Skip to main content

Statistical Models of Spike Train Data

  • Living reference work entry
  • First Online:
Neuroscience in the 21st Century
  • 325 Accesses

Abstract

Although it is well understood that neural systems receive, transmit, and process information about the outside world through synchronized spiking activity, many analyses of spike trains ignore the fundamental statistical structure in this data. Spikes are localized events in time that can carry information based on their frequency, their precise timing, their rhythmic dynamics, or their coordination across a neural population. For this reason, spike train data often violates the assumptions underlying classical statistical methods. The theory of point processes offers a unified, principled approach to modeling the firing properties of spiking neural systems, and assessing goodness-of-fit between a neural model and observed spiking data. In this article, we will summarize some important aspects of this theory and show how point process methods are used to model spiking data from individual neurons and neural populations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Barbieri R, Quirk MC, Frank LM, Wilson MA, Brown EN (2001) Construction and analysis of non-poisson stimulus response models of neural spike train activity. J Neurosci Methods 105:25–37

    Article  CAS  PubMed  Google Scholar 

  • Barbieri R, Wilson M, Frank LM, Brown EN (2005) An analysis of hippocampal spatio-temporal representations using a Bayesian algorithm for neural spike train decoding. IEEE Trans Neural Syst Rehabil Eng 13(2):131–136

    Article  PubMed  Google Scholar 

  • Brillinger DR (1988) Maximum likelihood analysis of spike trains of interacting nerve cells. Biol Cybern 59:189–200

    Article  CAS  PubMed  Google Scholar 

  • Brown EN, Frank LM, Tang D, Quirk MC, Wilson MA (1998) A statistical paradigm for neural spike train decoding applied to position prediction from ensemble firing patterns of rat hippocampal place cells. J Neurosci 18(18):7411–7425

    CAS  PubMed  Google Scholar 

  • Brown EN, Barbieri R, Ventura V, Kass RE, Frank LM (2002) The time-rescaling theorem and its application to neural spike train data analysis. Neural Comput 14:325–246

    Article  PubMed  Google Scholar 

  • Brown EN, Barbieri R, Eden UT, Frank LM (2003) Likelihood methods for neural data analysis. In: Feng J (ed) Computational neuroscience: a comprehensive approach. CRC, London, pp 253–286, Chapter 9

    Google Scholar 

  • Brown EN, Kass RE, Mitra PP (2004) Multiple neural spike train data analysis: state-of-the-art and future challenges. Nat Neurosci 7(5):456–461

    Article  CAS  PubMed  Google Scholar 

  • Buzsaki G, Leung LS, Vanderwolf CH (1983) Cellular bases of hippocampal EEG in the behaving rat. Brain Res Rev 6(2):139–171

    Article  Google Scholar 

  • Chornoboy ES, Schramm LP, Karr AF (1988) Maximum likelihood identification of neural point process systems. Biol Cybern 59:265–275

    Article  CAS  PubMed  Google Scholar 

  • Daley DJ, Vere-Jones D (2003) An introduction to the theory of point processes, 2nd edn. Springer, New York

    Google Scholar 

  • Frank LM, Eden UT, Solo V, Wilson MA, Brown EN (2002) Contrasting patterns of receptive field plasticity in the hippocampus and the entorhinal cortex: an adaptive filtering approach. J Neurosci 22(9):3817–3830

    CAS  PubMed  Google Scholar 

  • Frank LM, Stanley GB, Brown EN (2004) Hippocampal plasticity across multiple days of exposure to novel environments. J Neurosci 24(35):7681–7689

    Article  CAS  PubMed  Google Scholar 

  • Georgopoulos AP, Schwartz AB, Kettner RE (1986) Neuronal population coding of movement direction. Science 233(4771):1416–1419

    Article  CAS  PubMed  Google Scholar 

  • Iyengar S, Liao Q (1997) Modeling neural activity using the generalized inverse gaussian distribution. Biological Cybernetics 77(4):289–295

    Article  CAS  PubMed  Google Scholar 

  • Johnson A, Kotz S (1970) Distributions in statistics: continuous univarite distributions. Wiley, New York

    Google Scholar 

  • Kaas JH, Hackett TA, Tramo MJ (1999) Auditory processing in primate cerebral cortex. Curr Opin Neurobiol 9(2):164–170

    Article  CAS  PubMed  Google Scholar 

  • Kass RE, Ventura V, Brown EN (2005) Statistical issues in the analysis of neuronal data. J Neurophys 94:8–25

    Article  Google Scholar 

  • Kass RE, Eden UT, Brown EN (2014) Analysis of Neural Data, Springer, New York

    Book  Google Scholar 

  • Mitra P, Bokil H (2007) Observed brain dynamics. Oxford University Press, New York

    Book  Google Scholar 

  • Moran DW, Schwartz AB (1999) Motor cortical representation of speed and direction during reaching. J Neurophysiol 82(5):2676–2692

    CAS  PubMed  Google Scholar 

  • O’Keefe J, Dostrovsky J (1971) The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res 34:171–175

    Article  PubMed  Google Scholar 

  • Ogata Y (1988) Statistical models for earthquake occurrences and residual analysis for point processes. J Am Stat Assoc 83:9–27

    Article  Google Scholar 

  • Okatan M, Wilson MA, Brown EN (2005) Analyzing functional connectivity using a network likelihood model of ensemble neural spiking activity. Neural Comput 17(9):1927–1961

    Article  PubMed  Google Scholar 

  • Papangelou F (1972) Integrability of expected increments of point processes and a related random change of scale. Trans Am Math Soc 165:483–506

    Article  Google Scholar 

  • Prerau MJ, Lipton PA, Eichenbaum HB, Eden UT (2014) Characterizing context−dependent differential firing activity in the hippocampus and entorhinal cortex. Hippocampus 24(4):476–492

    Article  PubMed  PubMed Central  Google Scholar 

  • Rieke F (1999) Spikes: exploring the neural code. MIT Press, Cambridge

    Google Scholar 

  • Snyder DL, Miller MI (1991) Random point processes in time and space. Springer, New York

    Book  Google Scholar 

  • Truccolo W, Eden UT, Fellows MR, Donoghue JP, Brown EN (2005) A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects. J Neurophysiol 93:107401089

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uri T. Eden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this entry

Cite this entry

Eden, U.T., Kass, R.E. (2016). Statistical Models of Spike Train Data. In: Pfaff, D., Volkow, N. (eds) Neuroscience in the 21st Century. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6434-1_167-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6434-1_167-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-6434-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics