Skip to main content

Induction and Patterning in the Telencephalon

  • Living reference work entry
  • First Online:
Neuroscience in the 21st Century
  • 112 Accesses

Abstract

Sitting at the front of the central nervous system (CNS), the telencephalon gives rise to many brain regions including the cerebral cortex – the seat of cognition, consciousness, and mind that uniquely defines us as human beings. For this reason, the telencephalon has long fascinated neuroscientists and the public alike. Given its special and complex functions, as well as some developmental oddities, the telencephalon was thought to play by its own developmental rules. On the other hand, organisms evolve by reusing and modifying preexisting developmental mechanisms rather than creating new ones from scratch. This led to a conundrum – does the developing telencephalon use shared rules, unique ones, or both? As it turns out, both shared and unique rules apply to the developing telencephalon. In this chapter, we go over these rules, with special attention paid to the developing cerebral cortex in an evolutionary context. Collectively, the rules of telencephalic development have allowed the cortex to grow in size and complexity, thereby expanding the cognitive capacity and abilities of this most remarkable of organs over evolutionary time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Bayer SA, Altman J (2008) The human brain during the early first trimester. In: Bayer SA, Altman J (eds) Atlas of the human central nervous system development, vol 5. CRC Press, Boca Raton. ISBN 978-1420068009

    Google Scholar 

  • Boveri T (1901) Uber die Polaritat des Seeigeleies. Verk Phys-med Ges Wurzburg, N.F. 3134:145–70

    Google Scholar 

  • Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grun des Zellenbaues

    Google Scholar 

  • Chen C-H et al (2011) Genetic influences on cortical regionalization in the human brain. Neuron 72:537–544

    Article  CAS  Google Scholar 

  • Garcia KE, Kroenke CD, Bayly PV (2018) Mechanics of cortical folding: stress, growth and stability. Philos Trans R Soc B Biol Sci 373:20170321

    Article  Google Scholar 

  • Garcia-Bellido A (1975) Genetic control of wing disc development in Drosophila. Ciba Found Symp 0(29):161–82

    Google Scholar 

  • Grove EA (2020) Area patterning of the mammalian neocortex. In: Rakic P, Rubenstein J (eds) Patterning and cell type specification in the developing CNS and PNS, 2nd edn. Elsevier, Oxford, UK. ISBN 978-0-12-814405-3, pp 49–68

    Chapter  Google Scholar 

  • Grove EA, Monuki ES (2020) Morphogens, patterning centers, and their mechanisms of action. In: Rakic P, Rubenstein J (eds) Patterning and cell type specification in the developing CNS and PNS, 2nd edn. Elsevier, Oxford, UK, pp 3–21. ISBN 978-0-12-814405-3

    Chapter  Google Scholar 

  • Medina L (2009) Evolution and embryological development of forebrain. In: Binder MD, Hirokawa N, Windhorst U (eds) Encyclopedia of neuroscience. Springer, Berlin/Heidelberg. ISBN 978-3-540-35857-2

    Google Scholar 

  • Monuki ES (2007) The morphogen signaling network in forebrain development and holoprosencephaly. J Neuropathol Exp Neurol 66:566–575

    Article  Google Scholar 

  • Morgan TH (1901) Regeneration and Liability to Injury. Science 14:235–248

    Google Scholar 

  • O’Leary DD (1989) Do cortical areas emerge from a protocortex? Trends Neurosci 12:400–6

    Google Scholar 

  • Puelles L, Harrison M, Paxinos G, Watson C (2013) A developmental ontology for the mammalian brain based on the prosomeric model. Trends Neurosci 36:570–578

    Article  CAS  Google Scholar 

  • Rakic P (1988) Specification of cerebral cortical areas. Science 241:170–6

    Google Scholar 

  • Rubenstein JL, Martinez S, Shimamura K, Puelles L (1994) The embryonic vertebrate forebrain: the prosomeric model. Science 266:578–80

    Google Scholar 

  • Smart IHM, Dehay C, Giroud P, Berland M, Kennedy H (2002) Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. Cereb Cortex 12:37–53

    Article  Google Scholar 

  • Spemann H, Mangold H (1924) Uber Induktion von Embryoanlagen durch Implantation artfremder Organ-isatoren. Wilhelm Roux’ Arch Dev Biol 100:599–638

    Google Scholar 

  • Srinivasan S, Hu JS, Currle DS, Fung ES, Hayes WB, Lander AS, Monuki ES (2014) A BMP-FGF morphogen toggle switch drives the ultrasensitive expression of multiple genes in the developing forebrain. PLoS Comp Biol 10:e1003463

    Article  Google Scholar 

  • Striedter GF, Srinivasan S, Monuki ES (2015) Cortical folding: when, where, how, and why? Annu Rev Neurosci 38:291–307. PMID: 25897870

    Article  CAS  Google Scholar 

  • Tole S, Hebert J (2020) Telencephalon patterning. In: Rakic P, Rubenstein J (eds) Patterning and cell type specification in the developing CNS and PNS, 2nd edn. Elsevier, Oxford, UK. ISBN 978-0-12-814405-3, pp 23–48

    Chapter  Google Scholar 

  • Turing A (1952) The chemical basis of morphogenesis. Philos Trans R Soc Lond B 327:37–72

    Google Scholar 

  • Wolpert L (1969) Positional information and the spatial pattern of cellular differentiation. J Theor Biol 25:1–47

    Google Scholar 

  • Wonders CP, Anderson SA (2006) The origin and specification of cortical interneurons. Nat Rev Neurosci 7:687–696

    Article  CAS  Google Scholar 

  • Zilles K, Amunts K (2010) Centenary of Brodmann’s map – conception and fate. Nat Rev Neurosci 11:139–145

    Article  CAS  Google Scholar 

  • Zilles K, Palomero-Gallagher N, Amunts K (2015) Myeloarchitecture and maps of the cerebral cortex. In: Toga AW (ed) Brain mapping: an encyclopedic reference. Elsevier, San Diego, pp 137–156

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwin S. Monuki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Monuki, E.S. (2022). Induction and Patterning in the Telencephalon. In: Pfaff, D.W., Volkow, N.D., Rubenstein, J. (eds) Neuroscience in the 21st Century. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6434-1_180-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6434-1_180-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6434-1

  • Online ISBN: 978-1-4614-6434-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics