Skip to main content

Approach to Small Fiber Neuropathy

  • Chapter
  • First Online:
Neuromuscular Disorders in Clinical Practice

Abstract

Small fiber neuropathy (SFN) is due to damage of small-caliber somatic and/or autonomic nerve fibers. It often results in neuropathic pain which may dominate the clinical picture. This chapter discusses the small nerve fibers, thermosensory and nociceptive functions, and small fiber neuropathy. It also includes a brief discussion of testing of small and autonomic fiber functions, though more detailed descriptions are highlighted in Chaps. 10, 11, and 13. Neuropathic pain is discussed in Chap. 80.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schepers RJ, Ringkamp M. Thermoreceptors and thermosensitive afferents. Neurosci Biobehav Rev. 2010;34:177–84.

    Article  PubMed  CAS  Google Scholar 

  2. Voets T, Droogmans G, Wissenbach U, Janssens A, Flockerzi V, Nilius B. The principle of temperature-dependent gating in cold– and heat-sensitive TRP channels. Nature. 2004;430:748–54.

    Article  PubMed  CAS  Google Scholar 

  3. Lumpkin EA, Caterina MJ. Mechanisms of sensory transduction in the skin. Nature. 2007;445:858–65.

    Article  PubMed  CAS  Google Scholar 

  4. Nilius B, Owsianik G. The transient receptor potential family of ion channels. Genome Biol. 2011;12:218.

    Article  PubMed  CAS  Google Scholar 

  5. Mackenzie RA, Burke D, Skuse NF, Lethlean AK. Fibre function and perception during cutaneous nerve block. J Neurol Neurosurg Psychiatry. 1975;38:865–73.

    Article  PubMed  CAS  Google Scholar 

  6. Campero M, Baumann TK, Bostock H, Ochoa JL. Human cutaneous C fibres activated by cooling, heating and menthol. J Physiol. 2009;587:5633–52.

    Article  PubMed  CAS  Google Scholar 

  7. Wasner G, Schattschneider J, Binder A, Baron R. Topical menthol–a human model for cold pain by activation and sensitization of C nociceptors. Brain. 2004;127:1159–71.

    Article  PubMed  Google Scholar 

  8. Campero M, Serra J, Bostock H, Ochoa JL. Slowly conducting afferents activated by innocuous low temperature in human skin. J Physiol. 2001;535:855–65.

    Article  PubMed  CAS  Google Scholar 

  9. Cahusac PM, Noyce R. A pharmacological study of slowly adapting mechanoreceptors responsive to cold thermal stimulation. Neuroscience. 2007;148:489–500.

    Article  PubMed  CAS  Google Scholar 

  10. Zimmermann K, Leffler A, Babes A, et al. Sensory neuron sodium channel Nav1.8 is essential for pain at low temperatures. Nature. 2007;447:855–8.

    Article  PubMed  CAS  Google Scholar 

  11. Campbell JN, LaMotte RH. Latency to detection of first pain. Brain Res. 1983;266:203–8.

    Article  PubMed  CAS  Google Scholar 

  12. Treede RD, Meyer RA, Raja SN, Campbell JN. Evidence for two different heat transduction mechanisms in nociceptive primary afferents innervating monkey skin. J Physiol. 1995;483(Pt 3):747–58.

    PubMed  CAS  Google Scholar 

  13. Meyer RA, Campbell JN. Myelinated nociceptive afferents account for the hyperalgesia that follows a burn to the hand. Science. 1981;213:1527–9.

    Article  PubMed  CAS  Google Scholar 

  14. Tillman DB, Treede RD, Meyer RA, Campbell JN. Response of C fibre nociceptors in the anaesthetized monkey to heat stimuli: estimates of receptor depth and threshold. J Physiol. 1995;485(Pt 3):753–65.

    PubMed  CAS  Google Scholar 

  15. Defrin R, Ohry A, Blumen N, Urca G. Sensory determinants of thermal pain. Brain. 2002;125:501–10.

    Article  PubMed  Google Scholar 

  16. Persson AK, Black JA, Gasser A, Cheng X, Fischer TZ, Waxman SG. Sodium-calcium exchanger and multiple sodium channel isoforms in intra-epidermal nerve terminals. Mol Pain. 2010;6:84.

    PubMed  CAS  Google Scholar 

  17. Drenth JP, Waxman SG. Mutations in sodium-channel gene SCN9A cause a spectrum of human genetic pain disorders. J Clin Invest. 2007;117:3603–9.

    Article  PubMed  CAS  Google Scholar 

  18. Faber CG, Hoeijmakers JG, Ahn HS, et al. Gain of function Na(V) 1.7 mutations in idiopathic small fiber neuropathy. Ann Neurol. 2012;71:26–39.

    Article  PubMed  CAS  Google Scholar 

  19. Waxman SG, Kocsis JD, Black JA. Type III sodium channel mRNA is expressed in embryonic but not adult spinal sensory neurons, and is reexpressed following axotomy. J Neurophysiol. 1994;72:466–70.

    PubMed  CAS  Google Scholar 

  20. Black JA, Nikolajsen L, Kroner K, Jensen TS, Waxman SG. Multiple sodium channel isoforms and mitogen-activated protein kinases are present in painful human neuromas. Ann Neurol. 2008;64:644–53.

    Article  PubMed  Google Scholar 

  21. Dib-Hajj SD, Cummins TR, Black JA, Waxman SG. Sodium channels in normal and pathological pain. Annu Rev Neurosci. 2010;33:325–47.

    Article  PubMed  CAS  Google Scholar 

  22. Descoeur J, Pereira V, Pizzoccaro A, et al. Oxaliplatin-induced cold hypersensitivity is due to remodelling of ion channel expression in nociceptors. EMBO Mol Med. 2011;3:266–78.

    Article  PubMed  CAS  Google Scholar 

  23. Braz JM, Nassar MA, Wood JN, Basbaum AI. Parallel “pain” pathways arise from subpopulations of primary afferent nociceptor. Neuron. 2005;47:787–93.

    Article  PubMed  CAS  Google Scholar 

  24. Amaya F, Wang H, Costigan M, et al. The voltage-gated sodium channel Na(v)1.9 is an effector of peripheral inflammatory pain hypersensitivity. J Neurosci. 2006;26:12852–60.

    Article  PubMed  CAS  Google Scholar 

  25. Nolano M, Provitera V, Crisci C, et al. Quantification of myelinated endings and mechanoreceptors in human digital skin. Ann Neurol. 2003;54:197–205.

    Article  PubMed  Google Scholar 

  26. Smith GD, Gunthorpe MJ, Kelsell RE, et al. TRPV3 is a temperature-sensitive vanilloid receptor-like protein. Nature. 2002;418:186–90.

    Article  PubMed  CAS  Google Scholar 

  27. Li Y, Hsieh ST, Chien HF, Zhang X, McArthur JC, Griffin JW. Sensory and motor denervation influence epidermal thickness in rat foot glabrous skin. Exp Neurol. 1997;147:452–62.

    Article  PubMed  CAS  Google Scholar 

  28. Johnson KO. The roles and functions of cutaneous mechanoreceptors. Curr Opin Neurobiol. 2001;11:455–61.

    Article  PubMed  CAS  Google Scholar 

  29. Lauria G, Morbin M, Lombardi R, et al. Expression of capsaicin receptor immunoreactivity in human peripheral nervous system and in painful neuropathies. J Peripher Nerv Syst. 2006;11:262–71.

    Article  PubMed  CAS  Google Scholar 

  30. Davis JB, Gray J, Gunthorpe MJ, et al. Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature. 2000;405:183–7.

    Article  PubMed  CAS  Google Scholar 

  31. Peier AM, Reeve AJ, Andersson DA, et al. A heat-sensitive TRP channel expressed in keratinocytes. Science. 2002;296:2046–9.

    Article  PubMed  CAS  Google Scholar 

  32. Fernandes ES, Fernandes MA, Keeble JE. The functions of TRPA1 and TRPV1: moving away from sensory nerves. Br J Pharmacol. 2012;166(2):510–21.

    Article  PubMed  CAS  Google Scholar 

  33. Beresford L, Orange O, Bell EB, Miyan JA. Nerve fibres are required to evoke a contact sensitivity response in mice. Immunology. 2004;111:118–25.

    Article  PubMed  CAS  Google Scholar 

  34. Hosoi J, Murphy GF, Egan CL, et al. Regulation of Langerhans cell function by nerves containing calcitonin gene-related peptide. Nat Lett. 1993;363:159–63.

    Article  CAS  Google Scholar 

  35. Denda M, Tsutsumi M. Roles of transient receptor potential proteins (TRPs) in epidermal keratinocytes. Adv Exp Med Biol. 2011;704:847–60.

    Article  PubMed  CAS  Google Scholar 

  36. Osio M, Zampini L, Muscia F, et al. Cutaneous silent period in human immunodeficiency virus-related peripheral neuropathy. J Peripher Nerv Syst. 2004;9:224–31.

    Article  PubMed  Google Scholar 

  37. Truini A, Romaniello A, Galeotti F, Iannetti GD, Cruccu G. Laser evoked potentials for assessing sensory neuropathy in human patients. Neurosci Lett. 2004;361:25–8.

    Article  PubMed  CAS  Google Scholar 

  38. Atherton DD, Facer P, Roberts KM, et al. Use of the novel contact heat evoked potential stimulator (CHEPS) for the assessment of small fibre neuropathy: correlations with skin flare responses and intra-epidermal nerve fibre counts. BMC Neurol. 2007;7:21.

    Article  PubMed  Google Scholar 

  39. Walk D, Sehgal N, Moeller-Bertram T, et al. Quantitative sensory testing and mapping: a review of nonautomated quantitative methods for examination of the patient with neuropathic pain. Clin J Pain. 2009;25:632–40.

    Article  PubMed  Google Scholar 

  40. Sommer C, Lauria G. Skin biopsy in the management of peripheral neuropathy. Lancet Neurol. 2007;6:632–42.

    Article  PubMed  Google Scholar 

  41. Tesfaye S, Boulton AJ, Dyck PJ, et al. Diabetic neuropathies: update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care. 2010;33:2285–93.

    Article  PubMed  Google Scholar 

  42. Holland NR, Crawford TO, Hauer P, Cornblath DR, Griffin JW, McArthur JC. Small-fiber sensory neuropathies: clinical course and neuropathology of idiopathic cases. Ann Neurol. 1998;44(1):47–59.

    Article  PubMed  CAS  Google Scholar 

  43. Devigili G, Tugnoli V, Penza P, et al. The diagnostic criteria for small fibre neuropathy: from symptoms to neuropathology. Brain. 2008;131:1912–25.

    Article  PubMed  Google Scholar 

  44. Martina IS, van Koningsveld R, Schmitz PI, van der Meche FG, van Doorn PA. Measuring vibration threshold with a graduated tuning fork in normal aging and in patients with polyneuropathy. European inflammatory neuropathy cause and treatment (INCAT) group. J Neurol Neurosurg Psychiatry. 1998;65:743–7.

    Article  PubMed  CAS  Google Scholar 

  45. Novak V, Kanard R, Kissel JT, Mendell JR. Treatment of painful sensory neuropathy with tiagabine: a pilot study. Clin Auton Res. 2001;11:357–61.

    Article  PubMed  CAS  Google Scholar 

  46. Estacion M, Han C, Choi JS, et al. Intra- and interfamily phenotypic diversity in pain syndromes associated with a gain-of-function ­variant of NaV1.7. Mol Pain. 2011;7:92.

    Article  PubMed  CAS  Google Scholar 

  47. Sghirlanzoni A, Pareyson D, Lauria G. Sensory neuron diseases. Lancet Neurol. 2005;4:349–61.

    Article  PubMed  CAS  Google Scholar 

  48. Gorson KC, Herrmann DN, Thiagarajan R, et al. Non-length dependent small fibre neuropathy/ganglionopathy. J Neurol Neurosurg Psychiatry. 2008;79:163–9.

    Article  PubMed  CAS  Google Scholar 

  49. Bakkers M, Merkies ISJ, Lauria G, et al. Intraepidermal nerve fiber density and its application in sarcoidosis. Neurology. 2009;73:1142–8.

    Article  PubMed  CAS  Google Scholar 

  50. Hoitsma E, Reulen JP, de Baets M, Drent M, Spaans F, Faber CG. Small fiber neuropathy: a common and important clinical disorder. J Neurol Sci. 2004;227:119–30.

    Article  PubMed  CAS  Google Scholar 

  51. Penza P, Lombardi R, Camozzi F, Ciano C, Lauria G. Painful ­neuropathy in subclinical hypothyroidism: clinical and neuropathological recovery after hormone replacement therapy. Neurol Sci. 2009;30:149–51.

    Article  PubMed  Google Scholar 

  52. Gorson KC, Ropper AH. Idiopathic distal small fiber neuropathy. Acta Neurol Scand. 1995;92:376–82.

    Article  PubMed  CAS  Google Scholar 

  53. Tobin K, Giuliani MJ, Lacomis D. Comparison of different modalities for detection of small fiber neuropathy. Clin Neurophysiol. 1999;110:1909–12.

    Article  PubMed  CAS  Google Scholar 

  54. Smith AG, Russell J, Feldman EL, et al. Lifestyle intervention for pre-diabetic neuropathy. Diabetes Care. 2006;29:1294–9.

    Article  PubMed  Google Scholar 

  55. Plante-Bordeneuve V, Said G. Familial amyloid polyneuropathy. Lancet Neurol. 2011;10:1086–97.

    Article  PubMed  CAS  Google Scholar 

  56. Manji H. Toxic neuropathy. Curr Opin Neurol. 2011;24:484–90.

    Article  PubMed  CAS  Google Scholar 

  57. Smith AG, Ramachandran P, Tripp S, Singleton JR. Epidermal nerve innervation in impaired glucose tolerance and diabetes-associated neuropathy. Neurology. 2001;57:1701–4.

    Article  PubMed  CAS  Google Scholar 

  58. Sumner CJ, Sheth S, Griffin JW, Cornblath DR, Polydefkis M. The spectrum of neuropathy in diabetes and impaired glucose tolerance. Neurology. 2003;60:108–11.

    Article  PubMed  CAS  Google Scholar 

  59. Orstavik K, Norheim I, Jorum E. Pain and small-fiber neuropathy in patients with hypothyroidism. Neurology. 2006;67:786–91.

    Article  PubMed  Google Scholar 

  60. Lo YL, Leoh TH, Loh LM, Tan CE. Statin therapy and small fibre neuropathy: a serial electrophysiological study. J Neurol Sci. 2003;208:105–8.

    Article  PubMed  CAS  Google Scholar 

  61. McManis P, Windebank A, Kiziltan M. Neuropathy associated with hyperlipidemia. Neurology. 1994;44:2185–6.

    Article  PubMed  CAS  Google Scholar 

  62. Moore RD, Wong WM, Keruly JC, McArthur JC. Incidence of neuropathy in HIV-infected patients on Monotherapy versus those on combination therapy with Didanosine, stavudine and hydroxyurea. AIDS. 2000;14:273–8.

    Article  PubMed  CAS  Google Scholar 

  63. Papanas N, Vinik AI, Ziegler D. Neuropathy in prediabetes: does the clock start ticking early? Nat Rev Endocr. 2011;7:682–90.

    Article  CAS  Google Scholar 

  64. Nebuchennykh M, Loseth S, Jorde R, Mellgren SI. Idiopathic polyneuropathy and impaired glucose metabolism in a Norwegian patient series. Eur J Neurol. 2008;15:810–6.

    Article  PubMed  CAS  Google Scholar 

  65. Brannagan 3rd TH, Hays AP, Chin SS, et al. Small-fiber neuropathy/neuronopathy associated with celiac disease: skin biopsy findings. Arch Neurol. 2005;62:1574–8.

    Article  PubMed  Google Scholar 

  66. Goransson LG, Tjensvoll AB, Herigstad A, Mellgren SI, Omdal R. Small-diameter nerve fiber neuropathy in systemic lupus erythematosus. Arch Neurol. 2006;63:401–4.

    Article  PubMed  Google Scholar 

  67. Hoitsma E, Marziniak M, Faber CG, et al. Small fibre neuropathy in sarcoidosis. Lancet. 2002;359:2085–6.

    Article  PubMed  CAS  Google Scholar 

  68. Mori K, Iijima M, Koike H, et al. The wide spectrum of ­clinical manifestations in Sjogren’s syndrome-associated neuropathy. Brain. 2005;128:2518–34.

    Article  PubMed  Google Scholar 

  69. Gondim F, Brannagan III T, Sander H, Chin R, Latov N. Peripheral neuropathy in patients with inflammatory bowel disease. Brain. 2005;128:867–79.

    Article  PubMed  CAS  Google Scholar 

  70. Bakkers M, Faber CG, Drent M, et al. Pain and autonomic dysfunction in patients with sarcoidosis and small fibre neuropathy. J Neurol. 2010;257:2086–90.

    Article  PubMed  CAS  Google Scholar 

  71. Kaida K, Kamakura K, Masaki T, Okano M, Nagata N, Inoue K. Painful small-fibre multifocal mononeuropathy and local myositis following influenza B infection. J Neurol Sci. 1997;151:103–6.

    Article  PubMed  CAS  Google Scholar 

  72. Zhou L, Kitch D, Evans S, et al. Correlates of epidermal nerve fiber densities in HIV-associated distal sensory polyneuropathy. Neurology. 2007;68:2113–9.

    Article  PubMed  CAS  Google Scholar 

  73. Koskinen MJ, Kautio AL, Haanpaa ML, et al. Intraepidermal nerve fibre density in cancer patients receiving adjuvant chemotherapy. Anticancer Res. 2011;31:4413–6.

    PubMed  CAS  Google Scholar 

  74. Siau C, Xiao W, Bennett GJ. Paclitaxel- and vincristine-evoked painful peripheral neuropathies: loss of epidermal innervation and activation of Langerhans cells. Exp Neurol. 2006;201:507–14.

    Article  PubMed  CAS  Google Scholar 

  75. Zambelis T, Karandreas N, Tzavellas E, Kokotis P, Liappas J. Large and small fiber neuropathy in chronic alcohol-dependent subjects. J Peripher Nerv Syst. 2005;10:375–81.

    Article  PubMed  Google Scholar 

  76. Oki Y, Koike H, Iijima M, et al. Ataxic vs painful form of paraneoplastic neuropathy. Neurology. 2007;69:564–72.

    Article  PubMed  CAS  Google Scholar 

  77. Burlina AP, Sims KB, Politei JM, et al. Early diagnosis of peripheral nervous system involvement in fabry disease and treatment of neuropathic pain: the report of an expert panel. BMC Neurol. 2011;11:61.

    Article  PubMed  Google Scholar 

  78. Wouthuis SF, van Deursen CT, te Lintelo MP, Rozeman CA, Beekman R. Neuromuscular manifestations in hereditary haemochromatosis. J Neurol. 2010;257:1465–72.

    Article  PubMed  CAS  Google Scholar 

  79. Lacomis D. Small-fiber neuropathy. Muscle Nerve. 2002;26:173–88.

    Article  PubMed  Google Scholar 

  80. Bednarik J, Vlckova-Moravcova E, Bursova S, Belobradkova J, Dusek L, Sommer C. Etiology of small-fiber neuropathy. J Peripher Nerv Syst. 2009;14:177–83.

    Article  PubMed  Google Scholar 

  81. De Sousa EA, Hays AP, Chin RL, Sander HW, Brannagan 3rd TH. Characteristics of patients with sensory neuropathy diagnosed with abnormal small nerve fibres on skin biopsy. J Neurol Neurosurg Psychiatry. 2006;77:983–5.

    Article  PubMed  Google Scholar 

  82. Hoitsma E, Reulen JPH, de Baets M, Drent M, Spaansa F, Faber CG. Small fiber neuropathy: a common and important clinical ­disorder. J Neurol Sci. 2004;227:119–30.

    Article  PubMed  CAS  Google Scholar 

  83. Stogbauer F, Young P, Kuhlenbaumer G, et al. Autosomal dominant burning feet syndrome. J Neurol Neurosurg Psychiatry. 1999;67:78–81.

    Article  PubMed  CAS  Google Scholar 

  84. Kuhlenbaumer G, Young P, Kiefer R, et al. A second family with autosomal dominant burning feet syndrome. Ann N Y Acad Sci. 1999;883:445–8.

    Article  PubMed  CAS  Google Scholar 

  85. Hoeijmakers JG, Han C, Merkies IS, et al. Small nerve fibres, small hands and small feet: a new syndrome of pain, Dysautonomia and acromesomelia in a kindred with a novel NaV1.7 mutation. Brain. 2012;135:345–58.

    Article  PubMed  Google Scholar 

  86. Estacion M, Han C, Choi JS, et al. Intra- and interfamily phenotypic diversity in pain syndromes associated with a gain-of-function ­variant of NaV1.7. Mol Pain. 2012;7:92.

    Article  CAS  Google Scholar 

  87. Polydefkis M, Hauer P, Sheth S, Sirdofsky M, Griffin JW, McArthur JC. The time course of epidermal nerve fibre regeneration: studies in normal controls and in people with diabetes, with and without neuropathy. Brain. 2004;127:1606–15.

    Article  PubMed  Google Scholar 

  88. Wakasugi D, Kato T, Gono T, et al. Extreme efficacy of intravenous immunoglobulin therapy for severe burning pain in a patient with small fiber neuropathy associated with primary Sjogren’s syndrome. Mod Rheumatol. 2009;19:437–40.

    Article  PubMed  Google Scholar 

  89. Hoitsma E, Faber CG, van Santen-Hoeufft M, De Vries J, Reulen JP, Drent M. Improvement of small fiber neuropathy in a sarcoidosis patient after treatment with Infliximab. Sarcoidosis Vasc Diffus L Dis. 2006;23:73–7.

    Google Scholar 

  90. Parambil JG, Tavee JO, Zhou L, Pearson KS, Culver DA. Efficacy of intravenous immunoglobulin for small fiber neuropathy associated with sarcoidosis. Respir Med. 2011;105:101–5.

    Article  PubMed  Google Scholar 

  91. Choi JS, Waxman SG. Physiological interactions between Na(v)1.7 and Na(v)1.8 sodium channels: a computer simulation study. J Neurophysiol. 2011;106:3173–84.

    Article  PubMed  Google Scholar 

  92. Koike H, Tanaka F, Sobue G. Paraneoplastic neuropathy: wide-ranging clinicopathological manifestations. Curr Opin Neurol. 2011;24:504–10.

    Article  PubMed  Google Scholar 

  93. Herrmann DN, Ferguson ML, Pannoni V, Barbano RL, Stanton M, Logigian EL. Plantar nerve AP and skin biopsy in sensory neuropathies with normal routine conduction studies. Neurology. 2004;63:879–85.

    Article  PubMed  CAS  Google Scholar 

  94. Uluc K, Temucin CM, Ozdamar SE, Demirci M, Tan E. Near-nerve needle sensory and medial plantar nerve conduction studies in patients with small-fiber sensory neuropathy. Eur J Neurol. 2008;15:928–32.

    Article  PubMed  CAS  Google Scholar 

  95. Onal MR, Ulas UH, Oz O, et al. Cutaneous silent period changes in type 2 diabetes mellitus patients with small fiber neuropathy. Clin Neurophysiol. 2010;121:714–8.

    Article  PubMed  CAS  Google Scholar 

  96. Leis AA, Kofler M, Ross MA. The silent period in pure sensory neuronopathy. Muscle Nerve. 1992;15:1345–8.

    Article  PubMed  CAS  Google Scholar 

  97. Inghilleri M, Cruccu G, Argenta M, Polidori L, Manfredi M. Silent period in upper limb muscles after noxious cutaneous stimulation in man. Electroencephalogr Clin Neurophysiol. 1997;105:109–15.

    Article  PubMed  CAS  Google Scholar 

  98. Uncini A, Kujirai T, Gluck B, Pullman S. Silent period induced by cutaneous stimulation. Electroencephalogr Clin Neurophysiol. 1991;81:344–52.

    Article  PubMed  CAS  Google Scholar 

  99. Serrao M, Parisi L, Pierelli F, Rossi P. Cutaneous afferents mediating the cutaneous silent period in the upper limbs: evidences for a role of low-threshold sensory fibres. Clin Neurophysiol. 2001;112:2007–14.

    Article  PubMed  CAS  Google Scholar 

  100. Sahin O, Yildiz S, Yildiz N. Cutaneous silent period in fibromyalgia. Neurol Res. 2011;33:339–43.

    Article  PubMed  Google Scholar 

  101. Torebjork E. Human microneurography and intraneural microstimulation in the study of neuropathic pain. Muscle Nerve. 1993;16:1063–5.

    Article  PubMed  CAS  Google Scholar 

  102. Orstavik K, Jorum E. Microneurographic findings of relevance to pain in patients with erythromelalgia and patients with diabetic neuropathy. Neurosci Lett. 2010;470:104–8.

    Article  CAS  Google Scholar 

  103. Serra J, Campero M, Bostock H, Ochoa J. Two types of C ­nociceptors in human skin and their behavior in areas of ­capsaicin-­induced secondary hyperalgesia. J Neurophysiol. 2004;91:2770–81.

    Article  PubMed  Google Scholar 

  104. Serra J, Sola R, Aleu J, Quiles C, Navarro X, Bostock H. Double and triple spikes in C-nociceptors in neuropathic pain states: an additional peripheral mechanism of hyperalgesia. Pain. 2011;152:343–53.

    Article  PubMed  Google Scholar 

  105. Liguori R, Giannoccaro MP, Di Stasi V, et al. Microneurographic evaluation of sympathetic activity in small fiber neuropathy. Clin Neurophysiol. 2011;122:1854–9.

    Article  PubMed  Google Scholar 

  106. Campero M, Serra J, Ochoa JL. C-polymodal nociceptors activated by noxious low temperature in human skin. J Physiol. 1996;497(Pt 2):565–72.

    PubMed  CAS  Google Scholar 

  107. Campero M, Serra J, Ochoa JL. Peripheral projections of sensory fascicles in the human superficial radial nerve. Brain. 2005;128:892–5.

    Article  PubMed  CAS  Google Scholar 

  108. Ochoa JL, Campero M, Serra J, Bostock H. Hyperexcitable ­polymodal and insensitive nociceptors in painful human neuropathy. Muscle Nerve. 2005;32:459–72.

    Article  PubMed  Google Scholar 

  109. Treede RD, Lorenz J, Baumgartner U. Clinical usefulness of laser-evoked potentials. Neurophysiol Clin. 2003;33:303–14.

    Article  PubMed  Google Scholar 

  110. Truini A, Galeotti F, Biasiotta A, et al. Dissociation between ­cutaneous silent period and laser evoked potentials in assessing neuropathic pain. Muscle Nerve. 2009;39:369–73.

    Article  PubMed  CAS  Google Scholar 

  111. Serra J, Sola R, Quiles C, et al. C-nociceptors sensitized to cold in a patient with small-fiber neuropathy and cold allodynia. Pain. 2009;147:46–53.

    Article  PubMed  Google Scholar 

  112. Pozzessere G, Rossi P, Gabriele A, et al. Early detection of ­small-fiber neuropathy in diabetes: a laser-induced pain somatosensory-evoked potentials and pupillometric study. Diabetes Care. 2002;25:2355–8.

    Article  PubMed  Google Scholar 

  113. Creac’h C, Convers P, Robert F, Antoine JC, Camdessanche JP. Small fiber sensory neuropathies: contribution of laser evoked potentials. Rev Neurol (Paris). 2011;167:40–5.

    Article  Google Scholar 

  114. Casanova-Molla J, Grau-Junyent JM, Morales M, Valls-Sole J. On the relationship between nociceptive evoked potentials and intraepidermal nerve fiber density in painful sensory polyneuropathies. Pain. 2011;152:410–8.

    Article  PubMed  Google Scholar 

  115. Granovsky Y, Matre D, Sokolik A, Lorenz J, Casey KL. Thermoreceptive innervation of human glabrous and hairy skin: a contact heat evoked potential analysis. Pain. 2005;115:238–47.

    Article  PubMed  Google Scholar 

  116. Wong MC, Chung JW. Feasibility of contact heat evoked potentials for detection of diabetic neuropathy. Muscle Nerve. 2011;44:902–6.

    Article  PubMed  Google Scholar 

  117. Chao CC, Hsieh SC, Tseng MT, Chang YC, Hsieh ST. Patterns of contact heat evoked potentials (CHEP) in neuropathy with skin denervation: correlation of CHEP amplitude with intraepidermal nerve fiber density. Clin Neurophysiol. 2008;119:653–61.

    Article  PubMed  Google Scholar 

  118. Chao CC, Tseng MT, Lin YJ, et al. Pathophysiology of ­neuropathic pain in type 2 diabetes: skin denervation and contact heat-evoked potentials. Diabetes Care. 2010;33:2654–9.

    Article  PubMed  Google Scholar 

  119. Reulen JP, Lansbergen MD, Verstraete E, Spaans F. Comparison of thermal threshold tests to assess small nerve fiber function: limits vs. Levels. Clin Neurophysiol. 2003;114:556–63.

    Article  PubMed  CAS  Google Scholar 

  120. Dyck PJ, O’Brien PC. Quantitative sensation testing in epidemiological and therapeutic studies of peripheral neuropathy. Muscle Nerve. 1999;22:659–62.

    Article  PubMed  CAS  Google Scholar 

  121. Shukla G, Bhatia M, Behari M. Quantitative thermal sensory testing – value of testing for both cold and warm sensation detection in evaluation of small fiber neuropathy. Clin Neurol Neurosurg. 2005;107:486–90.

    Article  PubMed  Google Scholar 

  122. Hoitsma E, Drent M, Verstraete E, et al. Abnormal warm and cold sensation thresholds suggestive of small-fibre neuropathy in sarcoidosis. Clin Neurophysiol. 2003;114:2326–33.

    Article  PubMed  CAS  Google Scholar 

  123. Hansson P, Backonja M, Bouhassira D. Usefulness and limitations of quantitative sensory testing: clinical and research application in neuropathic pain states. Pain. 2007;129:256–9.

    Article  PubMed  Google Scholar 

  124. Shy ME, Frohman EM, So YT, et al. Quantitative sensory testing: report of the therapeutics and technology assessment ­subcommittee of the American academy of neurology. Neurology. 2003;60:898–904.

    Article  PubMed  CAS  Google Scholar 

  125. Pan C, Tseng T, Lin Y, Chiang M, Lin W, Hsieh S. Cutaneous innervation in guillain-barré syndrome: pathology and clinical correlations. Brain. 2003;126:386–97.

    Article  PubMed  Google Scholar 

  126. Pittenger GL, Ray M, Burcus NI, McNulty P, Basta B, Vinik AI. Intraepidermal nerve fibers are indicators of small-fiber neuropathy in both diabetic and nondiabetic patients. Diabetes Care. 2004;27:1974–9.

    Article  PubMed  Google Scholar 

  127. Quattrini C, Tavakoli M, Jeziorska M, et al. Surrogate markers of small fiber damage in human diabetic neuropathy. Diabetes. 2007;56:2148–54.

    Article  PubMed  CAS  Google Scholar 

  128. Shun CT, Chang YC, Wu HP, et al. Skin denervation in type 2 diabetes: correlations with diabetic duration and functional impairments. Brain. 2004;127:1593–605.

    Article  PubMed  Google Scholar 

  129. Sorensen L, Molyneaux L, Yue DK. The level of small nerve fiber dysfunction does not predict pain in diabetic neuropathy: a study using quantitative sensory testing. Clin J Pain. 2006;22:261–5.

    Article  PubMed  Google Scholar 

  130. Periquet MI, Novak V, Collins MP, et al. Painful sensory neuropathy: prospective evaluation using skin biopsy. Neurology. 1999;53:1641–7.

    Article  PubMed  CAS  Google Scholar 

  131. Holland N, Stocks A, Hauer P, Cornblath D, Griffin J, McArthur J. Intraepidermal nerve fibre density in patients with painful sensory neuropathy. Neurology. 1997;48:708–11.

    Article  PubMed  CAS  Google Scholar 

  132. Facer P, Mathur R, Pandya S, Ladiwala U, Singhal B, Anand P. Correlation of quantitative tests of nerve and target organ dysfunction with skin immunohistology in leprosy. Brain. 1998;121:2239–47.

    Article  PubMed  Google Scholar 

  133. Maier C, Baron R, Tolle TR, et al. Quantitative sensory testing in the German research network on neuropathic pain (DFNS): ­somatosensory abnormalities in 1236 patients with different neuropathic pain syndromes. Pain. 2010;150:439–50.

    Article  PubMed  CAS  Google Scholar 

  134. Kleggetveit IP, Jorum E. Large and small fiber dysfunction in peripheral nerve injuries with or without spontaneous pain. J Pain. 2010;11:1305–10.

    PubMed  Google Scholar 

  135. Lauria G, Hsieh ST, Johansson O, et al. European federation of neurological societies/peripheral nerve society guideline on the use of skin biopsy in the diagnosis of small fiber neuropathy. J Periph Nerv Syst. 2010;15:79–92.

    Article  Google Scholar 

  136. Lauria G, Bakkers M, Schmitz C, et al. Intraepidermal nerve fiber density at the distal leg: a worldwide normative reference study. J Peripher Nerv Syst. 2010;15:202–7.

    Article  PubMed  Google Scholar 

  137. Lauria G, Cazzato D, Porretta-Serapiglia C, et al. Morphometry of dermal nerve fibers in human skin. Neurology. 2011;77:242–9.

    Article  PubMed  CAS  Google Scholar 

  138. Lauria G, Devigili G. Skin biopsy as a diagnostic tool in ­peripheral neuropathy. Nat Clin Pract Neurol. 2007;3:546–57.

    Article  PubMed  Google Scholar 

  139. Lauria G, Morbin M, Lombardi R, et al. Axonal swellings predict the degeneration of epidermal nerve fibers in painful neuropathies. Neurology. 2003;61:631–6.

    Article  PubMed  CAS  Google Scholar 

  140. Walk D, Wendelschafer-Crabb G, Davey C, Kennedy WR. Concordance between epidermal nerve fiber density and sensory examination in patients with symptoms of idiopathic small fiber neuropathy. J Neurol Sci. 2007;255:23–6.

    Article  PubMed  Google Scholar 

  141. Herrmann DN, McDermott MP, Sowden JE, et al. Is skin biopsy a predictor of transition to symptomatic HIV neuropathy? A longitudinal study. Neurology. 2006;66:857–61.

    Article  PubMed  CAS  Google Scholar 

  142. Herrmann DN, McDermott MP, Henderson D, Chen L, Akowuah K, Schifitto G. Epidermal nerve fiber density, axonal swellings and QST as predictors of HIV distal sensory neuropathy. Muscle Nerve. 2004;29:420–7.

    Article  PubMed  Google Scholar 

  143. Kennedy WR, Nolano M, Wendelschafer-Crabb G, Johnson TL, Tamura E. A skin blister method to study epidermal nerves in peripheral nerve disease. Muscle Nerve. 1999;22:360–71.

    Article  PubMed  CAS  Google Scholar 

  144. Panoutsopoulou IG, Wendelschafer-Crabb G, Hodges JS, Kennedy WR. Skin blister and skin biopsy to quantify epidermal nerves: a comparative study. Neurology. 2009;72:1205–10.

    Article  PubMed  Google Scholar 

  145. Uceyler N, He L, Schonfeld D, et al. Small fibers in fabry disease: baseline and follow-up data under enzyme replacement therapy. J Peripher Nerv Syst. 2011;16:304–14.

    Article  PubMed  CAS  Google Scholar 

  146. Attal N, Cruccu G, Baron R, et al. EFNS guidelines on the pharmacological treatment of neuropathic pain: 2010 revision. Eur J Neurol. 2010;17:1113–e88.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Lauria MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lauria, G., Merkies, I.S.J., Waxman, S.G., Faber, C.G. (2014). Approach to Small Fiber Neuropathy. In: Katirji, B., Kaminski, H., Ruff, R. (eds) Neuromuscular Disorders in Clinical Practice. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6567-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6567-6_25

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6566-9

  • Online ISBN: 978-1-4614-6567-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics