Skip to main content

Cerebral–Renal Salt Wasting

  • Chapter
  • First Online:
Hyponatremia

Abstract

Cerebral or the preferred term, renal salt wasting (RSW), remains an unresolved syndrome that has historically evolved from being considered nonexistent to acceptance as a distinct clinical syndrome. Yet, differences over its prevalence continue. Many with RSW are diagnosed and treated for SIADH, which has diametrically opposite therapeutic goals from RSW, that is, to water-restrict in SIADH and administer salt and water in RSW. The major obstacles to differentiating SIADH from RSW are the overlapping of significant findings and clinical associations of both syndromes and our inability to assess the volume status of these patients, being volume-depleted in RSW and expanded in SIADH. In this chapter, we (1) redefine RSW, (2) review the pathophysiology of RSW, (3) review relevant volume studies, which prove RSW to be much more common than SIADH in neurosurgical patients, (4) review the complexities of differentiating RSW from SIADH, focusing on how a previously increased FEurate normalizes in SIADH as compared to being persistently increased in RSW after correction of hyponatremia, (5) review the emerging importance of determining fractional excretion (FE) of urate, which surpasses serum urate in the evaluation of hyponatremic conditions, (6) increased FEurate in the presence of normonatremia is suggestive of RSW, (7, 8) A normal FEurate in nonedematous hyponatremia is highly suggestive of reset osmostat, (9) present an algorithm that uses FEurate as central to the evaluation of the hyponatremic patient, (10). demonstrate the presence of a natriuretic factor in RSW that has different characteristics from A/BNP (11) advocate changing cerebral salt wasting to RSW based on reports of RSW occurring in patients without clinical cerebral disease and eliminating reset osmostat as a subtype of SIADH based on a normal FEurate and the predictability of ADH response to changes in serum osmolality, and (12) awareness, that symptoms with potentially serious complications are associated with hyponatremia, creates a therapeutic urgency to improve methods of differentiating RSW from SIADH.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arieff AL, Llach F, Massry SG. Neurological manifestations and morbidity of hyponatremia: correlation with brain water and electrolytes. Medicine. 1976;55:121–9.

    Article  PubMed  CAS  Google Scholar 

  2. Berl T, Quittnat-Pelletier F, Verbalis JG, Schrier RW, Bichet DG, Ouyang J, et al. Oral tolvaptan is safe and effective in chronic hyponatremia. J Am Soc Nephrol. 2010;21:705–12.

    Article  PubMed  CAS  Google Scholar 

  3. Decaux G. Is asymptomatic hyponatremia really asymptomatic? Am J Med. 2006;7 Suppl 1:S79–82.

    Article  Google Scholar 

  4. Decaux G. The syndrome of inappropriate secretion of antidiuretic hormone (SIADH). Semin Nephrol. 2009;29:239–56.

    Article  PubMed  CAS  Google Scholar 

  5. Gankam Kengne F, Andres C, Sattar L, Melot C, Decaux G. Mild hyponatremia and risk of fracture in the ambulatory elderly. QJM. 2008;101:583–8.

    Article  PubMed  CAS  Google Scholar 

  6. Van Der Hoorn EJ, Lubbe N, Zeitse R. SIADH and hyponatremia: why does it matter? NDT Plus. 2009;2 Suppl 3:iii5–11.

    PubMed  Google Scholar 

  7. Renneboog B, Musch W, Vandemergel X, Mantu MU, Decaux G. Mild chronic hyponatremia is associated with falls, unsteadiness, and attention deficits. Am J Med. 2006;119:711–8.

    Article  Google Scholar 

  8. Schrier R. Does ‘asymptomatic hyponatremia’ exist? Nat Rev Nephrol. 2010;6:1.

    Google Scholar 

  9. Sterns RH, Nigwekar SU, Hix JK. The treatment of hyponatremia. Semin Nephrol. 2009;29:282–99.

    Article  PubMed  CAS  Google Scholar 

  10. Maesaka JK, Miyawaki N, Palaia T, Fishbane S, Durham J. Renal salt wasting without cerebral disease: value of determining urate in hyponatremia. Kidney Int. 2007;71:822–6.

    Article  PubMed  CAS  Google Scholar 

  11. Bitew S, Imbriano L, Miyawaki N, Fishbane S, Maesala JK. More on renal saltwasting without cerebral disease, response to saline infusion. Clin J Amer Soc Nephrol. 2009;4:309–15.

    Article  CAS  Google Scholar 

  12. Maesaka JK, Imbriano L, Ali N, Ilamathi E. Mini review. Is it cerebral or renal salt wasting? Kidney Int. 2009;76:934–8.

    Article  PubMed  Google Scholar 

  13. Abuelo JG. Normotensive ischemic acute renal failure. N Eng J Med. 2007;357:797–8.

    Article  CAS  Google Scholar 

  14. Robertson GL, Ganguly A. Osmoregulation and baroregulation of plasma vasopressin in essential hypertension. J Cardiovasc Pharmacol. 1986;8 Suppl 7:S87–91.

    Article  PubMed  CAS  Google Scholar 

  15. Oh MS, Carroll HS. Cerebral salt-wasting syndrome, we need better proof of its existence. Nephron. 1999;82:110–4.

    Article  PubMed  CAS  Google Scholar 

  16. Sing S, Bohn D, Cariotti AP, Cusimano M, Rutka JT, Halperin ML. Cerebral salt wasting: truths, fallacies, theories, and challenges. Crit Care Med. 2002;30:2575–9.

    Article  Google Scholar 

  17. Chung HM, Kluge R, Schrier RW, Anderson RJ. Clinical assessment of extracellular fluid volume in hyponatremia. Am J Med. 1987;83:905–8.

    Article  PubMed  CAS  Google Scholar 

  18. Jaenike JR, Waterhouse C. The renal response to sustained administration of vasopressin and water in man. J Clin Endocrinol Metab. 1961;21:231–42.

    Article  PubMed  CAS  Google Scholar 

  19. Burnett Jr JC, Kao PC, Hu DC, Heser DW, Heublein D, Granger JP, et al. Atrial natriuretic peptide elevation in congestive heart failure in the human. Science. 1986;231:1145–7.

    Article  PubMed  Google Scholar 

  20. Fichman MP, Micheldakis AP, Horton R. Regulation of aldosterone in the syndrome of inappropriate antidiuretic hormone secretion (SIADH). J Clin Endocrinol Metab. 1974;39:136–44.

    Article  PubMed  CAS  Google Scholar 

  21. Hollenberg NK. Set point for sodium homeostasis: surfeit, deficit, and their implication. Kidney Int. 1980;17:423–9.

    Article  PubMed  CAS  Google Scholar 

  22. Oliver WJ, Cohen EL, Neel JV. Blood pressure, sodium intake, and sodium related hormones in the yanomamo Indians, a “No-salt” culture. Circulation. 1975;52:146–51.

    Article  PubMed  CAS  Google Scholar 

  23. Strauss MB, Lamdin E, Smith P, Bleifer DJ. Surfeit and deficit of sodium. Arch Int Med. 1958;102:527–36.

    Article  CAS  Google Scholar 

  24. McCance RA. Experimental sodium chloride deficiency in man. Proc Roy Soc London ser. 1936;119:245–68.

    Article  CAS  Google Scholar 

  25. Valtin H. Disorders of Na+ balance edema. In: Renal dysfunction: Mechanism involved in the fluid and solute imbalance, 1st edition. Boston: Little Brown and company (Inc); 1997. p. 58–59.

    Google Scholar 

  26. Marik PE, Baram M, Vahid B. Does central venous pressure predict fluid responsiveness? a systematic review of the literature and the tale of seven mares. Chest. 2008;134:172–8.

    Article  PubMed  Google Scholar 

  27. Schneditz D. The arrow of bioimpedance. Kidney Int. 2006;69:1492–3.

    Article  PubMed  CAS  Google Scholar 

  28. Gödje O, Peyerl M, Seebauer T, Lamm P, Mair H, Reichart B. Central venous pressure, pulmonary capillary wedge pressure and intrathoracic blood volumes as preload indicators in cardiac surgery patients. Eur J Cardiothorac Surg. 1998;13:533–9.

    Article  PubMed  Google Scholar 

  29. Peters JP, Welt LG, Sims EAH, Orloff J, Needham J. A salt-wasting syndrome associated with cerebral disease. Trans Assoc Am Physicians. 1950;63:57–64.

    PubMed  CAS  Google Scholar 

  30. Cort JH. Cerebral salt wasting. Lancet. 1954;1:752–4.

    Article  Google Scholar 

  31. Nelson PB, Seif SM, Maroon JC, Robinson AG. Hyponatremia in intracranial disease. Perhaps not the syndrome of inappropriate secretion of antidiuretic hormone (SIADH). J Neurosurg. 1981;55:938–41.

    Article  PubMed  CAS  Google Scholar 

  32. Wijdicks EF, Vermeulen M, Haaf JA, Hijdra A, Bakker WH, van Gijn J. Volume depletion and natriuresis in patients with a ruptured intracranial aneurysm. Ann Neurol. 1985;18:211–6.

    Article  PubMed  CAS  Google Scholar 

  33. Moritz ML. Syndrome of inappropriate antidiuresis and cerebral salt wasting syndrome: are they different and does it matter? Pediatr Nephrol. 2012;27:689–93. http://www.springerlink.com/content/6231615w06167201/fulltext.pdf.

  34. Sivakumar V, Rajshekhar V, Chandy MJ. Management of neurosurgical patient with hyponatremia and natriuresis. Neurosurgery. 1994;43:269–74.

    Article  Google Scholar 

  35. Brimioulle S, Oretiani-Jimenez C, Aminian A, Vincent JL. Hyponatremia in neurological patients: cerebral salt wasting versus inappropriate antidiuretic hormone secretion. Intensive Care Med. 2008;34:125–31.

    Article  PubMed  CAS  Google Scholar 

  36. Maesaka JK, Cusano AJ, Thies HL, Siegal FP, Dreisbach A. Hypouricemia in acquired immunodeficiency syndrome. Am J Kidney Dis. 1990;15:252–7.

    PubMed  CAS  Google Scholar 

  37. Cusano AJ, Thies HL, Siegal FP, Dreisbach AW, Maesaka JK. Hyponatremia in patients with acquired immunodeficiency syndrome. J AIDS. 1990;3:949–53.

    CAS  Google Scholar 

  38. Sherlock M, O'Sullivan E, Agha A, Behan LA, Rawluk D, Brennan P, et al. The incidence and pathophysiology of hyponatremia in subarachnoid hemorrhage. Clin Endocrinol. 2006;64:250–4.

    Article  Google Scholar 

  39. Sherlock M, O'Sullivan E, Agba A, Behan LA, Owens D, Finucane F, et al. Incidence and pathophysiology of severe hyponatremia in neurosurgical patients. Postgrad Med. 2009;85:171–5.

    Article  CAS  Google Scholar 

  40. Dorhout Mees EJ, Blom van Assendelft P, Nieuwenhuis MG. Elevation of urate clearance caused by inappropriate antidiuretic hormone secretion. Acta Med. 1971;189:69–72.

    Article  CAS  Google Scholar 

  41. Beck LH. Hypouricemia in the syndrome of inappropriate secretion of antidiuretic hormone. N Engl J Med. 1979;301:528–30.

    Article  PubMed  CAS  Google Scholar 

  42. Assadi FK, John EG. Hypouricemia in neonates with syndrome of inappropriate secretion of antidiuretic hormone. Pediatr Res. 1985;19:424–7.

    Article  PubMed  CAS  Google Scholar 

  43. Passamonte PM. Hypouricemia, inappropriate secretion of antidiuretic hormone, and small cell carcinoma of the lung. Arch Int Med. 1984;144:1569–70.

    Article  CAS  Google Scholar 

  44. Sonnenblick M, Rosin A. Increased uric acid clearance in the syndrome of inappropriate secretion of antidiuretic hormone. Isr J Med Sci. 1988;24:20–3.

    PubMed  CAS  Google Scholar 

  45. Sorensen JB, Osterlind K, Kristiansen PEG, Hammer M, Hansen M. Hypouricemia and urate excretion in small cell lung carcinoma patients with syndrome of inappropriate antidiuresis. Acta Oncol. 1988;27:351–5.

    Article  PubMed  CAS  Google Scholar 

  46. Decaux G, Prospert F, Cauchie P, Soupart A. Dissociation between uric acid andurea clearances in the syndrome of inappropriate secretion of antidiuretic hormone related to salt excretion. Clin Sci (Lond). 1990;78:451–5.

    CAS  Google Scholar 

  47. Maesaka JK, Batuman V, Yudd M, Sale M, Sved AF, Venkatesan J. Hyponatremia and hypouricemia. Differentiation from the syndrome of inappropriate secretion of antidiuretic hormone. Clin Nephrol. 1990;33:174–8.

    PubMed  CAS  Google Scholar 

  48. Maesaka JK, Venkatesan J, Piccione JM, et al. Abnormal renal urate transport in patients with intracranial disease. Am J Kidney Dis. 1992;19:10–5.

    PubMed  CAS  Google Scholar 

  49. Maesaka JK, Venkatesan J, Piccione JM, Decker R, Dreisbach AW, Wetherington J. Plasma natriuretic factor(s) in patients with intracranial disease, renal salt wasting and hyperuricosuria. Life Sci. 1993;52:1875–82.

    Article  PubMed  CAS  Google Scholar 

  50. Kasa M, Bierma TJ, Waterstraat Jr F, Corsaut M, Singh SP. Routine blood chemistry screen: a diagnostic aid for Alzheimer's disease. Neuroepidemiology. 1989;8:254–6.

    Article  PubMed  CAS  Google Scholar 

  51. Maesaka JK, Wolf-Klein G, Piccione JM, Ma CM. Hyporuicemia, abnormal renal tubular urate transport, and plasma natriuretic factor(s) in patients with Alzheimer's disease. J Am Geriatr Soc. 1993;41:501–6.

    PubMed  CAS  Google Scholar 

  52. Sterns RH, Silver SM. Cerebral salt wasting versus SIADH: what difference? J Am Soc Nephrol. 2008;18:194–6.

    Article  Google Scholar 

  53. Moritz ML, Ayus JC. 100 cc 3% sodium chloride bolus: a novel treatment for hyponatremic encephalopathy. Metab Brain Dis. 2010;25:91–6.

    Article  PubMed  Google Scholar 

  54. Drakakis J, Imbriano L, Miyawaki N, Shirazian S, Maesaka JK. Normalization of fractional excretion of urate (FEurate) after correction of hyponatremia differentiates SIADH from cerebral/renal salt wasting (RSW). Abstract Annual Mtg Am Soc Nephrol; 2011 Nov 8–12; Philadelphia, PA, USA.

    Google Scholar 

  55. Steele TH, Oppenheimer S. Factors affecting urate excretion following diuretic administration in man. Am J Med. 1969;47:564–74.

    Article  PubMed  CAS  Google Scholar 

  56. Maesaka JK, Fishbane S. Regulation of renal urate excretion: a critical review. Am J Kidney Dis. 1998;32:917–33.

    Article  PubMed  CAS  Google Scholar 

  57. Cannon PJ, Svahn DS, Demartini FE. The influence of hypertonic saline infusions upon the fractional reabsorption of urate and other ions in normal and hypertensive man. Circulation. 1970;41:97–108.

    Article  PubMed  CAS  Google Scholar 

  58. Diamond H, Meisel A. Influence of volume expansion, serum sodium, and fractional excretion of sodium on urate excretion. Pflugers Arch. 1975;356:47–57.

    Article  PubMed  CAS  Google Scholar 

  59. Steele T. Evidence for altered renal urate reabsorption during changes in volume of the extracellular fluid. J Lab Clin Med. 1969;74:288–99.

    PubMed  CAS  Google Scholar 

  60. Maesaka JK, Gupta S, Fishbane S. Cerebral salt wasting syndrome: does it exist? Nephron. 1999;82:100–9.

    Article  PubMed  CAS  Google Scholar 

  61. Gutierrez OM, Lin HY. Refractory Hyponatremia. Kidney Int. 2007;71:79–82.

    Article  PubMed  CAS  Google Scholar 

  62. Wijdicks EF, Vermeulen M, Hijdra A, van Gijn J. Hyponatremia and cerebral infarction in patients with ruptured intracranial aneurysm. Is fluid restriction harmful. Ann Neurol. 1985;17:137–40.

    Article  PubMed  CAS  Google Scholar 

  63. Zerbe R, Stropes L, Robertson G. Vasopressin function in the syndrome of inappropriate antidiuresis. Annu Rev Med. 1980;31:315–27.

    Article  PubMed  CAS  Google Scholar 

  64. Wall BM, Crofton JT, Share L. Chronic hyponatremia due to resetting of the osmostat in a patient with gastric carcinoma. Am J Med. 1992;93:223–8.

    Article  PubMed  CAS  Google Scholar 

  65. Hill RA, Uribarri J, Mann J, Berl T. Altered water metabolism in tuberculosis: role of vasopressin. Am J Med. 1990;88:357–64.

