Skip to main content

Chromosomes and Nuclear Organization in ICF Syndrome

  • Chapter
  • First Online:
Human Interphase Chromosomes
  • 822 Accesses

Abstract

The ICF syndrome is a rare, autosomal recessive disorder, often fatal in childhood, and characterized by genetic and clinical heterogeneity. Its most ­consistent features are reduction in serum immunoglobulin levels, facial ­anomalies, and cytogenetic defects. ICF is also characterized by abnormal DNA methylation. Significant DNA hypomethylation is present mainly in the classical satellite sequences, the major constituent of the juxtacentromeric heterochromatin of chromosomes 1, 9, and 16. The relationship between DNA methylation defects, altered gene expression, and clinical and phenotypic features in ICF has been the object of intense scrutiny. Although the full pathogenetic picture remains to be elucidated, a number of hypotheses advocating an epigenetic model for this syndrome have been advanced by ­different research groups. Central to some of these hypotheses is the postulation of a trans-acting regulatory role for the heterochromatin and the suggestion of a possible connection between altered gene ­expression in ICF and the inappropriate release or recruitment of regulatory complexes by the hypomethylated satellite DNA. This chapter reviews the evidence supporting an association between pathology, large-scale chromatin organization, and nuclear architecture in this enigmatic syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aran D et al (2011) Replication timing-related and gene body-specific methylation of active human genes. Hum Mol Genet 20(4):670–680

    Article  PubMed  CAS  Google Scholar 

  • Bachman KE, Rountree MR, Baylin SB (2001) Dnmt3a and Dnmt3b are transcriptional repressors that exhibit unique localization properties to heterochromatin. J Biol Chem 276(34):32282–32287

    Article  PubMed  CAS  Google Scholar 

  • Barki-Celli L et al (2005) Differences in nuclear positioning of 1q12 pericentric heterochromatin in normal and tumor B lymphocytes with 1q rearrangements. Genes Chromosomes Cancer 43(4):339–349

    Article  PubMed  CAS  Google Scholar 

  • Bartova E et al (2002) Nuclear structure and gene activity in human differentiated cells. J Struct Biol 139(2):76–89

    Article  PubMed  CAS  Google Scholar 

  • Bickmore WA, van der Maarel SM (2003) Perturbations of chromatin structure in human genetic disease: recent advances. Hum Mol Genet 2:5

    Google Scholar 

  • Bourc’his D et al (1999) Abnormal methylation does not prevent X inactivation in ICF patients. Cytogenet Cell Genet 84(3–4):245–252

    PubMed  Google Scholar 

  • Brown DC et al (1995) ICF syndrome (immunodeficiency, centromeric instability and facial anomalies): investigation of heterochromatin abnormalities and review of clinical outcome. Hum Genet 96(4):411–416

    Article  PubMed  CAS  Google Scholar 

  • Brown KE et al (1997) Association of transcriptionally silent genes with Ikaros complexes at centromeric heterochromatin. Cell 91(6):845–854

    Article  PubMed  CAS  Google Scholar 

  • Brown KE et al (1999) Dynamic repositioning of genes in the nucleus of lymphocytes preparing for cell division. Mol Cell 3(2):207–217

    Article  PubMed  CAS  Google Scholar 

  • Brun ME et al (2011) Heterochromatic genes undergo epigenetic changes and escape silencing in immunodeficiency, centromeric instability, facial anomalies (ICF) syndrome. PLoS One 6(4):e19464

    Article  PubMed  CAS  Google Scholar 

  • Chouery E et al (2012) A novel deletion in ZBTB24 in a Lebanese family with immunodeficiency, centromeric instability, and facial anomalies syndrome type 2. Clin Genet 82(5):489–493

    Article  PubMed  CAS  Google Scholar 

  • Croft JA et al (1999) Differences in the localization and morphology of chromosomes in the human nucleus. J Cell Biol 145(6):1119–1131

    Article  PubMed  CAS  Google Scholar 

  • de Greef JC et al (2011) Mutations in ZBTB24 are associated with immunodeficiency, centromeric instability, and facial anomalies syndrome type 2. Am J Hum Genet 88(6):796–804

    Article  PubMed  Google Scholar 

  • Dupont C et al (2012) 3D position of pericentromeric heterochromatin within the nucleus of a patient with ICF syndrome. Clin Genet 82(2):187–192

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich M (2003) The ICF syndrome, a DNA methyltransferase 3B deficiency and immunodeficiency disease. Clin Immunol 109(1):17–28

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich M (2009) DNA hypomethylation in cancer cells. Epigenomics 1(2):239–259

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich M et al (2001) DNA methyltransferase 3B mutations linked to the ICF syndrome cause dysregulation of lymphogenesis genes. Hum Mol Genet 10(25):2917–2931

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich M, Jackson K, Weemaes C (2006) Immunodeficiency, centromeric region instability, facial anomalies syndrome (ICF). Orphanet J Rare Dis 1:2

    Article  PubMed  Google Scholar 

  • Ehrlich M et al (2008) ICF, an immunodeficiency syndrome: DNA methyltransferase 3B involvement, chromosome anomalies, and gene dysregulation. Autoimmunity 41(4):253–271

    Article  PubMed  CAS  Google Scholar 

  • Feng J, Fan G (2009) The role of DNA methylation in the central nervous system and neuropsychiatric disorders. Int Rev Neurobiol 89:67–84

    Article  PubMed  CAS  Google Scholar 

  • Ferreira J et al (1997) Spatial organization of large-scale chromatin domains in the nucleus: a magnified view of single chromosome territories. J Cell Biol 139(7):1597–1610

    Article  PubMed  CAS  Google Scholar 

  • Francastel C et al (1999) A functional enhancer suppresses silencing of a transgene and prevents its localization close to centromeric heterochromatin. Cell 99(3):259–269

    Article  PubMed  CAS  Google Scholar 

  • Francastel C, Magis W, Groudine M (2001) Nuclear relocation of a transactivator subunit precedes target gene activation. Proc Natl Acad Sci U S A 98(21):12120–12125

    Article  PubMed  CAS  Google Scholar 

  • Geiman TM et al (2004) DNMT3B interacts with hSNF2H chromatin remodeling enzyme, HDACs 1 and 2, and components of the histone methylation system. Biochem Biophys Res Commun 318(2):544–555

    Article  PubMed  CAS  Google Scholar 

  • Gimelli G et al (1993) ICF syndrome with variable expression in sibs. J Med Genet 30(5):429–432

    Article  PubMed  CAS  Google Scholar 

  • Gisselsson D et al (2005) Interphase chromosomal abnormalities and mitotic missegregation of hypomethylated sequences in ICF syndrome cells. Chromosoma (Berl) 114(2):118–126

    Article  CAS  Google Scholar 

  • Gopalakrishnan S et al (2009) DNMT3B interacts with constitutive centromere protein CENP-C to modulate DNA methylation and the histone code at centromeric regions. Hum Mol Genet 18(17):3178–3193

    Article  PubMed  CAS  Google Scholar 

  • Grogan JL et al (2001) Early transcription and silencing of cytokine genes underlie polarization of T helper cell subsets. Immunity 14(3):205–215

    Article  PubMed  CAS  Google Scholar 

  • Hagleitner MM et al (2008) Clinical spectrum of immunodeficiency, centromeric instability and facial dysmorphism (ICF syndrome). J Med Genet 45(2):93–99

    Article  PubMed  CAS  Google Scholar 

  • Hansen RS et al (1999) The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome. Proc Natl Acad Sci U S A 96(25):14412–14417

    Article  PubMed  CAS  Google Scholar 

  • Hansen RS et al (2000) Escape from gene silencing in ICF syndrome: evidence for advanced replication time as a major determinant. Hum Mol Genet 9(18):2575–2587

    Article  PubMed  CAS  Google Scholar 

  • Hassan KM et al (2001) Satellite 2 methylation patterns in normal and ICF syndrome cells and association of hypomethylation with advanced replication. Hum Genet 109(4):452–462

    Article  PubMed  CAS  Google Scholar 

  • Heidari M et al (2006) The nuclear oncoprotein TLX1/HOX11 associates with pericentromeric satellite 2 DNA in leukemic T-cells. Leukemia 20(2):304–312

    Article  PubMed  CAS  Google Scholar 

  • Heyn H et al (2012) Whole-genome bisulfite DNA sequencing of a DNMT3B mutant patient. Epigenetics 7:6

    Article  Google Scholar 

  • Jeanpierre M et al (1993) An embryonic-like methylation pattern of classical satellite DNA is observed in ICF syndrome. Hum Mol Genet 2(6):731–735

    Article  PubMed  CAS  Google Scholar 

  • Jefferson A et al (2010) Altered intra-nuclear organisation of heterochromatin and genes in ICF syndrome. PLoS One 5(6):e11364

    Article  PubMed  Google Scholar 

  • Ji W et al (1997) DNA demethylation and pericentromeric rearrangements of chromosome 1. Mutat Res 379(1):33–41

    Article  PubMed  CAS  Google Scholar 

  • Jiang YL et al (2005) DNMT3B mutations and DNA methylation defect define two types of ICF syndrome. Hum Mutat 25(1):56–63

    Article  PubMed  CAS  Google Scholar 

  • Jin B et al (2008) DNA methyltransferase 3B (DNMT3B) mutations in ICF syndrome lead to altered epigenetic modifications and aberrant expression of genes regulating development, neurogenesis and immune function. Hum Mol Genet 17(5):690–709

    Article  PubMed  CAS  Google Scholar 

  • Kondo T et al (2000) Whole-genome methylation scan in ICF syndrome: hypomethylation of non-­satellite DNA repeats D4Z4 and NBL2. Hum Mol Genet 9(4):597–604

    Article  PubMed  CAS  Google Scholar 

  • Kubota T et al (2004) ICF syndrome in a girl with DNA hypomethylation but without detectable DNMT3B mutation. Am J Med Genet A 1(3):290–293

    Article  Google Scholar 

  • Lana E et al (2012) DNA replication is altered in immunodeficiency centromeric instability facial anomalies (ICF) cells carrying DNMT3B mutations. Eur J Hum Genet 29(10):41

    Google Scholar 

  • Luciani JJ et al (2005) Subcellular distribution of HP1 proteins is altered in ICF syndrome. Eur J Hum Genet 13(1):41–51

    Article  PubMed  CAS  Google Scholar 

  • Luciani JJ et al (2006) PML nuclear bodies are highly organised DNA-protein structures with a function in heterochromatin remodelling at the G2 phase. J Cell Sci 119(pt 12):2518–2531

    Article  PubMed  CAS  Google Scholar 

  • Maraschio P et al (1988) Immunodeficiency, centromeric heterochromatin instability of chromosomes 1, 9, and 16, and facial anomalies: the ICF syndrome. J Med Genet 25(3):173–180

    Article  PubMed  CAS  Google Scholar 

  • Maraschio P et al (1989) Differential expression of the ICF (immunodeficiency, centromeric heterochromatin, facial anomalies) mutation in lymphocytes and fibroblasts. J Med Genet 26(7):452–456

    Article  PubMed  CAS  Google Scholar 

  • Maraschio P et al (1992) Interphase cytogenetics of the ICF syndrome. Ann Hum Genet 56(pt 3):273–278

    Article  PubMed  CAS  Google Scholar 

  • Martins-Taylor K et al (2012) Role of DNMT3B in the regulation of early neural and neural crest specifiers. Epigenetics 7:1

    Article  Google Scholar 

  • Matarazzo MR et al (2007) Chromosome territory reorganization in a human disease with altered DNA methylation. Proc Natl Acad Sci U S A 104(42):16546–16551

    Article  PubMed  CAS  Google Scholar 

  • Miniou P et al (1994) Abnormal methylation pattern in constitutive and facultative (X inactive chromosome) heterochromatin of ICF patients. Hum Mol Genet 3(12):2093–2102

    Article  PubMed  CAS  Google Scholar 

  • Miniou P et al (1997a) Alpha-satellite DNA methylation in normal individuals and in ICF patients: heterogeneous methylation of constitutive heterochromatin in adult and fetal tissues. Hum Genet 99(6):738–745

    Article  PubMed  CAS  Google Scholar 

  • Miniou P et al (1997b) Undermethylation of Alu sequences in ICF syndrome: molecular and in situ analysis. Cytogenet Cell Genet 77(3–4):308–313

    Article  PubMed  CAS  Google Scholar 

  • Misteli T (2004) Spatial positioning; a new dimension in genome function. Cell 119(2):153–156

    Article  PubMed  CAS  Google Scholar 

  • Okano M et al (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99(3):247–257

    Article  PubMed  CAS  Google Scholar 

  • Prada D et al (2012) Satellite 2 demethylation induced by 5-azacytidine is associated with missegregation of chromosomes 1 and 16 in human somatic cells. Mutat Res 729(1–2):100–105

    PubMed  CAS  Google Scholar 

  • Ragoczy T et al (2003) A genetic analysis of chromosome territory looping: diverse roles for distal regulatory elements. Chromosome Res 11(5):513–525

    Article  PubMed  CAS  Google Scholar 

  • Roldan E et al (2005) Locus ‘decontraction’ and centromeric recruitment contribute to allelic exclusion of the immunoglobulin heavy-chain gene. Nat Immunol 6(1):31–41

    Article  PubMed  CAS  Google Scholar 

  • Sadoni N et al (1999) Nuclear organization of mammalian genomes. Polar chromosome territories build up functionally distinct higher order compartments. J Cell Biol 146(6):1211–1226

    Article  PubMed  CAS  Google Scholar 

  • Saurin AJ et al (1998) The human polycomb group complex associates with pericentromeric heterochromatin to form a novel nuclear domain. J Cell Biol 142(4):887–898

    Article  PubMed  CAS  Google Scholar 

  • Sawyer JR et al (1995a) Chromosome instability in ICF syndrome: formation of micronuclei from multibranched chromosomes 1 demonstrated by fluorescence in situ hybridization. Am J Med Genet 56(2):203–209

    Article  PubMed  CAS  Google Scholar 

  • Sawyer JR et al (1995b) Centromeric instability of chromosome 1 resulting in multibranched chromosomes, telomeric fusions, and “jumping translocations” of 1q in a human immunodeficiency virus-related non-Hodgkin’s lymphoma. Cancer (Phila) 76(7):1238–1244

    Article  CAS  Google Scholar 

  • Scheuermann MO et al (2004) Topology of genes and nontranscribed sequences in human interphase nuclei. Exp Cell Res 301(2):266–279

    Article  PubMed  CAS  Google Scholar 

  • Schubeler D et al (2000) Nuclear localization and histone acetylation: a pathway for chromatin opening and transcriptional activation of the human beta-globin loc.s. Genes Dev 14(8):940–950

    PubMed  CAS  Google Scholar 

  • Schuffenhauer S et al (1995) DNA, FISH and complementation studies in ICF syndrome: DNA hypomethylation of repetitive and single copy loci and evidence for a trans acting factor. Hum Genet 96(5):562–571

    Article  PubMed  CAS  Google Scholar 

  • Shopland LS et al (2006) Folding and organization of a contiguous chromosome region according to the gene distribution pattern in primary genomic sequence. J Cell Biol 174(1):27–38

    Article  PubMed  CAS  Google Scholar 

  • Stacey M, Bennett MS, Hulten M (1995) FISH analysis on spontaneously arising micronuclei in the ICF syndrome. J Med Genet 32(7):502–508

    Article  PubMed  CAS  Google Scholar 

  • Sumner AT, Mitchell AR, Ellis PM (1998) A FISH study of chromosome fusion in the ICF syndrome: involvement of paracentric heterochromatin but not of the centromeres themselves. J Med Genet 35(10):833–835

    Article  PubMed  CAS  Google Scholar 

  • Tanabe H et al (2002) Non-random radial arrangements of interphase chromosome territories: evolutionary considerations and functional implications. Mutat Res 504(1–2):37–45

    PubMed  CAS  Google Scholar 

  • Toyota M, Suzuki H (2010) Epigenetic drivers of genetic alterations. Adv Genet 70:309–323

    Article  PubMed  CAS  Google Scholar 

  • Tuck-Muller CM et al (2000) DNA hypomethylation and unusual chromosome instability in cell lines from ICF syndrome patients. Cytogenet Cell Genet 89(1–2):121–128

    Article  PubMed  CAS  Google Scholar 

  • Ueda Y et al (2006) Roles for Dnmt3b in mammalian development: a mouse model for the ICF syndrome. Development (Camb) 133(6):1183–1192

    Article  CAS  Google Scholar 

  • van den Brand M et al (2011) Angiosarcoma in a patient with immunodeficiency, centromeric region instability, facial anomalies (ICF) syndrome. Am J Med Genet A 3:622–625

    Google Scholar 

  • Volpi EV, Bridger JM (2008) FISH glossary: an overview of the fluorescence in situ hybridization technique. Biotechniques 45(4):385–386, 388, 390, passim

    Google Scholar 

  • Wijmenga C et al (1998) Localization of the ICF syndrome to chromosome 20 by homozygosity mapping. Am J Hum Genet 63(3):803–809

    Article  PubMed  CAS  Google Scholar 

  • Wijmenga C et al (2000) Genetic variation in ICF syndrome: evidence for genetic heterogeneity. Hum Mutat 16(6):509–517

    Article  PubMed  CAS  Google Scholar 

  • Xu GL et al (1999) Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature (Lond) 402(6758):187–191

    Article  CAS  Google Scholar 

  • Yehezkel S et al (2008) Hypomethylation of subtelomeric regions in ICF syndrome is associated with abnormally short telomeres and enhanced transcription from telomeric regions. Hum Mol Genet 17(18):2776–2789

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

 Dr. E.V. Volpi thanks the Wellcome Trust for support [075491/Z/04].

Some of the images used in Figs. 6.1, 6.2, and 6.3 were reproduced from Jefferson et al. (2010), PLoS ONE 5(6):e11364, an open-access article distributed under the terms of the Creative Commons Attribution License.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuela V. Volpi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Volpi, E.V. (2013). Chromosomes and Nuclear Organization in ICF Syndrome. In: Yurov, Y., Vorsanova, S., Iourov, I. (eds) Human Interphase Chromosomes. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6558-4_6

Download citation

Publish with us

Policies and ethics