Skip to main content

Abnormalities of GABA System and Human Pharmacoresistant Epilepsy

  • Chapter
  • First Online:
Pharmacoresistance in Epilepsy

Abstract

Despite the availability of various newly developed antiepileptic drugs (AEDs), pharmacoresistance remains a major challenge in epilepsy management. Unraveling the mechanisms underlying AED resistance has been the focus of intense efforts, in order to develop new rationally designed therapies for as yet refractory epilepsies. Based on experimental and clinical studies, one of the major neurobiological theories that has been put forward is the target hypothesis, which suggests that AEDs are not effective because of target alterations in the epileptogenic brain. Several studies have shown that seizure activity results in altered expression of gamma-aminobutyric acid (GABA) components such as GABA transporters (GATs) and GABA receptors. Indeed, changes in the composition of subunits expression appear to affect the functioning of GABAergic neurotransmission. Here, we review the current literature on epilepsy-associated changes in the GABA system conducted in experimental models and observations made in patients with treatment-resistant epilepsy, as well as genetic abnormalities in the GABA system in refractory human epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Audenaert D, Schwartz E, Claeys KG, Claes L, Deprez L, Suls A. et al. Combined effect of bumetanide, bromide, and GABAergic agonists: an alternative treatment for intractable seizures. Epilepsy Behav. 2011;20:147–9.

    PubMed  Google Scholar 

  • Arellano JI, Muñoz A, Ballesteros-Yañez I, Sola RG, DeFelipe J. Histopathology and reorganization of chandelier cells in the human epileptic sclerotic hippocampus. Brain. 2004;127:45–64.

    PubMed  CAS  Google Scholar 

  • Audenaert D, Schwartz E, Claeys KG, et al. A novel GABRG2 mutation associated with febrile seizures. Neurology. 2006;67:687–90.

    PubMed  CAS  Google Scholar 

  • Belhage B, Hansen GH, Schousboe A. Depolarization by K + and glutamate activates different neurotransmitter release mechanisms in GABAergic neurons: vesicular versus non-vesicular release of GABA. Neuroscience. 1993;54:1019–34.

    PubMed  CAS  Google Scholar 

  • Ben-Ari Y, Giarsa JL, Tyzio R, Khazipov R. GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations. Physiol Rev. 2007;87:1215–84.

    PubMed  CAS  Google Scholar 

  • Ben-Ari Y, Khalilov I, Kahle KT, Cherubini E. The GABA excitatory/inhibitory shift in brain maturation and neurological disorders. Neuroscientist. 2012;18(5):467–86.

    PubMed  Google Scholar 

  • Benarroch E. GABAB receptors structure, functions, and clinical implications. Neurology. 2012;78:578–82.

    PubMed  CAS  Google Scholar 

  • Blaesse P, Airaksinen MS, Rivera C, Kaila K. Cation-chloride cotransporters and neuronal function. Neuron. 2009;61:820–38.

    PubMed  CAS  Google Scholar 

  • Bormann J. Electrophysiology of GABAA and GABAB receptor subtypes. Trends Neurosci. 1988;11:112–6.

    PubMed  CAS  Google Scholar 

  • Bormann J, Feigenspan A. GABAC receptors. Trends Neurosci. 1995;18:515–9.

    PubMed  CAS  Google Scholar 

  • Bowery NG. GABAB receptors and their significance in mammalian pharmacology. Trends Pharmacol Sci. 1989;10:401–7.

    PubMed  CAS  Google Scholar 

  • Bragin DE, Sanderson JL, Peterson S, Connor JA, Müller WS. Development of epileptiform excitability in the deep entorhinal cortex after status epilepticus. Eur J Neurosci. 2009;30(4):611–24.

    PubMed  Google Scholar 

  • Briggs SW, Galanopoulou AS. Altered GABA signaling in early life epilepsies. Neural Plast. 2011;2011:527605.

    PubMed  Google Scholar 

  • Brooks-Kayal AR, Shumate MD, Jin H, Rikhter TY, Coulter DA. Selective changes in single cell GABA(A) receptor subunit expression and function in temporal lobe epilepsy. Nat Med. 1998;4:1166–72.

    PubMed  CAS  Google Scholar 

  • Buró D, Kamatchi G. GABAA receptor subtypes: from pharmacology to molecular biology. FASEB J. 1991;5:2916–23.

    Google Scholar 

  • Cancedda L, Fiumelli H, Chen K, Poo MM. Excitatory GABA action is essential for morphological maturation of cortical neurons in vivo. J Neurosci. 2007;27:5224–35.

    PubMed  CAS  Google Scholar 

  • Cohen I, Navarro V, Clemenceau S, Baulac M, Miles R. On the origin of interictal activity in human temporal lobe epilepsy in vitro. Science. 2002;298:1418–21.

    PubMed  CAS  Google Scholar 

  • Cossett P, Liu L, Brisebois K,Dong H, Lortie A, Vannase M, et al. Mutation of GABRA1 in an autosomal dominant form of juvenile myoclonic epilepsy. Nat Genet. 2002;31:184–9.

    PubMed  CAS  Google Scholar 

  • Crino PB, Duhaime AC, Baltuch G, White R. Differential expression of glutamate and GABA-A receptor subunit mRNA in cortical dysplasia. Neurology. 2001;56:906–13.

    PubMed  CAS  Google Scholar 

  • Dibbens LM, Feng HJ, Richards MC,Harkin LA,Hudqson BL, Scott D, et al. GABRD encoding a protein for extra- or peri-synaptic GABA-A receptors is a susceptibility locus for generalized epilepsies. Hum Mol Genet. 2004;13:1315–9.

    PubMed  CAS  Google Scholar 

  • Ding L, Feng HJ, Macdonald RL, Botzolakis EJ, Hu N, Gallagher MJ. GABA(A) receptor alpha−1 subunit mutation A322D associated with autosomal dominant juvenile myoclonic epilepsy reduces the expression and alters the composition of wild type GABA(A) receptors. J Biol Chem. 2010;285:26390–405.

    PubMed  CAS  Google Scholar 

  • Dzhala VI, Talos DM, Sdrulla DA, Brumback AC, Mathews GC, Benke TA, et al. NKCC1 transporter facilitates seizures in the developing brain. Nat Med. 2005;11:1205–13.

    PubMed  CAS  Google Scholar 

  • Enz R, Cutting GR. Molecular composition of GABAC receptors. Vision Res. 1998;38:1431–41.

    PubMed  CAS  Google Scholar 

  • Enz R, Cutting GR. GABAC receptor r subunits are heterogeneously expressed in the human CNS and form homo- and heterooligomers with distinct properties. Eur J Neurosci. 1999;11:41–50.

    PubMed  CAS  Google Scholar 

  • Escalante-Santiago E, Feria-Romero I, Rocha L, Alonso M, Villeda J, Ureña-Guerrero ME, Munguia J, Nicolini-Sánchez H, Velasco AL, Chávez L, Orozco-Suárez S (in press) Changes in the expression of mRNA and protein of the GABA system in pharmacoresistant temporal lobe epilepsy Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, 2010

    Google Scholar 

  • Farrant M, Nusser Z. Variations on an inhibitory theme: phasic and tonic activation of GABAA receptors. Nat Rev Neurosci. 2005;6:215–29.

    PubMed  CAS  Google Scholar 

  • Feigenspan A, Bormann J. GABA-gated Cl2 channels in the rat retina. Prog Retinal Eye Res. 1998;17:99–126.

    CAS  Google Scholar 

  • Feucht M, Fuchs K, Pichlbauer E, Hornik K, Scharfetter J, Goessler R, et al. Possible association between childhood absence epilepsy and the gene encoding GABRB3. Biol Psychiatry. 1999;46:997–1002.

    PubMed  CAS  Google Scholar 

  • Fritschy JM, Kiener T, Bouilleret V, Loup F. GABAergic neurons and GABAA-receptors in temporal lobe epilepsy. Neurochem Int. 1999;34:435–45.

    PubMed  CAS  Google Scholar 

  • Garrett KM, Duman RS, Saito N,Blume AJ, Vitek MP, Tallman JF, et al. Isolation of a cDNA clone for the alpha subunit of the human GABA-A receptor. Biochem Biophys Res Commun. 1988;156:1039–45.

    PubMed  CAS  Google Scholar 

  • Gerelsaikhan T, Turner RJ. Transmembrane topology of the secretory Na+-K+-2Cl cotransporter NKCC1 studied by in vitro translation. J Biol Chem. 2000;275:40471–7.

    PubMed  CAS  Google Scholar 

  • Gibbs III JW, Shumate M, Coulter D. Differential epilepsy-associated alterations in postsynaptic GABAA receptor function in dentate granule and CA1 neurons. J Neurophysiol. 1997;77: 1924–38.

    PubMed  CAS  Google Scholar 

  • Glykys J, Mody I. Hippocampal network hyperactivity after selective reduction of tonic inhibition in GABA A receptor alpha5 subunit-deficient mice. J Neurophysiol. 2006;95:2796–807.

    PubMed  CAS  Google Scholar 

  • Glykys J, Dzhala VI, Kuchibhotla KV, Feng G, Kuner T, Augustine G, et al. Differences in cortical versus subcortical GABAergic signaling a candidate mechanism of electroclinical uncoupling of neonatal seizures. Neuron. 2009;63:657–72.

    PubMed  CAS  Google Scholar 

  • Gulyas AI, Sik A, Payne JA, Kaila K, Freund TF. The KCI cotransporter, KCC2, is highly expressed in the vicinity of excitatory synapses in the rat hippocampus. Eur J Neurosci. 2001;13:2205–17.

    PubMed  CAS  Google Scholar 

  • Harkin LA, Bowser DN, Dibbens LM, Singh R., Phillips F, Wallace RH, et al. Truncation of the GABA-A-receptor gamma-2 subunit in a family with generalized epilepsy with febrile seizures plus. Am J Hum Genet. 2002;70:530–6.

    PubMed  CAS  Google Scholar 

  • Hertz L, Schousboe A. Primary cultures of GABAergic and glutamatergic neurons as model systems to study neurotransmitter functions. Differentiated cells. In: Vernadakis A, Privat A, Lauder JM, Timiras PS, Giacobini E, editors. Model systems of development and aging of the nervous system. Boston: Martinus Nijhoff Publishing; 1987.

    Google Scholar 

  • Hilton GD, Ndubuizu A, Nunez JL, McCarthy MM. Simultaneous glutamate and GABA(A) receptor agonist administration increases calbindin levels and prevents hippocampal damage induced by either agent alone in a model of perinatal brain injury. Brain Res Dev Brain Res. 2005;159: 99–111.

    PubMed  CAS  Google Scholar 

  • Houser CR, Esclapez M. Downregulation of the α5 subunit of the GABAA receptor in the ­pilocarpine model of temporal lobe epilepsy. Hippocampus. 2003;13:633–45.

    PubMed  CAS  Google Scholar 

  • Iversen LL, Kelly JS. Uptake and metabolism of gamma-aminobutyric acid by neurones and glial cells. Biochem Pharmacol. 1975;24:933–8.

    PubMed  CAS  Google Scholar 

  • Jacob TC, Moss SJ, Jurd R. GABA(A) receptor trafficking and its role in the dynamic modulation of neuronal inhibition. Nat Rev Neurosci. 2008;9:331–43.

    PubMed  CAS  Google Scholar 

  • Jensen FE. Neonatal seizures: an update on mechanisms and management. Clin Perinatol. 2009;36:881–900.

    PubMed  Google Scholar 

  • Johnston GA. GABAC receptors: relatively simple transmitter gated ion channels? Trends Pharmacol Sci. 1996;17:319–23.

    PubMed  CAS  Google Scholar 

  • Joshi S, Rajasekaran, K Kapur J (2011) GABAergic transmission in temporal lobe epilepsy: The role of neurosteroids. Exp Neurol

    Google Scholar 

  • Kahle KT, Staley KJ. Cation-chloride cotransporters as pharmacological targets in the treatment of epilepsy. In: Alvarez-Leefmans F, Delpire E, editors. Physiology and pathology of chloride transporters and channels in the nervous system. New York: Academic; 2009.

    Google Scholar 

  • Kananura C, Haug K, Sander T, Runge u, Gu W, Hallmann K, et al. A splice-site mutation in GABRG2 associated with childhood absence epilepsy and febrile convulsions. Arch Neurol. 2002;59:1137–41.

    PubMed  Google Scholar 

  • Kang JQ, Shen W, Macdonald RL. Why does fever trigger febrile seizures? GABAA receptor gamma2 subunit mutations associated with idiopathic generalized epilepsies have temperature-­dependent trafficking deficiencies. J Neurosci. 2006;6:2590–7.

    Google Scholar 

  • Kaupmann K, Malitschek B, Schuler V. GABA(B)-receptor subtypes assemble into functional heteromeric complexes. Nature. 1998;396:683–7.

    PubMed  CAS  Google Scholar 

  • Kaupmann K, Cryan JF, Wellendorph P, Mombereau C, Sansig G, Klebs K, et al. Specific gamma-hydroxybutyrate-binding sites but loss of pharmacological effects of gamma-hydroxybutyrate in GABA(B)(1)- deficient mice. Eur J Neurosci. 2003;18:2722–30.

    PubMed  Google Scholar 

  • Klitgaard H, Matagne A, Grimee R, Vanneste-Goemaere J, Margineanu DG. Electrophysiological, neurochemical and regional effects of levetiracetam in the rat pilocarpine model of temporal lobe epilepsy. Seizure. 2003;12:92–100.

    PubMed  Google Scholar 

  • Korpi ER, Gründer G, Lüddens H. Drug interactions at GABAA receptors. Prog Neurobiol. 2002;67:113–59.

    PubMed  CAS  Google Scholar 

  • Lambert JJ, Belelli D, Peden DR, Vardy AW, Peters JA. Neurosteroid modulation of GABAA receptors. Prog Neurobiol. 2003;71:67–80.

    PubMed  CAS  Google Scholar 

  • Laschet JJ, Kurcewicz I, Minier F, Trottier S, Khallov-Laschet J, Louvel J.et al. Dysfunction of GABAA receptor glycolysis-dependent modulation in human partial epilepsy. Proc Natl Acad Sci U S A. 2007;104:3472–7.

    PubMed  CAS  Google Scholar 

  • Lee TS, Bjørnsen LP, Paz C, Kim JH, Spencer SS, Spencer DD, et al. GAT1 and GAT3 expression are differently localized in the human epileptogenic hippocampus. Acta Neuropathol. 2006;111:351e363.

    Google Scholar 

  • Leidenheimer NJ. Regulation of excitation by GABA(A) receptor internalization. Results Probl Cell Differ. 2008;44:1–28.

    PubMed  CAS  Google Scholar 

  • Lenzen KP, Heils A, Lorenz S,Hempelman A, Sander T. Association analysis of the arg220-to-his variation of the human gene encoding the GABA delta subunit with idiopathic generalized epilepsy. Epilepsy Res. 2005;65:53–7.

    PubMed  CAS  Google Scholar 

  • Li RW, Yu W, Christie S, Miralles CP, Bai J, Loturco JJ, et al. Disruption of postsynaptic GABA receptor clusters leads to decreased GABAergic innervation of pyramidal neurons. J Neurochem. 2005;95:756–70.

    PubMed  CAS  Google Scholar 

  • Löscher W, Potchka H. Drug resistance in brain diseases and the role of drug efflux transporters. Nat Rev Neurosci. 2005;6(8):591–602.

    PubMed  Google Scholar 

  • Löscher W, Schmidt D. New horizons in the development of antiepileptic drugs: the search for new targets. Epilepsy Res. 2001;60:77–159.

    Google Scholar 

  • Löscher W, Puskarjov, M, Kaila K (2012) Cation-chloride cotransporters NKCC1 and KCC2 as potential targets for novel antiepileptic and antiepileptogenic treatments. Neuropharmacology. 2012; http://dx.doi.org/10.1016/j.neuropharmacol.2012.05.045

  • Lü JJ, Zhang YH, Pan H, Chen YC, Liu XY, Jiang YW, et al. Case-control study and transmission/disequilibrium tests of the genes encoding GABRA5 and GABRB3 in a Chinese population affected by childhood absence epilepsy. Chin Med J (Engl). 2004;117:1497–14501.

    Google Scholar 

  • Lund IV, Hu Y, Raol YH, Benham RS, Faris R, Russek SJ, et al. BDNF selectively regulates GABAA receptor transcription by activation of the JAK/STAT pathway. Sci Signal. 2008;1(41):ra9.

    PubMed  Google Scholar 

  • Maa E, Bainbridge J, Spitz MC, Staley KJ. Oral bumetanide add-on therapy in refractory temporal lobe epilepsy. Epilepsia. 2007;48(Suppl. 6) [abstract # 3.222]

    Google Scholar 

  • Macdonald RL, Kang JQ, Gallagher MJ. Mutations in GABAA receptor subunits associated with genetic epilepsies. J Physiol. 2010;588:1861–9.

    PubMed  CAS  Google Scholar 

  • Maljevic S, Krampfl K, Cobilanschi J, Filgen N, Beyer S. Weber YG, et al. A mutation in the GABA-A receptor alpha-1-subunit is associated with absence epilepsy. Ann Neurol. 2006;59:983–7.

    PubMed  CAS  Google Scholar 

  • Manent JB, Jorquera I, Ben Ari Y, Aniksztejn L, Represa A. Glutamate acting on AMPA but not NMDA receptors modulates the migration of hippocampal interneurons. J Neurosci. 2006;26:5901–9.

    PubMed  CAS  Google Scholar 

  • Marshall FH, Jones KA, Kaupmann K, Bettler B. GABAB receptors—the first 7TM heterodimers. Trends Pharmacol Sci. 1999;20:396–9.

    PubMed  CAS  Google Scholar 

  • Mathern GW, Mendoza D, Lozada A, Pretorius JK, Danbolt NV, Nelson N, et al. Hippocampal GABA and glutamate transporter immunoreactivity in patients with temporal lobe epilepsy. Neurology. 1999;52:453e–72e.

    Google Scholar 

  • Mathern GW, Adelson PD, Cahan LD, Leite JP. Hippocampal neuron damage in human epilepsy. Meyer’s hypothesis revisited. Prog Brain Res. 2002;135:237–51.

    PubMed  Google Scholar 

  • McGeer PL, McGeer EG. Amino acid neurotransmitters. In: Siegel GJ, Agranoff BW, Albers RW, Molinoff PB, editors. Basic neurochemistry: molecular, cellular and medical aspects. 4th ed. New York: Raven; 1989.

    Google Scholar 

  • Mercado A, Mount DB, Gamba G. Electroneutral cation-chloride cotransporters in the central nervous system. Neurochem Res. 2004;29:17–25.

    PubMed  CAS  Google Scholar 

  • Mihalek RM, Banerjee PK, Korpi ER, et al. Attenuated sensitivity to neuroactive steroids in gamma-aminobutyrate type A receptor delta subunit knockout mice. Proc Natl Acad Sci U S A. 1999;96:12905–10.

    PubMed  CAS  Google Scholar 

  • Mihalek RM, Bowers BJ, Wehner JM, Kralic JE, VanDoren MJ, Morrow AL. Homanics GE.GABA(A)-receptor delta subunit knockout mice have multiple defects in behavioral responses to ethanol. Alcohol Clin Exp Res. 2001;25:1708–18.

    PubMed  CAS  Google Scholar 

  • Muñoz A, Mendez P, DeFelipe J, Alvarez-Leefmans FJ. Cation-chloride cotransporters and GABA-ergic innervation in the human epileptic hippocampus. Epilepsia. 2007;48:663–73.

    PubMed  Google Scholar 

  • Nishimura T, Schwarzer C, Gasser E, Kato N, Vezzani A, Sperk G. Altered expression of GABA(A) and GABA(B) receptor subunit mRNAs in the hippocampus after kindling and electrically induced status epilepticus. Neuroscience. 2005;134:691–704.

    PubMed  CAS  Google Scholar 

  • Ogris W, Poltl A, Hauer B, Ernst M, Oberto A, Wulff P, et al. Affinity of various benzodiazepine site ligands in mice with a point mutation in the GABAA receptor γ2 subunit. Biochem Pharmacol. 2004;68:1621–9.

    PubMed  CAS  Google Scholar 

  • Olsen RW, Sieghart W. International Union of Pharmacology. LXX. Subtypes of gamma-­aminobutyric acid (A) receptors: classification on the basis of subunit composition, pharmacology, and function. Update. Pharmacol Rev. 2008;60:243–60.

    PubMed  CAS  Google Scholar 

  • Pavlov I, Savtchenko LP, Kullmann DM, Semyanov A, Walker MC. Outwardly rectifying tonically active GABAA receptors in pyramidal cells modulate neuronal offset, not gain. J Neurosci. 2009;29:15341–50.

    PubMed  CAS  Google Scholar 

  • Payne JA, Stevenson TJ, Donaldson LF. Molecular characterization of a putative K-Cl cotransporter in rat brain. A neuronal-specific isoform. J Biol Chem. 1996;271:16245–52.

    PubMed  CAS  Google Scholar 

  • Peng Z, Huang CS, Stell BM, Mody I, Houser CR. Altered expression of the d subunit of the GABAA receptor in a mouse model of temporal lobe epilepsy. J Neurosci. 2004;24:8629–39.

    PubMed  CAS  Google Scholar 

  • Pirker S, Schwarzer C, Czech T, Baungartner C, Pockberg H, Maier H et al. Increased expression of GABAA receptor β-subunits in the hippocampus of patients with temporal lobe epilepsy. J Neuropathol Exp Neurol. 2003;62:820–34.

    PubMed  CAS  Google Scholar 

  • Remy S, Beck H. Molecular and cellular mechanisms of pharmacoresistance in epilepsy. Brain. 2006;129:18–35.

    PubMed  Google Scholar 

  • Rivera C, Voipio J, Payne JA, Rusuvuori E, Lahtinen H, Lamsa K, et al. The K+/Cl co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature. 1999;397:251–5.

    PubMed  CAS  Google Scholar 

  • Rivera C, Li H, Thomas-Crusells J, Lahtinen H,Viitanen T, Nanobashuili A, et al. BDNF-induced TrkB activation down-regulates the K+-Cl+ cotransporter KCC2 and impairs neuronal Cl extrusion. J Cell Biol. 2002;159:747–52.

    PubMed  CAS  Google Scholar 

  • Rogawski MA, Löscher W. The neurobiology of antiepileptic drugs. Nat Rev Neurosci. 2004;5:553–64.

    PubMed  CAS  Google Scholar 

  • Schmidt D, Löscher W. Drug resistance in epilepsy: putative neurobiologic and clinical mechanisms. Epilepsia. 2005;46(6):858–77.

    PubMed  CAS  Google Scholar 

  • Schousboe A, Larsson OM, Wood JD, Krogsgaard-Larsen P. Transport and metabolism of gamma-­aminobutyric acid in neurons and glia: implications for epilepsy. Epilepsia. 1983;24:531–8.

    PubMed  CAS  Google Scholar 

  • Schwarzer C, Tsunashima K, Wanzenböck C, Fuchs K, Sieghart W, Sperk G. GABAA receptor subunits in the rat hippocampus II: altered distribution in kainic acid-induced temporal lobe epilepsy. Neuroscience. 1997;80:1001–17.

    PubMed  CAS  Google Scholar 

  • Scimemi A, Semyanov A, Sperk G, Kullmann DM, Walker MC. Multiple and plastic receptors mediate tonic GABAA receptor currents in the hippocampus. J Neurosci. 2005;25:10016–24.

    PubMed  CAS  Google Scholar 

  • Sommer B, Poustka A, Spurr NK, Seeburg PH, et al. The murine GABAA receptor delta-subunit gene: structure and assignment to human chromosome 1. DNA Cell Biol. 1990;9:561–8.

    PubMed  CAS  Google Scholar 

  • Sperk G, Drexel M, Pirker S. Neuronal plasticity in animal models and the epileptic human hippocampus. Epilepsia. 2009;50:29–31.

    PubMed  Google Scholar 

  • Stell BM, Brickley SG, Tang CY, Farrant M, Mody I. Neuroactive steroids reduce neuronal excitability by selectively enhancing tonic inhibition mediated by delta subunit-containing GABAA receptors. Proc Natl Acad Sci U S A. 2003;100:14439–44.

    PubMed  CAS  Google Scholar 

  • Tanaka M, Olsen RW, Medina MT, Schwartz E, Alonso ME, Duron RM, et al. Hyperglycosylation and reduced GABA currents of mutated GABRB3 polypeptide in remitting childhood absence epilepsy. Am J Hum Genet. 2008;82:1249–61.

    PubMed  CAS  Google Scholar 

  • Tapia R. Biochemical pharmacology of GABA in CNS. In: Iversen LL, Iversen SD, Snyder SH, editors. Handbook of psychopharmacology. New York: Plenum Publishing Corporation; 1975.

    Google Scholar 

  • Tapia R, Pasantes H. Relationships between pyridoxal phosphate availability, activity of vitamin B 6 -dependent enzymes and convulsions. Brain Res. 1971;29:111–22.

    PubMed  CAS  Google Scholar 

  • Ulrich D, Bettler B. GABA(B) receptors: synaptic functions and mechanisms of diversity. Curr Opin Neurobiol. 2007;17:298–303.

    PubMed  CAS  Google Scholar 

  • Urak L, Feucht M, Fathi N, Hornik K, Fuchs K, et al. A GABRB3 promoter haplotype associated with childhood absence epilepsy impairs transcriptional activity. Hum Mol Genet. 2006;15:2533–41.

    PubMed  CAS  Google Scholar 

  • Wagstaff J, Chaillet JR, Lalande M. The GABAA receptor beta 3 subunit gene: characterization of a human cDNA from chromosome 15q11q13 and mapping to a region of conserved synteny on mouse chromosome 7. Genomics. 1991;11:1071–8.

    PubMed  CAS  Google Scholar 

  • Wallace RH, Marini C, Petrou S, Harkin LA, Bowser DN, Panchai RG, et al. Mutant GABA(A) receptor gamma-2-subunit in childhood absence epilepsy and febrile seizures. Nat Genet. 2001;28:49–52.

    PubMed  CAS  Google Scholar 

  • Walls AB, Nilsen LH, Eyjolfsson EM, et al. GAD65 is essential for synthesis of GABA destined for tonic inhibition regulating epileptiform activity. J Neurochem. 2010;115:1398–408.

    PubMed  CAS  Google Scholar 

  • Walls AB, Eyjolfsson EM, Smeland OB,Vestergaard HT, Hansen SL, Schousboe, et al. Knockout of GAD65 has major impact on synaptic GABA synthesized from astrocyte-derived glutamine. J Cereb Blood Flow Metab. 2011;31:494–503.

    PubMed  CAS  Google Scholar 

  • Wang XJ, Buzsaki G. Gamma oscillation by synaptic inhibition in hippocampal interneuronal network model. J Neurosci. 1996;16:6402–13.

    PubMed  CAS  Google Scholar 

  • Wang DD, Kriegstein AR. Blocking early GABA depolarization with bumetanide results in permanent alterations in cortical circuits and sensorimotor gating deficits. Cereb Cortex. 2010;21:574–87.

    PubMed  Google Scholar 

  • Wang X, Sun W, Zhu X, Li L, Wu X, Lin H, et al. Association between the gamma-aminobutyric acid type B receptor 1 and 2 gene polymorphisms and mesial temporal lobe epilepsy in a Han Chinese population. Epilepsy Res. 2008;81:198–203.

    PubMed  CAS  Google Scholar 

  • Watanabe M, Maemura K, Kanbara K, Tamayama T, Hayasaki H. GABA and GABA receptors in the central nervous system and other organs. In: Jeon KW, editor. A survey of cell biology. San Diego, CA: Academic; 2002.

    Google Scholar 

  • Wieland HA, Luddens H, Seeburg PH. A single histidine in GABAA receptors is essential for benzodiazepine agonist binding. J Biol Chem. 1992;267:1426–9.

    PubMed  CAS  Google Scholar 

  • Wilcox AS, Warrington JA, Gardiner K, et al. Human chromosomal localization of genes encoding the gamma 1 and gamma 2 subunits of the gamma-aminobutyric acid receptor indicates that members of this gene family are often clustered in the genome. Proc Natl Acad Sci U S A. 1992;89:5857–61.

    PubMed  CAS  Google Scholar 

  • Wohlfarth KM, Bianchi MT, Macdonald RL. Enhanced neurosteroid potentiation of ternary GABAA receptors containing the δ subunit. J Neurosci. 2002;22:1541–9.

    PubMed  CAS  Google Scholar 

  • Zhan RZ, Nadler JV. Enhanced tonic GABA current in normotopic and hilar ectopic dentate granule cells after pilocarpine-induced status epilepticus. J Neurophysiol. 2009;102:670–81.

    PubMed  CAS  Google Scholar 

  • Zhang N, Wei W, Mody I, Houser CR. Altered localization of GABAA receptor subunits on dentate granule cell dendrites influences tonic and phasic inhibition in a mouse model of epilepsy. J Neurosci. 2007;27:7520–31.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Research in Health Found, FIS/IMSS/PROT/548 grant and National Council for Sciences and Technology of Mexico (Grant 98386). We thank Dr. Erika Brust-Mascher for English improvement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Orozco-Suárez Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Orozco-Suárez, S. et al. (2013). Abnormalities of GABA System and Human Pharmacoresistant Epilepsy. In: Rocha, L., Cavalheiro, E. (eds) Pharmacoresistance in Epilepsy. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6464-8_9

Download citation

Publish with us

Policies and ethics