    Article  PubMed  CAS  Google Scholar 

  66. DeFronzo RA, Goldberg M, Agus Z. Normal diluting capacity in hyponatremic patients. Reset Osmostat or a variant of the syndrome of inappropriate hormone secretion. Ann Int Med. 1976;84:538–42.

    Article  PubMed  CAS  Google Scholar 

  67. Elisaf MS, Konstantinides A, Stamopoulos KC. Chronic hyponatremia due to reset osmostat in a patient with colon cancer. Am J Nephrol. 1996;16:349–51.

    Article  PubMed  CAS  Google Scholar 

  68. Kahn T. Reset Osmostat and salt and water retention in the course of severe hyponatremia. Medicine. 2003;82:170–6.

    PubMed  Google Scholar 

  69. Imbriano LJ, Ilamathi E, Ali NM, Miyawaki N, Maesaka JK. Normal fractional urate excretion identifies hyponatremic patients with reset osmostat. J Nephrol. 2012;25(5):833–8.

    Article  PubMed  CAS  Google Scholar 

  70. Ramsdell CM, Kelley WN. The clinical significance of hypouricemia. Ann Intern Med. 1973;78:239–42.

    Article  PubMed  CAS  Google Scholar 

  71. Palmer BF. Hyponatremia in patients with central nervous system disease: SIADH versus CSW. Trends Endocrinol Metab. 2003;14:182–7.

    Article  PubMed  CAS  Google Scholar 

  72. Berl T. Treating hyponatremia: damned if we do and damned if we don't. Kidney Int. 1990;37:1006–18.

    Article  PubMed  CAS  Google Scholar 

  73. Wijdicks E, Ropper AH, Hunnicutt EJ, Richardson GS, Nathanson JA. Atrial natriuretic factor and salt wasting after aneurysmal subarachnoid hemorrhage. Stroke. 1991;22(12):1519–24.

    Article  PubMed  CAS  Google Scholar 

  74. Leyssac PP, Holstein-Rathlou NH, Skøtt P, Alfrey AC. A micropuncture study of proximal tubular transport of lithium during osmotic diuresis. Am J Physiol. 1990;258(4 Pt 2):F1090–5.

    PubMed  CAS  Google Scholar 

  75. Dorhout Mees EJ. History of the “lithium concept”. Kidney Int Suppl. 1990;28:S2–3.

    PubMed  CAS  Google Scholar 

  76. Jensen KT, Carstens J, Pedersen EB. Effect of BNP on renal hemodynamics, tubular function and vasoactive hormones in humans. Am J Physiol. 1998;274:F63–72.

    PubMed  CAS  Google Scholar 

  77. de Zeeuw D, de Janssen WM, Jong PE. Atrial natruretic factor: its (patho) physiological significance in humans. Kidney Int. 1992;41:1115–33.

    Article  PubMed  Google Scholar 

  78. Mulatero P, Rabbia F, Milan A, Paglieri C, Morello F, Chiandussi L, et al. Drug effects on aldosterone/plasma renin activity ratio in primary aldosteronism. Hypertension. 2002;40:897–902.

    Article  PubMed  CAS  Google Scholar 

  79. Ali N, Imbriano L, Miyawaki N, Maesaka JK. 66-Year-old male with hyponatremia. Kidney Int. 2009;76:233–4.

    Article  PubMed  Google Scholar 

  80. Sonnenblick M, Rosin AJ. Significance of the measurement of uric acid fractional clearance in diuretic induced hyponatremia. Postgrad Med J. 1986;62(728):449–52.

    Article  PubMed  CAS  Google Scholar 

  81. Steele A, Gowrishankar M, Abrahamson S, Mazer CD, Feldman RD, Halperin ML. Postoperative hyponatremia despite near-isotonic saline infusion: a phenomenon of desalination. Ann Intern Med. 1997;126:20–5.

    Article  PubMed  CAS  Google Scholar 

  82. Moritz ML, Ayus JC. Prevention of hospital-acquired hyponatremia: a case for using isotonic saline. Pediatrics. 2003;111:227–30.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John K. Maesaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Maesaka, J.K., Imbriano, L., Shirazian, S., Miyawaki, N., Masani, N. (2013). Cerebral–Renal Salt Wasting. In: Simon, E. (eds) Hyponatremia. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6645-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6645-1_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6644-4

  • Online ISBN: 978-1-4614-6645-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics