Skip to main content

CO2 Capture Using Solid Sorbents

  • Living reference work entry
  • First Online:
Handbook of Climate Change Mitigation and Adaptation

Abstract

Global warming and climate change due to the emission of greenhouse gases, especially CO2, has become a widespread concern in the recent years. Capturing CO2 is one of the major approaches to tackle this issue. Among the currently available CO2 capture technologies, adsorption processes using solid sorbents capable of capturing CO2 have shown many advantages. In the past few years, many groups have been engaged in the development of new solid sorbents for CO2 capture with superior performance and desirable economics. The main purpose of this chapter is to provide a bridge between detailed technical reports and broad resource and economic assessments on CO2 capture using solid sorbents. The fundamental aspects of solid sorbents for CO2 capture are firstly discussed, which include both the selection and the evaluation of sorbents. The following characteristics of solid sorbents are covered: the equilibrium adsorption capacity, selectivity, adsorption/desorption kinetics, multicycle durability, mechanical properties, hydrothermal and chemical stability, and energy consumption of regeneration. Typical families of solid sorbents such as activated carbonaceous materials, polymeric materials, zeolites, silica, metal–organic frameworks (MOFs), and alkali-metal carbonate loaded with or without functionality for the adsorption of CO2 are then reviewed, respectively. In addition, a brief review on technical challenges and pilot plant developments are presented. Finally, a few recommendations are provided for further research efforts on CO2 capture with solid sorbents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alesi WR, Gray M, Kitchin JR (2010) CO2 adsorption on supported molecular amidine systems on activated carbon. Chemsuschem 3(8):948–956

    Article  Google Scholar 

  • An J, Rosi NL (2010) Tuning MOF CO2 adsorption properties via cation exchange. J Am Chem Soc 132(16):5578–5579

    Article  Google Scholar 

  • An J, Geib SJ, Rosi NL (2010) High and selective CO2 uptake in a cobalt adeninate metal-organic framework exhibiting pyrimidine- and amino-decorated pores. J Am Chem Soc 132(1):38–39

    Article  Google Scholar 

  • Aprea P, Caputo D, Gargiulo N, Iucolano F, Pepe F (2010) Modeling carbon dioxide adsorption on microporous substrates: comparison between Cu-BTC metal-organic framework and 13X zeolitic molecular sieve. J Chem Eng Data 55(9):3655–3661

    Article  Google Scholar 

  • Arenillas A, Smith KM, Drage TC, Snape CE (2005) CO2 capture using some fly ash-derived carbon materials. Fuel 84(17):2204–2210

    Article  Google Scholar 

  • Arstad B, Fjellvåg H, Kongshaug KO, Swang O, Blom R (2008a) Amine functionalised metal organic frameworks (MOFs) as adsorbents for carbon dioxide. Adsorption 14(6):755–762

    Article  Google Scholar 

  • Arstad B, Fjellvag H, Kongshaug KO, Swang O, Blom R (2008b) Amine functionalised metal organic frameworks (MOFs) as adsorbents for carbon dioxide. Adsorption J Int Adsorption Soc 14(6):755–762

    Article  Google Scholar 

  • Avrami M (1939) Kinetics of phase change I – general theory. J Chem Phys 7(12):1103–1112

    Article  Google Scholar 

  • Avrami M (1941) Granulation, phase change, and microstructure – kinetics of phase change. III. J Chem Phys 9(2):177–184

    Article  Google Scholar 

  • Bae YS, Farha OK, Hupp JT, Snurr RQ (2009) Enhancement of CO2/N-2 selectivity in a metal-organic framework by cavity modification. J Mater Chem 19(15):2131–2134

    Article  Google Scholar 

  • Bae YS, Spokoyny AM, Farha OK, Snurr RQ, Hupp JT, Mirkin CA (2010) Separation of gas mixtures using Co(II) carborane-based porous coordination polymers. Chem Commun 46(20):3478–3480

    Article  Google Scholar 

  • Banerjee R, Phan A, Wang B, Knobler C, Furukawa H, O’Keeffe M, Yaghi OM (2008) High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 319(5865):939–943

    Article  Google Scholar 

  • Banerjee R, Furukawa H, Britt D, Knobler C, O’Keeffe M, Yaghi OM (2009) Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. J Am Chem Soc 131(11):3875–3877

    Article  Google Scholar 

  • Belmabkhout Y, Sayari A (2010) Isothermal versus non-isothermal adsorption-desorption cycling of triamine-grafted pore-expanded MCM-41 mesoporous silica for CO2 capture from flue gas. Energy Fuel 24:5273–5280

    Article  Google Scholar 

  • Belmabkhout Y, Serna-Guerrero R, Sayari A (2010) Adsorption of CO2-containing gas mixtures over amine-bearing pore-expanded MCM-41 silica: application for gas purification. Ind Eng Chem Res 49(1):359–365

    Article  Google Scholar 

  • Benedict JB, Coppens P (2009) Kinetics of the single-crystal to single-crystal two-photon photodimerization of alpha-trans-cinnamic acid to alpha-truxillic acid. J Phys Chem A 113(13):3116–3120

    Article  Google Scholar 

  • Berger AH, Bhown AS (2011) Comparing physisorption and chemisorption solid sorbents for use separating CO2 from flue gas using temperature swing adsorption. 10th international conference on greenhouse gas control technologies, vol 4, pp 562–567

    Google Scholar 

  • Berlier K, Frere M (1996) Adsorption of CO2 on activated carbon: simultaneous determination of integral heat and isotherm of adsorption. J Chem Eng Data 41(5):1144–1148

    Article  Google Scholar 

  • Bloch ED, Britt D, Lee C, Doonan CJ, Uribe-Romo FJ, Furukawa H, Long JR, Yaghi OM (2010) Metal insertion in a microporous metal-organic framework lined with 2,2′-bipyridine. J Am Chem Soc 132(41):14382–14384

    Article  Google Scholar 

  • Bordiga S, Regli L, Bonino F, Groppo E, Lamberti C, Xiao B, Wheatley PS, Morris RE, Zecchina A (2007) Adsorption properties of HKUST-1 toward hydrogen and other small molecules monitored by IR. Phys Chem Chem Phys 9(21):2676–2685

    Article  Google Scholar 

  • Brandani F, Ruthven DM (2004) The effect of water on the adsorption of CO2 and C3H8 on type X zeolites. Ind Eng Chem Res 43(26):8339–8344

    Article  Google Scholar 

  • Burchell TD, Judkins RR, Rogers MR, Williams AM (1997) A novel process and material for the separation of carbon dioxide and hydrogen sulfide gas mixtures. Carbon 35(9):1279–1294

    Article  Google Scholar 

  • Caplow M (1968) Kinetics of carbamate formation and breakdown. J Am Chem Soc 90(24):6795–6803

    Article  Google Scholar 

  • Caskey SR, Wong-Foy AG, Matzger AJ (2008) Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. J Am Chem Soc 130(33):10870–10871

    Article  Google Scholar 

  • Cavka JH, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud KP (2008) A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J Am Chem Soc 130(42):13850–13851

    Article  Google Scholar 

  • Cestari AR, Vieira EFS, Vieira GS, Almeida LE (2006) The removal of anionic dyes from aqueous solutions in the presence of anionic surfactant using aminopropylsilica – a kinetic study. J Hazard Mater 138(1):133–141

    Article  Google Scholar 

  • Chaffee AL (2005) Molecular modeling of HMS hybrid materials for CO2 adsorption. Fuel Process Technol 86(14–15):1473–1486

    Article  Google Scholar 

  • Chaffee AL, Delaney SW, Knowles GP (2002) Hybrid mesoporous materials for carbon dioxide separation. Abstr Pap Am Chem Soc 223:U572–U573

    Google Scholar 

  • Chang ACC, Chuang SSC, Gray M, Soong Y (2003) In-situ infrared study of CO2 adsorption on SBA-15 grafted with gamma-(aminopropyl)triethoxysilane. Energy Fuel 17(2):468–473

    Article  Google Scholar 

  • Chen C, Yang ST, Ahn WS, Ryoo R (2009) Amine-impregnated silica monolith with a hierarchical pore structure: enhancement of CO2 capture capacity. Chem Commun 24:3627–3629

    Article  Google Scholar 

  • Cheng Y, Kondo A, Noguchi H, Kajiro H, Urita K, Ohba T, Kaneko K, Kanoh H (2009) Reversible structural change of Cu-MOF on exposure to water and its CO2 adsorptivity. Langmuir 25(8):4510–4513

    Article  Google Scholar 

  • Chew TL, Ahmad AL, Bhatia S (2010) Ordered mesoporous silica (OMS) as an adsorbent and membrane for separation of carbon dioxide (CO2). Adv Colloid Interface Sci 153(1–2):43–57

    Article  Google Scholar 

  • Choi S, Drese JH, Jones CW (2009) Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. Chemsuschem 2(9):796–854

    Article  Google Scholar 

  • Chue KT, Kim JN, Yoo YJ, Cho SH, Yang RT (1995) Comparison of activated carbon and zeolite 13x for Co2 recovery from flue-gas by pressure swing adsorption. Ind Eng Chem Res 34(2):591–598

    Article  Google Scholar 

  • Chui SSY, Lo SMF, Charmant JPH, Orpen AG, Williams ID (1999) A chemically functionalizable nanoporous material [Cu-3(TMA)(2)(H2O)(3)](n). Science 283(5405):1148–1150

    Article  Google Scholar 

  • Cinke M, Li J, Bauschlicher CW, Ricca A, Meyyappan M (2003) CO2 adsorption in single-walled carbon nanotubes. Chem Phys Lett 376(5–6):761–766

    Article  Google Scholar 

  • Coriani S, Halkier A, Rizzo A, Ruud K (2000) On the molecular electric quadrupole moment and the electric-field-gradient-induced birefringence of CO2 and CS2. Chem Phys Lett 326(3–4):269–276

    Article  Google Scholar 

  • Couck S, Denayer JFM, Baron GV, Remy T, Gascon J, Kapteijn F (2009) An amine-functionalized MIL-53 metal-organic framework with large separation power for CO2 and CH4. J Am Chem Soc 131(18):6326–6327

    Article  Google Scholar 

  • Crini G, Peindy HN, Gimbert F, Robert C (2007) Removal of CI basic green 4 (Malachite Green) from aqueous solutions by adsorption using cyclodextrin-based adsorbent: kinetic and equilibrium studies. Sep Purif Technol 53(1):97–110

    Article  Google Scholar 

  • Cychosz KA, Matzger AJ (2010) Water stability of microporous coordination polymers and the adsorption of pharmaceuticals from water. Langmuir 26(22):17198–17202

    Article  Google Scholar 

  • de Menezes EW, Lima EC, Royer B, de Souza FE, dos Santos BD, Gregorio JR, Costa TMH, Gushikem Y, Benvenutti EV (2012) Ionic silica based hybrid material containing the pyridinium group used as an adsorbent for textile dye. J Colloid Interface Sci 378:10–20

    Article  Google Scholar 

  • Demessence A, D’Alessandro DM, Foo ML, Long JR (2009) Strong CO2 binding in a water-stable, triazolate-bridged metal-organic framework functionalized with ethylenediamine. J Am Chem Soc 131(25):8784–8786

    Article  Google Scholar 

  • Deng H, Doonan CJ, Furukawa H, Ferreira RB, Towne J, Knobler CB, Wang B, Yaghi OM (2010) Multiple functional groups of varying ratios in metal-organic frameworks. Science 327(5967):846–850

    Article  Google Scholar 

  • Diaz E, Munoz E, Vega A, Ordonez S (2008) Enhancement of the CO2 retention capacity of Y zeolites by Na and Cs treatments: effect of adsorption temperature and water treatment. Ind Eng Chem Res 47(2):412–418

    Article  Google Scholar 

  • Dietzel PDC, Besikiotis V, Blom R (2009) Application of metal-organic frameworks with coordinatively unsaturated metal sites in storage and separation of methane and carbon dioxide. J Mater Chem 19(39):7362–7370

    Article  Google Scholar 

  • Dillon EP, Crouse CA, Barron AR (2008) Synthesis, characterization, and carbon dioxide adsorption of covalently attached polyethyleneimine-functionalized single-wall carbon nanotubes. ACS Nano 2(1):156–164

    Article  Google Scholar 

  • Do DD, Wang K (1998) A new model for the description of adsorption kinetics in heterogeneous activated carbon. Carbon 36(10):1539–1554

    Article  Google Scholar 

  • Donaldson TL, Nguyen YN (1980) Carbon-dioxide reaction-kinetics and transport in aqueous amine membranes. Ind Eng Chem Fundam 19(3):260–266

    Article  Google Scholar 

  • Drese JH, Choi S, Lively RP, Koros WJ, Fauth DJ, Gray ML, Jones CW (2009) Synthesis-structure–property relationships for hyperbranched aminosilica CO2 adsorbents. Adv Funct Mater 19(23):3821–3832

    Article  Google Scholar 

  • Fifield LS, Fryxell GE, Addleman RS, Aardahl CL (2004) Carbon dioxide capture using amine-based molecular anchors on multi wall carbon nanotubes. Abstr Pap Am Chem Soc 227:U1089

    Google Scholar 

  • Filburn T, Helble JJ, Weiss RA (2005) Development of supported ethanolamines and modified ethanolamines for CO2 capture. Ind Eng Chem Res 44(5):1542–1546

    Article  Google Scholar 

  • Fisher JC, Tanthana J, Chuang SSC (2009) Oxide-supported tetraethylenepentamine for CO2 capture. Environ Progr Sustain Energy 28(4):589–598

    Article  Google Scholar 

  • Franchi RS, Harlick PJE, Sayari A (2005) Applications of pore-expanded mesoporous silica. 2. Development of a high-capacity, water-tolerant adsorbent for CO2. Ind Eng Chem Res 44(21):8007–8013

    Article  Google Scholar 

  • Ghosh A, Subrahmanyam KS, Krishna KS, Datta S, Govindaraj A, Pati SK, Rao CNR (2008) Uptake of H-2 and CO2 by graphene. J Phys Chem C 112(40):15704–15707

    Article  Google Scholar 

  • Goeppert A, Meth S, Prakash GKS, Olah GA (2010) Nanostructured silica as a support for regenerable high-capacity organoamine-based CO2 sorbents. Energy Environ Sci 3(12):1949–1960

    Article  Google Scholar 

  • Granite EJ, Pennline HW (2002) Photochemical removal of mercury from flue gas. Abstr Pap Am Chem Soc 223:U523–U524

    Google Scholar 

  • Gray ML, Soong Y, Champagne KJ, Baltrus J, Stevens RW, Toochinda P, Chuang SSC (2004) CO2 capture by amine-enriched fly ash carbon sorbents. Sep Purif Technol 35(1):31–36

    Article  Google Scholar 

  • Gray ML, Soong Y, Champagne KJ, Pennline H, Baltrus JP, Stevens RW, Khatri R, Chuang SSC, Filburn T (2005) Improved immobilized carbon dioxide capture sorbents. Fuel Process Technol 86(14–15):1449–1455

    Article  Google Scholar 

  • Gray ML, Champagne KJ, Fauth D, Baltrus JP, Pennline H (2008) Performance of immobilized tertiary amine solid sorbents for the capture of carbon dioxide. Int J Greenhouse Gas Control 2(1):3–8

    Article  Google Scholar 

  • Gray ML, Hoffman JS, Hreha DC, Fauth DJ, Hedges SW, Champagne KJ, Pennline HW (2009) Parametric study of solid amine sorbents for the capture of carbon dioxide. Energy Fuel 23:4840–4844

    Article  Google Scholar 

  • Harlick PJE, Sayari A (2006) Applications of pore-expanded mesoporous silicas. 3. Triamine silane grafting for enhanced CO(2) adsorption. Ind Eng Chem Res 45(9):3248–3255

    Article  Google Scholar 

  • Harlick PJE, Sayari A (2007) Applications of pore-expanded mesoporous silica. 5. Triamine grafted material with exceptional CO(2) dynamic and equilibrium adsorption performance. Ind Eng Chem Res 46(2):446–458

    Article  Google Scholar 

  • Harlick PJE, Tezel FH (2004) An experimental adsorbent screening study for CO2 removal from N-2. Microporous Mesoporous Mater 76(1–3):71–79

    Article  Google Scholar 

  • Hayashi H, Taniuchi J, Furuyashiki N, Sugiyama S, Hirano S, Shigemoto N, Nonaka T (1998) Efficient recovery of carbon dioxide from flue gases of coal-fired power plants by cyclic fixed-bed operations over K2CO3-on-carbon. Ind Eng Chem Res 37(1):185–191

    Article  Google Scholar 

  • Henke S, Fischer RA (2011) Gated channels in a honeycomb-like zinc-dicarboxylate-bipyridine framework with flexible alkyl ether side chains. J Am Chem Soc 133(7):2064–2067

    Article  Google Scholar 

  • Herm ZR, Swisher JA, Smit B, Krishna R, Long JR (2011) Metal-organic frameworks as adsorbents for hydrogen purification and precombustion carbon dioxide capture. J Am Chem Soc 133(15):5664–5667

    Article  Google Scholar 

  • Heydari-Gorji A, Sayari A (2011) CO2 capture on polyethylenimine-impregnated hydrophobic mesoporous silica: experimental and kinetic modeling. Chem Eng J 173(1):72–79

    Article  Google Scholar 

  • Heydari-Gorji A, Belmabkhout Y, Sayari A (2011) Polyethylenimine-impregnated mesoporous silica: effect of amine loading and surface alkyl chains on CO2 adsorption. Langmuir 27(20):12411–12416

    Article  Google Scholar 

  • Hicks JC, Drese JH, Fauth DJ, Gray ML, Qi GG, Jones CW (2008) Designing adsorbents for CO(2) capture from flue gas-hyperbranched aminosilicas capable, of capturing CO(2) reversibly. J Am Chem Soc 130(10):2902–2903

    Article  Google Scholar 

  • Hiyoshi N, Yogo K, Yashima T (2004) Adsorption of carbon dioxide on amine modified SBA-15 in the presence of water vapor. Chem Lett 33(5):510–511

    Article  Google Scholar 

  • Hiyoshi N, Yogo K, Yashima T (2005) Adsorption characteristics of carbon dioxide on organically functionalized SBA-15. Microporous Mesoporous Mater 84(1–3):357–365

    Article  Google Scholar 

  • Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34(5):451–465

    Article  Google Scholar 

  • Ho MT, Allinson GW, Wiley DE (2008a) Reducing the cost of CO2 capture from flue gases using pressure swing adsorption. Ind Eng Chem Res 47(14):4883–4890

    Article  Google Scholar 

  • Ho MT, Allinson GW, Wiley DE (2008b) Reducing the cost of CO2 capture from flue gases using membrane technology. Ind Eng Chem Res 47(5):1562–1568

    Article  Google Scholar 

  • House KZ, Harvey CF, Aziz MJ, Schrag DP (2009) The energy penalty of post-combustion CO2 capture & storage and its implications for retrofitting the US installed base. Energy Environ Sci 2(2):193–205

    Article  Google Scholar 

  • Hsu SC, Lu CS, Su FS, Zeng WT, Chen WF (2010) Thermodynamics and regeneration studies of CO2 adsorption on multiwalled carbon nanotubes. Chem Eng Sci 65(4):1354–1361

    Article  Google Scholar 

  • Huang LL, Zhang LZ, Shao Q, Lu LH, Lu XH, Jiang SY, Shen WF (2007) Simulations of binary mixture adsorption of carbon dioxide and methane in carbon nanotubes: temperature, pressure, and pore size effects. J Phys Chem C 111(32):11912–11920

    Article  Google Scholar 

  • Hwang YK, Hong DY, Chang JS, Jhung SH, Seo YK, Kim J, Vimont A, Daturi M, Serre C, Ferey G (2008) Amine grafting on coordinatively unsaturated metal centers of MOFs: consequences for catalysis and metal encapsulation. Angew Chem Int Ed 47(22):4144–4148

    Article  Google Scholar 

  • Inui T, Okugawa Y, Yasuda M (1988) Relationship between properties of various zeolites and their CO2-adsorption behaviors in pressure swing adsorption operation. Ind Eng Chem Res 27(7):1103–1109

    Article  Google Scholar 

  • Ishibashi M, Ota H, Akutsu N, Umeda S, Tajika M, Izumi J, Yasutake A, Kabata T, Kageyama Y (1996) Technology for removing carbon dioxide from power plant flue gas by the physical adsorption method. Energy Convers Manage 37(6–8):929–933

    Article  Google Scholar 

  • Jadhav PD, Chatti RV, Biniwale RB, Labhsetwar NK, Devotta S, Rayalu SS (2007) Monoethanol amine modified zeolite 13X for CO2 adsorption at different temperatures. Energy Fuel 21(6):3555–3559

    Article  Google Scholar 

  • Jones CW (2011) CO2 capture from dilute gases as a component of modern global carbon management. Annu Rev Chem Biomol Eng 2(2):31–52

    Article  Google Scholar 

  • Katoh M, Yoshikawa T, Tomonari T, Katayama K, Tomida T (2000) Adsorption characteristics of ion-exchanged ZSM-5 zeolites for CO2/N-2 mixtures. J Colloid Interface Sci 226(1):145–150

    Article  Google Scholar 

  • Keskin S, van Heest TM, Sholl DS (2010) Can metal-organic framework materials play a useful role in large-scale carbon dioxide separations? Chemsuschem 3(8):879–891

    Article  Google Scholar 

  • Khatri RA, Chuang SSC, Soong Y, Gray M (2005) Carbon dioxide capture by diamine-grafted SBA-15: a combined Fourier transform infrared and mass spectrometry study. Ind Eng Chem Res 44(10):3702–3708

    Article  Google Scholar 

  • Khatri RA, Chuang SSC, Soong Y, Gray M (2006) Thermal and chemical stability of regenerable solid amine sorbent for CO2 capture. Energy Fuel 20(4):1514–1520

    Article  Google Scholar 

  • Khelifa A, Benchehida L, Derriche Z (2004) Adsorption of carbon dioxide by X zeolites exchanged with Ni2+ and Cr3+: isotherms and isosteric heat. J Colloid Interface Sci 278(1):9–17

    Article  Google Scholar 

  • Kikkinides ES, Yang RT, Cho SH (1993) Concentration and recovery of CO2 from flue-gas by pressure swing adsorption. Ind Eng Chem Res 32(11):2714–2720

    Article  Google Scholar 

  • Kim SN, Son WJ, Choi JS, Ahn WS (2008) CO2 adsorption using amine-functionalized mesoporous silica prepared via anionic surfactant-mediated synthesis. Microporous Mesoporous Mater 115(3):497–503

    Article  Google Scholar 

  • Kim J, Yang ST, Choi SB, Sim J, Kim J, Ahn WS (2011) Control of catenation in CuTATB-n metal-organic frameworks by sonochemical synthesis and its effect on CO2 adsorption. J Mater Chem 21(9):3070–3076

    Article  Google Scholar 

  • Kitagawa S, Kitaura R, Noro S (2004) Functional porous coordination polymers. Angew Chem Int Ed 43(18):2334–2375

    Article  Google Scholar 

  • Kizzie AC, Wong-Foy AG, Matzger AJ (2011) Effect of humidity on the performance of microporous coordination polymers as adsorbents for CO2 capture. Langmuir 27(10):6368–6373

    Article  Google Scholar 

  • Knofel C, Descarpentries J, Benzaouia A, Zelenak V, Mornet S, Llewellyn PL, Hornebecq V (2007) Functionalised micro-/mesoporous silica for the adsorption of carbon dioxide. Microporous Mesoporous Mater 99(1–2):79–85

    Article  Google Scholar 

  • Knowles GP, Graham JV, Delaney SW, Chaffee AL (2005) Aminopropyl-functionalized mesoporous silicas as CO2 adsorbents. Fuel Process Technol 86(14–15):1435–1448

    Article  Google Scholar 

  • Knowles GP, Delaney SW, Chaffee AL (2006) Diethylenetriamine[propyl(silyl)]-functionalized (DT) mesoporous silicas as CO2 adsorbents. Ind Eng Chem Res 45(8):2626–2633

    Article  Google Scholar 

  • Krishnamurthy S, Rao VR, Guntuka S, Sharratt P, Haghpanah R, Rajendran A, Amanullah M, Karimi IA, Farooq S (2014) CO2 capture from dry flue gas by vacuum swing adsorption: a pilot plant study. AICHE J 60(5):1830–1842

    Article  Google Scholar 

  • Leal O, Bolivar C, Ovalles C, Garcia JJ, Espidel Y (1995) Reversible adsorption of carbon dioxide on amine surface-bonded silica gel. Inorg Chim Acta 240(1–2):183–189

    Article  Google Scholar 

  • Lee SC, Kim JC (2007) Dry potassium-based sorbents for CO2 capture. Catal Surv Asia 11(4):171–185

    Article  Google Scholar 

  • Lee KB, Sircar S (2008) Removal and recovery of compressed CO2 from flue gas by a novel thermal swing chemisorption process. AICHE J 54(9):2293–2302

    Article  Google Scholar 

  • Lee SC, Choi BY, Lee TJ, Ryu CK, Soo YS, Kim JC (2006a) CO2 absorption and regeneration of alkali metal-based solid sorbents. Catal Today 111(3–4):385–390

    Article  Google Scholar 

  • Lee SC, Choi BY, Ryu CK, Ahn YS, Lee TJ, Kim JC (2006b) The effect of water on the activation and the CO2 capture capacities of alkali metal-based sorbents. Korean J Chem Eng 23(3):374–379

    Article  Google Scholar 

  • Lee S, Filburn TP, Gray M, Park JW, Song HJ (2008a) Screening test of solid amine sorbents for CO2 capture. Ind Eng Chem Res 47(19):7419–7423

    Article  Google Scholar 

  • Lee JB, Ryu CK, Baek JI, Lee JH, Eom TH, Kim SH (2008b) Sodium-based dry regenerable sorbent for carbon dioxide capture from power plant flue gas. Ind Eng Chem Res 47(13):4465–4472

    Article  Google Scholar 

  • Lee SC, Chae HJ, Lee SJ, Park YH, Ryu CK, Yi CK, Kim JC (2009) Novel regenerable potassium-based dry sorbents for CO2 capture at low temperatures. J Mol Catal B Enzym 56(2–3):179–184

    Article  Google Scholar 

  • Lee SC, Kwon YM, Ryu CY, Chae HJ, Ragupathy D, Jung SY, Lee JB, Ryu CK, Kim JC (2011) Development of new alumina-modified sorbents for CO2 sorption and regeneration at temperatures below 200 degrees C. Fuel 90(4):1465–1470

    Article  Google Scholar 

  • Li PY, Zhang SJ, Chen SX, Zhang QK, Pan JJ, Ge BQ (2008a) Preparation and adsorption properties of polyethylenimine containing fibrous adsorbent for carbon dioxide capture. J Appl Polym Sci 108(6):3851–3858

    Article  Google Scholar 

  • Li PY, Ge BQ, Zhang SJ, Chen SX, Zhang QK, Zhao YN (2008b) CO2 capture by polyethylenimine-modified fibrous adsorbent. Langmuir 24(13):6567–6574

    Article  Google Scholar 

  • Li G, Xiao P, Webley P, Zhang J, Singh R, Marshall M (2008c) Capture of CO2 from high humidity flue gas by vacuum swing adsorption with zeolite 13X. Adsorption J Int Adsorption Soc 14(2–3):415–422

    Article  Google Scholar 

  • Li JR, Kuppler RJ, Zhou HC (2009) Selective gas adsorption and separation in metal-organic frameworks. Chem Soc Rev 38(5):1477–1504

    Article  Google Scholar 

  • Li W, Choi S, Drese JH, Hornbostel M, Krishnan G, Eisenberger PM, Jones CW (2010) Steam-stripping for regeneration of supported amine-based CO2 adsorbents. Chemsuschem 3(8):899–903

    Article  Google Scholar 

  • Liu J, Wang Y, Benin AI, Jakubczak P, Willis RR, LeVan MD (2010) CO2/H2O adsorption equilibrium and rates on metal-organic frameworks: HKUST-1 and Ni/DOBDC. Langmuir 26(17):14301–14307

    Article  Google Scholar 

  • Liu J, Benin AI, Furtado AMB, Jakubczak P, Willis RR, LeVan MD (2011) Stability effects on CO2 adsorption for the DOBDC series of metal-organic frameworks. Langmuir 27(18):11451–11456

    Article  Google Scholar 

  • Liu Z, Wang L, Kong XM, Li P, Yu JG, Rodrigues AE (2012) Onsite CO2 capture from flue gas by an adsorption process in a coal-fired power plant. Ind Eng Chem Res 51(21):7355–7363

    Article  Google Scholar 

  • Liu Q, Ning LQ, Zheng SD, Tao MN, Shi Y, He Y (2013) Adsorption of carbon dioxide by MIL-101(Cr): regeneration conditions and influence of flue gas contaminants. Sci Rep 3:2916

    Google Scholar 

  • Liu Q, Shi Y, Zheng SD, Ning LQ, Ye Q, Tao MN, He Y (2014a) Amine-functionalized low-cost industrial grade multi-walled carbon nanotubes for the capture of carbon dioxide. J Energy Chem 23(1):111–118

    Article  Google Scholar 

  • Liu Q, Shi JJ, Zheng SD, Tao MN, He Y, Shi Y (2014b) Kinetics studies of CO2 adsorption/desorption on amine-functionalized multiwalled carbon nanotubes. Ind Eng Chem Res 53(29):11677–11683

    Article  Google Scholar 

  • Llewellyn PL, Bourrelly S, Serre C, Filinchuk Y, Ferey G (2006) How hydration drastically improves adsorption selectivity for CO2 over CH4 in the flexible chromium terephthalate MIL-53. Angew Chem Int Ed 45(46):7751–7754

    Article  Google Scholar 

  • Loiseau T, Serre C, Huguenard C, Fink G, Taulelle F, Henry M, Bataille T, Ferey G (2004) A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. Chem Eur J 10(6):1373–1382

    Article  Google Scholar 

  • Lopes ECN, dos Anjos FSC, Vieira EFS, Cestari AR (2003) An alternative Avrami equation to evaluate kinetic parameters of the interaction of Hg(11) with thin chitosan membranes. J Colloid Interface Sci 263(2):542–547

    Article  Google Scholar 

  • Low JJ, Benin AI, Jakubczak P, Abrahamian JF, Faheem SA, Willis RR (2009) Virtual high throughput screening confirmed experimentally: porous coordination polymer hydration. J Am Chem Soc 131(43):15834–15842

    Article  Google Scholar 

  • Lu CY, Bai HL, Wu BL, Su FS, Fen-Hwang J (2008) Comparative study of CO2 capture by carbon nanotubes, activated carbons, and zeolites. Energy Fuel 22(5):3050–3056

    Article  Google Scholar 

  • Ma XL, Wang XX, Song CS (2009) “Molecular Basket” sorbents for separation of CO2 and H2S from various gas streams. J Am Chem Soc 131(16):5777–5783

    Article  Google Scholar 

  • Maroto-Valer MM, Tang Z, Zhang Y (2005) CO2 capture by activated and impregnated anthracites. Fuel Process Technol 86(14–15):1487–1502

    Article  Google Scholar 

  • Maroto-Valer MM, Lu Z, Zhang Y, Tang Z (2008) Sorbents for CO2 capture from high carbon fly ashes. Waste Manag 28(11):2320–2328

    Article  Google Scholar 

  • Mason JA, Sumida K, Herm ZR, Krishna R, Long JR (2011) Evaluating metal-organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption. Energy Environ Sci 4(8):3030–3040

    Article  Google Scholar 

  • McDonald TM, D’Alessandro DM, Krishna R, Long JR (2011) Enhanced carbon dioxide capture upon incorporation of N, N′-dimethylethylenediamine in the metal-organic framework CuBTTri. Chem Sci 2(10):2022–2028

    Article  Google Scholar 

  • Merel J, Clausse M, Meunier F (2008) Experimental investigation on CO2 post-combustion capture by indirect thermal swing adsorption using 13X and 5A zeolites. Ind Eng Chem Res 47(1):209–215

    Article  Google Scholar 

  • Millward AR, Yaghi OM (2005) Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J Am Chem Soc 127(51):17998–17999

    Article  Google Scholar 

  • Monazam ER, Shadle LJ, Miller DC, Pennline HW, Fauth DJ, Hoffman JS, Gray ML (2013) Equilibrium and kinetics analysis of carbon dioxide capture using immobilized amine on a mesoporous silica. AICHE J 59(3):923–935

    Article  Google Scholar 

  • Mulgundmath V, Tezel FH (2010) Optimisation of carbon dioxide recovery from flue gas in a TPSA system. Adsorption J Int Adsorption Soc 16(6):587–598

    Article  Google Scholar 

  • Na BK, Koo KK, Eum HM, Lee H, Song HK (2001) CO(2) recovery from flue gas by PSA process using activated carbon. Korean J Chem Eng 18(2):220–227

    Article  Google Scholar 

  • Navarro JAR, Barea E, Salas JM, Masciocchi N, Galli S, Sironi A, Ania CO, Parra JB (2007) Borderline microporous-ultramicroporous palladium(II) coordination polymer networks. Effect of pore functionalisation on gas adsorption properties. J Mater Chem 17(19):1939–1946

    Article  Google Scholar 

  • Nestle NFEI, Kimmich R (1996) NMR imaging of heavy metal absorption in alginate, immobilized cells, and kombu algal biosorbents. Biotechnol Bioeng 51(5):538–543

    Article  Google Scholar 

  • Okunev AG, Sharonov VE, Aristov YI, Parmon VN (2000) Sorption of carbon dioxide from wet gases by K2CO3-in-porous matrix: influence of the matrix nature. React Kinet Catal Lett 71(2):355–362

    Article  Google Scholar 

  • Okunev AG, Sharonov VE, Gubar AV, Danilova IG, Paukshtis EA, Moroz EM, Kriger TA, Malakhov VV, Aristov YI (2003) Sorption of carbon dioxide by the composite sorbent of potassium carbonate in porous matrix. Russ Chem Bull 52(2):359–363

    Article  Google Scholar 

  • Park YC, Jo SH, Ryu CK, Yi CK (2009) Long-term operation of carbon dioxide capture system from a real coal-fired flue gas using dry regenerable potassium-based sorbents. Greenhouse Gas Control Technol 1(1):1235–1239

    Google Scholar 

  • Park TH, Cychosz KA, Wong-Foy AG, Dailly A, Matzger AJ (2011) Gas and liquid phase adsorption in isostructural Cu-3[biaryltricarboxylate](2) microporous coordination polymers. Chem Commun 47(5):1452–1454

    Article  Google Scholar 

  • Pevida C, Plaza MG, Arias B, Fermoso J, Rubiera F, Pis JJ (2008) Surface modification of activated carbons for CO(2) capture. Appl Surf Sci 254(22):7165–7172

    Article  Google Scholar 

  • Phan A, Doonan CJ, Uribe-Romo FJ, Knobler CB, O’Keeffe M, Yaghi OM (2010) Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc Chem Res 43(1):58–67

    Article  Google Scholar 

  • Plaza MG, Pevida C, Arias B, Fermoso J, Rubiera F, Pis JJ (2009) A comparison of two methods for producing CO(2) capture adsorbents. Greenhouse Gas Control Technol 1(1):1107–1113

    Google Scholar 

  • Przepiorski J, Skrodzewicz M, Morawski AW (2004) High temperature ammonia treatment of activated carbon for enhancement of CO2 adsorption. Appl Surf Sci 225(1–4):235–242

    Article  Google Scholar 

  • Qader A, Hooper B, Innocenzi T, Stevens G, Kentish S, Scholes C, Mumford K, Smith K, Webley PA, Zhang J (2011) Novel post-combustion capture technologies on a lignite fired power plant – results of the CO2CRC/H3 capture project. 10th international conference on greenhouse gas control technologies, vol 4, pp 1668–1675

    Google Scholar 

  • Qi GG, Wang YB, Estevez L, Duan XN, Anako N, Park AHA, Li W, Jones CW, Giannelis EP (2011) High efficiency nanocomposite sorbents for CO2 capture based on amine-functionalized mesoporous capsules. Energy Environ Sci 4(2):444–452

    Article  Google Scholar 

  • Razavi SS, Hashemianzadeh SM, Karimi H (2011) Modeling the adsorptive selectivity of carbon nanotubes for effective separation of CO2/N-2 mixtures. J Mol Model 17(5):1163–1172

    Article  Google Scholar 

  • Rochelle GT (2009) Amine scrubbing for CO2 capture. Science 325(5948):1652–1654

    Article  Google Scholar 

  • Rubin ES, Chen C, Rao AB (2007) Cost and performance of fossil fuel power plants with CO2 capture and storage. Energy Policy 35(9):4444–4454

    Article  Google Scholar 

  • Samanta A, Zhao A, Shimizu GKH, Sarkar P, Gupta R (2012) Post-combustion CO2 capture using solid sorbents: a review. Ind Eng Chem Res 51(4):1438–1463

    Article  Google Scholar 

  • Satyapal S, Filburn T, Trela J, Strange J (2001) Performance and properties of a solid amine sorbent for carbon dioxide removal in space life support applications. Energy Fuel 15(2):250–255

    Article  Google Scholar 

  • Sayari A, Belmabkhout Y (2010) Stabilization of amine-containing CO2 adsorbents: dramatic effect of water vapor. J Am Chem Soc 132(18):6312–6314

    Article  Google Scholar 

  • Sayari A, Hamoudi S, Yang Y (2005) Applications of pore-expanded mesoporous silica. 1. Removal of heavy metal cations and organic pollutants from wastewater. Chem Mater 17(1):212–216

    Article  Google Scholar 

  • Sayari A, Belmabkhout Y, Serna-Guerrero R (2011) Flue gas treatment via CO2 adsorption. Chem Eng J 171(3):760–774

    Article  Google Scholar 

  • Seo Y, Jo SH, Ryu CK, Yi CK (2007) Effects of water vapor pretreatment time and reaction temperature on CO2 capture characteristics of a sodium-based solid sorbent in a bubbling fluidized-bed reactor. Chemosphere 69(5):712–718

    Article  Google Scholar 

  • Serna-Guerrero R, Sayari A (2010) Modeling adsorption of CO2 on amine-functionalized mesoporous silica. 2: kinetics and breakthrough curves. Chem Eng J 161(1–2):182–190

    Article  Google Scholar 

  • Serna-Guerrero R, Da’na E, Sayari A (2008) New insights into the interactions of CO(2) with amine-functionalized silica. Ind Eng Chem Res 47(23):9406–9412

    Article  Google Scholar 

  • Serna-Guerrero R, Belmabkhout Y, Sayari A (2010a) Influence of regeneration conditions on the cyclic performance of amine- grafted mesoporous silica for CO2 capture: An experimental and statistical study. Chem Eng Sci 65(14):4166–4172

    Article  Google Scholar 

  • Serna-Guerrero R, Belmabkhout Y, Sayari A (2010b) Further investigations of CO2 capture using triamine-grafted pore-expanded mesoporous silica. Chem Eng J 158(3):513–519

    Article  Google Scholar 

  • Serna-Guerrero R, Belmabkhout Y, Sayari A (2010c) Triamine-grafted pore-expanded mesoporous silica for CO2 capture: effect of moisture and adsorbent regeneration strategies. Adsorption J Int Adsorption Soc 16(6):567–575

    Article  Google Scholar 

  • Serre C, Millange F, Thouvenot C, Nogues M, Marsolier G, Louer D, Ferey G (2002) Very large breathing effect in the first nanoporous chromium(III)-based solids: MIL-53 or Cr-III(OH)center dot{O2C-C6H4-CO2}center dot{HO2C-C6H4-CO2H}(x)center dot H2Oy. J Am Chem Soc 124(45):13519–13526

    Article  Google Scholar 

  • Sharonov VE, Okunev AG, Aristov YI (2004) Kinetics of carbon dioxide sorption by the composite material K2CO3 in Al2O3. React Kinet Catal Lett 82(2):363–369

    Article  Google Scholar 

  • Siriwardane RV, Shen MS, Fisher EP, Poston JA (2001) Adsorption of CO2 on molecular sieves and activated carbon. Energy Fuel 15(2):279–284

    Article  Google Scholar 

  • Siriwardane RV, Shen MS, Fisher EP (2003) Adsorption of CO(2), N(2), and O(2) on natural zeolites. Energy Fuel 17(3):571–576

    Article  Google Scholar 

  • Skoulidas AI, Sholl DS, Johnson JK (2006) Adsorption and diffusion of carbon dioxide and nitrogen through single-walled carbon nanotube membranes. J Chem Phys 124, 054708

    Google Scholar 

  • Son WJ, Choi JS, Ahn WS (2008) Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials. Microporous Mesoporous Mater 113(1–3):31–40

    Article  Google Scholar 

  • Stavitski E, Pidko EA, Couck S, Remy T, Hensen EJM, Weckhuysen BM, Denayer J, Gascon J, Kapteijn F (2011) Complexity behind CO2 Capture on NH2-MIL-53(Al). Langmuir 27(7):3970–3976

    Article  Google Scholar 

  • Stylianou KC, Warren JE, Chong SY, Rabone J, Bacsa J, Bradshaw D, Rosseinsky MJ (2011) CO2 selectivity of a 1D microporous adenine-based metal-organic framework synthesised in water. Chem Commun 47(12):3389–3391

    Article  Google Scholar 

  • Su FS, Lu CS, Cnen WF, Bai HL, Hwang JF (2009) Capture of CO2 from flue gas via multiwalled carbon nanotubes. Sci Total Environ 407(8):3017–3023

    Article  Google Scholar 

  • Su FS, Lu CY, Kuo SC, Zeng WT (2010) Adsorption of CO2 on amine-functionalized Y-type zeolites. Energy Fuel 24:1441–1448

    Article  Google Scholar 

  • Sumida K, Horike S, Kaye SS, Herm ZR, Queen WL, Brown CM, Grandjean F, Long GJ, Dailly A, Long JR (2010) Hydrogen storage and carbon dioxide capture in an iron-based sodalite-type metal-organic framework (Fe-BTT) discovered via high-throughput methods. Chem Sci 1(2):184–191

    Article  Google Scholar 

  • Sumida K, Rogow DL, Mason JA, McDonald TM, Bloch ED, Herm ZR, Bae TH, Long JR (2012) Carbon dioxide capture in metal-organic frameworks. Chem Rev 112(2):724–781

    Article  Google Scholar 

  • Tang Z, Maroto-Valer MM, Zhang YZ (2004) CO2 capture using anthracite based sorbents. Abstr Pap Am Chem Soc 227:U1089

    Google Scholar 

  • Vaidhyanathan R, Iremonger SS, Dawson KW, Shimizu GKH (2009) An amine-functionalized metal organic framework for preferential CO2 adsorption at low pressures. Chem Commun 35:5230–5232

    Article  Google Scholar 

  • Vishnyakov A, Ravikovitch PI, Neimark AV, Bulow M (2003) Nanopore structure and sorption properties of Cu-BTC metal-organic framework. Abstr Pap Am Chem Soc 226:U683

    Google Scholar 

  • Wang YX, Zhou YP, Liu CM, Zhou L (2008a) Comparative studies of CO2 and CH4 sorption on activated carbon in presence of water. Colloids Surf Physicochem Eng Aspects 322(1–3):14–18

    Article  Google Scholar 

  • Wang B, Cote AP, Furukawa H, O’Keeffe M, Yaghi OM (2008b) Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature 453(7192):207–211

    Article  Google Scholar 

  • Wang L, Yang Y, Shen WL, Kong XM, Li P, Yu JG, Rodrigues AE (2013a) Experimental evaluation of adsorption technology for CO2 capture from flue gas in an existing coal-fired power plant. Chem Eng Sci 101:615–619

    Article  Google Scholar 

  • Wang L, Yang Y, Shen WL, Kong XM, Li P, Yu JG, Rodrigues AE (2013b) CO2 capture from flue gas in an existing coal-fired power plant by two successive pilot-scale VPSA units. Ind Eng Chem Res 52(23):7947–7955

    Article  Google Scholar 

  • Whitfield TR, Wang XQ, Liu LM, Jacobson AJ (2005) Metal-organic frameworks based on iron oxide octahedral chains connected by benzenedicarboxylate dianions. Solid State Sci 7(9):1096–1103

    Article  Google Scholar 

  • Wu HH, Reali RS, Smith DA, Trachtenberg MC, Li J (2010) Highly selective CO2 capture by a flexible microporous metal-organic framework (MMOF) material. Chem Eur J 16(47):13951–13954

    Article  Google Scholar 

  • Xu XC, Song CS, Andresen JM, Miller BG, Scaroni AW (2002) Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture. Energy Fuel 16(6):1463–1469

    Article  Google Scholar 

  • Xu XC, Song CS, Andresen JM, Miller BG, Scaroni AW (2003) Preparation and characterization of novel CO2 “molecular basket” adsorbents based on polymer-modified mesoporous molecular sieve MCM-41. Microporous Mesoporous Mater 62(1–2):29–45

    Article  Google Scholar 

  • Xu XC, Song CS, Miller BG, Scaroni AW (2005a) Influence of moisture on CO2 separation from gas mixture by a nanoporous adsorbent based on polyethylenimine-modified molecular sieve MCM-41. Ind Eng Chem Res 44(21):8113–8119

    Article  Google Scholar 

  • Xu XC, Song CS, Miller BG, Scaroni AW (2005b) Adsorption separation of carbon dioxide from flue gas of natural gas-fired boiler by a novel nanoporous “molecular basket” adsorbent. Fuel Process Technol 86(14–15):1457–1472

    Article  Google Scholar 

  • Yang Y, Li H, Chen S, Zhao Y, Li Q (2010) Preparation and characterization of a solid amine adsorbent for capturing CO2 by grafting allylamine onto PAN fiber. Langmuir 26(17):13897–13902

    Article  Google Scholar 

  • Yazaydin AO, Benin AI, Faheem SA, Jakubczak P, Low JJ, Willis RR, Snurr RQ (2009a) Enhanced CO2 adsorption in metal-organic frameworks via occupation of open-metal sites by coordinated water molecules. Chem Mater 21(8):1425–1430

    Article  Google Scholar 

  • Yazaydin AO, Snurr RQ, Park TH, Koh K, Liu J, LeVan MD, Benin AI, Jakubczak P, Lanuza M, Galloway DB, Low JJ, Willis RR (2009b) Screening of metal-organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approach. J Am Chem Soc 131(51):18198–18199

    Article  Google Scholar 

  • Ye Q, Jiang JQ, Wang CX, Liu YM, Pan H, Shi Y (2012) Adsorption of low-concentration carbon dioxide on amine-modified carbon nanotubes at ambient temperature. Energy Fuel 26(4):2497–2504

    Article  Google Scholar 

  • Yi CK, Jo SH, Seo Y, Lee JB, Ryu CK (2007) Continuous operation of the potassium-based dry sorbent CO2 capture process with two fluidized-bed reactors. Int J Greenhouse Gas Control 1(1):31–36

    Article  Google Scholar 

  • Yong Z, Mata V, Rodrigues AE (2002) Adsorption of carbon dioxide at high temperature – a review. Sep Purif Technol 26(2–3):195–205

    Article  Google Scholar 

  • Yue MB, Chun Y, Cao Y, Dong X, Zhu JH (2006) CO2 capture by As-prepared SBA-15 with an occluded organic template. Adv Funct Mater 16(13):1717–1722

    Article  Google Scholar 

  • Yue MB, Sun LB, Cao Y, Wang Y, Wang ZJ, Zhu JH (2008a) Efficient CO2 capturer derived from as-synthesized MCM-41 modified with amine. Chem Eur J 14(11):3442–3451

    Article  Google Scholar 

  • Yue MB, Sun LB, Cao Y, Wang ZJ, Wang Y, Yu Q, Zhu JH (2008b) Promoting the CO2 adsorption in the amine-containing SBA-15 by hydroxyl group. Microporous Mesoporous Mater 114(1–3):74–81

    Article  Google Scholar 

  • Zelenak V, Badanicova M, Halamova D, Cejka J, Zukal A, Murafa N, Goerigk G (2008) Amine-modified ordered mesoporous silica: effect of pore size on carbon dioxide capture. Chem Eng J 144(2):336–342

    Article  Google Scholar 

  • Zhang YZ, Maroto-Valer MM, Zhong Z (2004) Microporous activated carbons produced from unburned carbon in fly ash and their application for CO2 capture. Abstr Pap Am Chem Soc 227:U1090

    Google Scholar 

  • Zhang J, Singh R, Webley PA (2008a) Alkali and alkaline-earth cation exchanged chabazite zeolites for adsorption based CO2 capture. Microporous Mesoporous Mater 111(1–3):478–487

    Article  Google Scholar 

  • Zhang J, Webley PA, Xiao P (2008b) Effect of process parameters on power requirements of vacuum swing adsorption technology for CO2 capture from flue gas. Energy Convers Manage 49(2):346–356

    Article  Google Scholar 

  • Zhao ZX, Li Z, Lin YS (2009a) Adsorption and diffusion of carbon dioxide on metal-organic framework (MOF-5). Ind Eng Chem Res 48(22):10015–10020

    Article  Google Scholar 

  • Zhao CW, Chen XP, Zhao CS, Liu YK (2009b) Carbonation and hydration characteristics of dry potassium-based sorbents for CO(2) capture. Energy Fuel 23:1766–1769

    Article  Google Scholar 

  • Zhao CW, Chen XP, Zhao CS (2009c) Effect of crystal structure on CO2 capture characteristics of dry potassium-based sorbents. Chemosphere 75(10):1401–1404

    Article  Google Scholar 

  • Zhao CW, Chen XP, Zhao CS (2009d) CO2 absorption using dry potassium-based sorbents with different supports. Energy Fuel 23:4683–4687

    Article  Google Scholar 

  • Zhao A, Samanta A, Sarkar P, Gupta R (2013) Carbon dioxide adsorption on amine-impregnated mesoporous SBA-15 sorbents: experimental and kinetics study. Ind Eng Chem Res 52(19):6480–6491

    Article  Google Scholar 

  • Zheng F, Tran DN, Busche B, Fryxell GE, Addleman RS, Zemanian TS, Aardahl CL (2004) Ethylenediamine-modified SBA-15 as regenerable CO2 sorbents. Abstr Pap Am Chem Soc 227:U1086–U1087

    Google Scholar 

  • Zhong T, Zhang YZ, Maroto-Valer MM (2004) Study of CO2 adsorption capacities of modified activated anthracites. Abstr Pap Am Chem Soc 227:U1090

    Google Scholar 

  • Zukal A, Mayerova J, Kubu M (2010) Adsorption of carbon dioxide on high-silica zeolites with different framework topology. Top Catal 53(19–20):1361–1366

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Shi, Y., Liu, Q., He, Y. (2015). CO2 Capture Using Solid Sorbents. In: Chen, WY., Suzuki, T., Lackner, M. (eds) Handbook of Climate Change Mitigation and Adaptation. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6431-0_83-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6431-0_83-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-6431-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics