and their frequencies and impact on embryonic survival will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Edwards RG, Brody SA. Principles and practice of assisted human reproduction. Philadelphia: Saunders; 1995. p. 65–80.

    Google Scholar 

  2. Bonde JP, Ernst E, Jensen TK, et al. Relation between semen quality and fertility: a population based study of 430 first-pregnancy planners. Lancet. 1998;352:1172–7.

    Article  PubMed  CAS  Google Scholar 

  3. Centers for Disease Control and Prevention. 2006 Assisted reproductive technology success rates: preliminary data national summary and fertility clinic reports. 2008. Available at http://www.cdc.gov/art/art2006/index.htm.

  4. Delhanty JD, Griffin DK, Handyside AH, et al. Detection of aneuploidy and chromosomal mosaicism in human embryos during preimplantation sex determination by fluorescent in situ hybridisation (FISH). Hum Mol Genet. 1993;2:1183–5.

    Article  PubMed  CAS  Google Scholar 

  5. Munne S, Lee A, Rosenwaks Z, et al. Diagnosis of major chromosome aneuploidies in human preimplantation embryos. Hum Reprod. 1993;8:2185–91.

    PubMed  CAS  Google Scholar 

  6. Sandalinas M, Marquez C, Munne S. Spectral karyotyping of fresh, non-inseminated oocytes. Mol Hum Reprod. 2002;8:580–5.

    Article  PubMed  Google Scholar 

  7. Kuliev A, Cieslak J, Ilkevitch Y, et al. Chromosomal abnormalities in a series of 6,733 human oocytes in preimplantation diagnosis for age-related aneuploidies. Reprod Biomed Online. 2003;6:54–9.

    Article  PubMed  Google Scholar 

  8. Pellestor F, Andreo B, Arnal F, et al. Maternal aging and chromosomal abnormalities: new data drawn from in vitro unfertilized human oocytes. Hum Genet. 2003;112:195–203.

    PubMed  Google Scholar 

  9. Gutierrez-Mateo C, Benet J, Wells D, et al. Aneuploidy study of human oocytes first polar body comparative genomic hybridization and metaphase II fluorescence in situ hybridization analysis. Hum Reprod. 2004;19:2859–68.

    Article  PubMed  CAS  Google Scholar 

  10. Fragouli E, Wells D, Thornhill A, et al. Comparative genomic hybridization analysis of human oocytes and polar bodies. Hum Reprod. 2006;21:2319–28.

    Article  PubMed  CAS  Google Scholar 

  11. Hassold T, Hall H, Hunt P. The origin of human aneuploidy: where we have been, where we are going. Hum Mol Genet. 2007;16:R203–8.

    Article  PubMed  CAS  Google Scholar 

  12. Fragouli E, Alfarawati S, Goodall NN. The cytogenetics of polar bodies: insights into female meiosis and the diagnosis of aneuploidy. Mol Hum Reprod. 2011;17:286–95.

    Article  PubMed  Google Scholar 

  13. Harton GL, Tempest HG. Chromosomal disorders and male infertility. Asian J Androl. 2012;14:32–9.

    Article  PubMed  Google Scholar 

  14. Delhanty JD, Harper JC, Ao A, et al. Multicolour FISH detects frequent chromosomal mosaicism and chaotic division in normal preimplantation embryos from fertile patients. Hum Genet. 1997;99:755–60.

    Article  PubMed  CAS  Google Scholar 

  15. Munne S, Sandalinas M, Escudero T, et al. Chromosome mosaicism in cleavage- stage human embryos: evidence of a maternal age effect. Reprod Biomed Online. 2002;4:223–32.

    Article  PubMed  Google Scholar 

  16. Katz-Jaffe MG, Trounson AO, Cram DS. Mitotic errors in chromosome 21 of human preimplantation embryos are associated with non-viability. Mol Hum Reprod. 2004;10:143–7.

    Article  PubMed  CAS  Google Scholar 

  17. Fragouli E, Alfarawati S, Daphnis DD, et al. Cytogenetic analysis of human blastocysts with the use of FISH, CGH and aCGH: scientific data and technical evaluation. Hum Reprod. 2011;26:480–90.

    Article  PubMed  CAS  Google Scholar 

  18. Delhanty JD. Mechanisms of aneuploidy induction in human oogenesis and early embryogenesis. Cytogenet Genome Res. 2005;111:237–44.

    Article  PubMed  CAS  Google Scholar 

  19. Angell RR. Predivision in human oocytes at meiosis I: a mechanism for trisomy formation in man. Hum Genet. 1991;86:383–7.

    Article  PubMed  CAS  Google Scholar 

  20. Angell RR, Xian J, Keith J, et al. First meiotic division abnormalities in human oocytes: mechanism of trisomy formation. Cytogenet Cell Genet. 1994;65:194–202.

    Article  PubMed  CAS  Google Scholar 

  21. Pellestor F. Frequency and distribution of aneuploidy in human female gametes. Hum Genet. 1991;86:283–8.

    Article  PubMed  CAS  Google Scholar 

  22. Zenzes MT, Casper RF. Cytogenetics of human oocytes, zygotes and embryos after in vitro fertilisation. Hum Genet. 1992;88:367–75.

    Article  PubMed  CAS  Google Scholar 

  23. Kamiguchi Y, Rosenbusch B, Sterzik K, et al. Chromosomal analysis of unfertilized human oocytes prepared by a gradual fixationair drying method. Hum Genet. 1993;90:533–41.

    Article  PubMed  CAS  Google Scholar 

  24. Lim AS, Ho AT, Tsakok MF. Chromosomes of oocytes failing in-vitro fertilization. Hum Reprod. 1995;10:2570–5.

    PubMed  CAS  Google Scholar 

  25. Mahmood R, Brierley CH, Faed MJ, et al. Mechanisms of maternal aneuploidy: FISH analysis of oocytes and polar bodies in patients undergoing assisted conception. Hum Genet. 2000;106:620–6.

    Article  PubMed  CAS  Google Scholar 

  26. Cupisti S, Conn CM, Fragouli E, et al. Sequential FISH analysis of oocytes and polar bodies reveals aneuploidy mechanisms. Prenat Diagn. 2003;23:663–8.

    Article  PubMed  CAS  Google Scholar 

  27. Wells D, Sherlock JK, Handyside AH, et al. Detailed chromosomal and molecular genetic analysis of single cells by whole genome amplification and comparative genomic hybridisation. Nucleic Acids Res. 1999;27:1214–8.

    Article  PubMed  CAS  Google Scholar 

  28. Wells D, Delhanty JD. Comprehensive chromosomal analysis of human preimplantation embryos using whole genome amplification and single cell comparative genomic hybridisation. Mol Hum Reprod. 2000;11:1055–62.

    Article  Google Scholar 

  29. Wells D, Escudero T, Levy B, et al. First clinical application of comparative genomic hybridisation and polar body testing for preimplantation genetic diagnosis of aneuploidy. Fertil Steril. 2002;78:543–9.

    Article  PubMed  Google Scholar 

  30. Pellestor F, Anahory T, Hamamah S. The chromosomal analysis of human oocytes. Hum Reprod Update. 2005;11:15–32.

    Article  PubMed  CAS  Google Scholar 

  31. Fragouli E, Katz-Jaffe M, Alfarawati S, et al. Comprehensive chromosome screening of polar bodies and blastocysts from couples experiencing repeated implantation failure. Fertil Steril. 2010;94:875–87.

    Article  PubMed  Google Scholar 

  32. Kuliev A, Verlinsky Y. Meiotic and mitotic nondisjunction: lessons from preimplantation genetic diagnosis. Hum Reprod Update. 2004;10:401–7.

    Article  PubMed  Google Scholar 

  33. Geraedts J, Montag M, Magli MC, et al. Polar body array CGH for prediction of the status of the corresponding oocyte. Part I: clinical results. Hum Reprod. 2011;26:3173–80.

    Article  PubMed  CAS  Google Scholar 

  34. Fisher JM, Harvey JF, Morton NE, et al. Trisomy 18: studies of the parent and cell division of origin and the effect of aberrant recombination on nondisjunction. Am J Hum Genet. 1995;56:669–75.

    PubMed  CAS  Google Scholar 

  35. Hassold T, Merrill M, Adkins K, et al. Recombination and maternal age-dependent nondisjunction: molecular studies of trisomy 16. Am J Hum Genet. 1995;57:867–74.

    PubMed  CAS  Google Scholar 

  36. Templado C, Vidal F, Estop A. Aneuploidy in human spermatozoa. Cytogenet Genome Res. 2011;133:91–9.

    Article  PubMed  CAS  Google Scholar 

  37. Uroz L, Rajmil O, Templado C. Meiotic chromosome abnormalities in fertile men: are they increasing? Fertil Steril. 2011;95:141–6.

    Article  PubMed  CAS  Google Scholar 

  38. Burgoyne PS, Mahadevaiah SK, Turner JM. The consequences of asynapsis for mammalian meiosis. Nat Rev Genet. 2009;10:207–16.

    Article  PubMed  CAS  Google Scholar 

  39. Uroz L, Rajmil O, Templado C. Premature separation of sister chromatids in human male meiosis. Hum Reprod. 2008;23:982–7.

    Article  PubMed  Google Scholar 

  40. Uroz L, Templado C. Meiotic non-disjunction mechanisms in human fertile males. Hum Reprod. 2012;27(5):1518–24.

    Article  PubMed  CAS  Google Scholar 

  41. Fonseka KGL, Griffin DK. Is there a paternal age effect for aneuploidy? Cytogenet Genome Res. 2011;133:280–91.

    Article  PubMed  CAS  Google Scholar 

  42. Miharu N. Chromosome abnormalities in sperm from infertile men with normal somatic karyotypes: oligospermia. Cytogenet Genome Res. 2005;111:347–51.

    Article  PubMed  CAS  Google Scholar 

  43. Benet J, Oliver-Bonet M, Cifuentes P, et al. Segregation of chromosomes in sperm of reciprocal translocation carriers. Cytogenet Genome Res. 2005;111:281–90.

    Article  PubMed  CAS  Google Scholar 

  44. Roux C, Tripogney C, Morel F, et al. Segregation of chromosomes in sperm of Robertsonian translocation carriers. Cytogenet Genome Res. 2005;111:291–6.

    Article  PubMed  CAS  Google Scholar 

  45. Iwarsson E, Malmgren H, Inzunza J, et al. Highly abnormal cleavage divisions in preimplantation embryos from translocation carriers. Prenat Diagn. 2000;20:1038–47.

    Article  PubMed  CAS  Google Scholar 

  46. Simopoulou M, Harper JC, Fragouli E, et al. Preimplantation genetic diagnosis of chromosome abnormalities: implications from the outcome for couples with chromosomal rearrangements. Prenat Diagn. 2003;23:652–62.

    Article  PubMed  CAS  Google Scholar 

  47. Robinson WP, McFadden DE, Stephenson MD. The origin of abnormalities in recurrent aneuploidy/polyploidy. Am J Hum Genet. 2001;69:1245–54.

    Article  PubMed  CAS  Google Scholar 

  48. Kovaleva NV, Tahmasebi-Hesari M. Gonadal mosaicism. Down Syndr News. 2007;14:23.

    Google Scholar 

  49. Somprasit C, Aguinaga M, Cisneros PL, et al. Paternal gonadal mosaicism detected in a couple with recurrent abortions undergoing PGD: FISH analysis of sperm nuclei proves valuable. Reprod Biomed Online. 2004;9:225–30.

    Article  PubMed  Google Scholar 

  50. Cozzi J, Conn CM, Harper J, et al. A trisomic germ cell line and precocious chromatid separation leads to recurrent trisomy 21 conception. Hum Genet. 1999;104:23–8.

    Article  PubMed  CAS  Google Scholar 

  51. Pujol A, Boiso I, Benet J, et al. Analysis of nine chromosome pairs in first polar bodies and metapahse II oocytes for the detection of aneuploidies. Eur J Hum Genet. 2003;11:325–36.

    Article  PubMed  CAS  Google Scholar 

  52. Hultén MA, Patel SD, Tankimanova M, et al. On the origin of trisomy 21 Down syndrome. Mol Cytogenet. 2008;1:21.

    Article  PubMed  Google Scholar 

  53. Mantzouratou A, Delhanty JD. Aneuploidy in the human cleavage stage embryo. Cytogenet Genome Res. 2011;133:141–8.

    Article  PubMed  CAS  Google Scholar 

  54. Hultén MA, Patel SD, Westgren M, et al. On the paternal origin of trisomy 21 Down Syndrome. Mol Cytogenet. 2010;3:4.

    Article  PubMed  Google Scholar 

  55. Morelli M, Cohen P. Not all germ cells are created equal: aspects of sexual dimorphism in mammalian meiosis. Reproduction. 2005;130:761–81.

    Article  PubMed  CAS  Google Scholar 

  56. Speed RM. Meiotic configurations in female trisomy 21 foetuses. Hum Genet. 1984;66:176–80.

    Article  PubMed  CAS  Google Scholar 

  57. LeMaire-Adkins R, Radke K, et al. Lack of checkpoint control at the metaphase/anaphase transition: a mechanism of meiotic nondisjunction in mammalian females. J Cell Biol. 1997;139:1611–9.

    Article  PubMed  CAS  Google Scholar 

  58. Kourznetsova A, Lister L, Nordenskjöld M, et al. Bi-orientation of achiasmatic chromosomes in meiosis I oocytes contributes to aneuploidy in mice. Nat Genet. 2007;39:966–8.

    Article  Google Scholar 

  59. Heikinheimo O, Gibbons WE. The molecular ­mechanisms of oocyte maturation and early embryonic development are unveiling new insights into reproductive medicine. Mol Hum Reprod. 1998;4:745–56.

    Article  PubMed  CAS  Google Scholar 

  60. Braude P, Bolton V, Moore S. Human gene expression occurs between the four- and eight-cell stages of ­preimplantation development. Nature. 1988;332:459–61.

    Article  PubMed  CAS  Google Scholar 

  61. Edwards RG, Beard HK. Oocyte polarity and cell determination in early mammalian embryos. Mol Hum Reprod. 1997;3:863–905.

    Article  PubMed  CAS  Google Scholar 

  62. Jamieson ME, Coutts JRT, Conner JM. The chromosome constitution of human preimplantation embryos fertilised in vitro. Hum Reprod. 1994;9:709–15.

    PubMed  CAS  Google Scholar 

  63. Coonen E, Derhaag JG, Dumoulin JC, et al. Anaphase lagging mainly explains chromosomal mosaicism in human preimplantation embryos. Hum Reprod. 2004;19:316–24.

    Article  PubMed  Google Scholar 

  64. Munné S, Grifo J, Cohen J. Chromosome abnormalities in human arrested preimplantation embryos fertilized in vitro: a multiprobe FISH study. Am J Hum Genet. 1994;55:150–9.

    PubMed  Google Scholar 

  65. Harper JC, Coonen E, Handyside AH, et al. Mosaicism of autosomes and sex chromosomes in morphologically normal, monospermic preimplantation human embryos. Prenat Diagn. 1995;15:41–9.

    Article  PubMed  CAS  Google Scholar 

  66. Munné S, Sultan KM, Weier HU, Grifo JA, Cohen J, Rosenwaks Z. Assessment of numeric abnormalities of X, Y, 18, and 16 chromosomes in preimplantation human embryos before transfer. Am J Obstet Gynecol. 1995;172:1191–9.

    Article  PubMed  Google Scholar 

  67. Mantzouratou A, Mania A, Fragouli E, et al. Variable aneuploidy mechanisms in embryos from couples with poor reproductive histories undergoing preimplantation genetic screening. Hum Reprod. 2007;22:1844–53.

    Article  PubMed  CAS  Google Scholar 

  68. Voullaire L, Collins V, Callaghan T, et al. High incidence of complex chromosome abnormality in cleavage embryos from patients with repeated implantation failure. Fertil Steril. 2007;87:1053–8.

    Article  PubMed  Google Scholar 

  69. Voullaire L, Slater H, Williamson R, et al. Chromosome analysis of blastomeres from human embryos by using comparative genomic hybridisation. Hum Genet. 2000;106:210–7.

    Article  PubMed  CAS  Google Scholar 

  70. Voullaire L, Wilton L, McBain J, et al. Chromosome abnormalities identified by comparative genomic hybridization in embryos from women with repeated implantation failure. Mol Hum Reprod. 2002;8:1035–41.

    Article  PubMed  CAS  Google Scholar 

  71. Bielanska M, Tan SL, Ao A. Chromosomal mosaicism throughout human preimplantation development in vitro: incidence, type, and relevance to embryo outcome. Hum Reprod. 2002;17:413–9.

    Article  PubMed  Google Scholar 

  72. Northrop LE, Treff NR, Levy B, et al. SNP microarray based 24 chromosome aneuploidy screening demonstrates that cleavage stage FISH poorly predicts aneuploidy in embryos that develop to morphologically normal blastocysts. Mol Hum Reprod. 2010;16:590–600.

    Article  PubMed  CAS  Google Scholar 

  73. Munné S, Bahçe M, Sandalinas M, et al. Differences in chromosome susceptibility to aneuploidy and ­survival to first trimester. Reprod Biomed Online. 2004;8:81–90.

    Article  PubMed  Google Scholar 

  74. Daphnis DD, Delhanty JD, Jerkovic S, et al. Detailed FISH analysis of day 5 human embryos reveals the mechanisms leading to mosaic aneuploidy. Hum Reprod. 2005;20:129–37.

    Article  PubMed  CAS  Google Scholar 

  75. Clouston HJ, Fenwick J, Webb AL, et al. Detection of mosaic and non-mosaic chromosome abnormalities in 6- to 8-day old human blastocysts. Hum Genet. 1997;101:30–6.

    Article  PubMed  CAS  Google Scholar 

  76. Clouston HJ, Herbert M, Fenwick J, et al. Cytogenetic analysis of human blastocysts. Prenat Diagn. 2002;22:1143–52.

    Article  PubMed  Google Scholar 

  77. Evsikov S, Verlinsky Y. Mosaicism in the inner cell mass of human blastocysts. Hum Reprod. 1998;13:3151–5.

    Article  PubMed  CAS  Google Scholar 

  78. Magli MC, Jones GM, Gras L, et al. Chromosome mosaicism in day 3 aneuploid embryos that develop to morphologically normal blastocysts in vitro. Hum Reprod. 2000;15:1781–6.

    Article  PubMed  CAS  Google Scholar 

  79. Ruangvutilert P, Delhanty JD, Serhal P, et al. FISH analysis on day 5 post-insemination of human arrested and blastocyst stage embryos. Prenat Diagn. 2000;20:552–60.

    Article  PubMed  CAS  Google Scholar 

  80. Sandalinas M, Sadowy S, Alikani M, et al. Developmental ability of chromosomally abnormal human embryos to develop to the blastocyst stage. Hum Reprod. 2001;16:1954–8.

    Article  PubMed  CAS  Google Scholar 

  81. Santos MA, Teklenburg G, Macklon NS, et al. The fate of the mosaic embryo: chromosomal constitution and development of Day 4, 5 and 8 human embryos. Hum Reprod. 2010;25:1916–26.

    Article  PubMed  Google Scholar 

  82. Bielanska M, Jin S, Bernier M, et al. Diploid- aneuploid mosaicism in human embryos cultured to the blastocyst stage. Fertil Steril. 2005;84:336–42.

    Article  PubMed  Google Scholar 

  83. Fragouli E, Wells D. Aneuploidy in the human blastocyst. Cytogenet Genome Res. 2011;133:149–59.

    Article  PubMed  CAS  Google Scholar 

  84. Fragouli E, Lenzi M, Ross R, et al. Comprehensive molecular cytogenetic analysis of the human blastocyst stage. Hum Reprod. 2008;23:2596–608.

    Article  PubMed  CAS  Google Scholar 

  85. Johnson DS, Cinnioglu C, Ross R, et al. Comprehensive analysis of karyotypic mosaicism between trophectoderm and inner cell mass. Mol Hum Reprod. 2010;16:944–9.

    Article  PubMed  CAS  Google Scholar 

  86. Schoolcraft WB, Fragouli E, Stevens J, et al. Clinical application of comprehensive chromosomal screening at the blastocyst stage. Fertil Steril. 2010;94:1700–6.

    Article  PubMed  Google Scholar 

  87. Schoolcraft WB, Treff NR, Stevens JM, et al. Live birth outcome with trophectoderm biopsy, blastocyst vitrification, and single-nucleotide polymorphism microarray-based comprehensive chromosome screening in infertile patients. Fertil Steril. 2011;96:638–40.

    Article  PubMed  Google Scholar 

  88. Ruangvutilert P, Delhanty JD, Serhal P, Simopoulou M, Rodeck CH, Harper JC. FISH analysis on day 5 post-insemination of human arrested and blastocyst stage embryos. Prenat Diagn. 2000;20:552–560.

    Article  PubMed  Google Scholar 

Additional Reading

  • Jones KT. Meiosis in oocytes: predisposition to aneuploidy and its increased incidence with age. Hum Reprod Update. 2008;14:143–58.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elpida Fragouli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fragouli, E., Delhanty, J. (2013). The Origins of Aneuploidy in Human Embryos. In: Gardner, D., Sakkas, D., Seli, E., Wells, D. (eds) Human Gametes and Preimplantation Embryos. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6651-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6651-2_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6650-5

  • Online ISBN: 978-1-4614-6651-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics