Skip to main content

Energy Efficiency: Comparison of Different Systems and Technologies

Handbook of Climate Change Mitigation and Adaptation

Abstract

The efficient use of energy, or energy efficiency, has been widely recognized as an ample and cost-efficient means to save energy and to reduce greenhouse gas emissions. Up to 1/3 of the worldwide energy demand in 2050 can be saved by energy efficiency measures. In this chapter, several important aspects of energy efficiency are addressed. After an introduction and definition of energy efficiency, historic development and state-of-the-art and future trends of energy efficiency are presented in the light of life cycle assessment and total cost of ownership considerations. Energy efficiency in the sectors energy production, energy transmission and storage, transportation, industry, buildings, and appliances is reviewed. Concurrent measures such as recycling or novel materials are also discussed and touched upon. Energy conservation is covered in the final section of this chapter. References for deeper study are provided with an emphasis on guidelines on how to improve energy efficiency. Given the breadth of the subject, only exemplary coverage can be aimed for. The purpose of this chapter is to highlight the significance of energy efficiency and to provide cross-learnings from achievements in different sectors so that energy efficiency in the readers’ own facilities and installations can be assessed and improved with cost-effective means as a contribution to climate change mitigation, cost savings, and improved economic competitiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abdul Quader AKM (2003) Natural gas and the fertilizer industry. Energy Sustain Dev 7(2):40–48

    Article  Google Scholar 

  • Agarwal AK (2007) Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Prog Energy Combust Sci 33(3):233–271

    Article  Google Scholar 

  • Åhman M (2001) Primary energy efficiency of alternative powertrains in vehicles. Energy 26(11):973–989

    Article  Google Scholar 

  • Tehrani Nejad M A (2007) Allocation of CO2 emissions in petroleum refineries to petroleum joint products: a linear programming model for practical application. Energy Econ 29(4):974–997

    Article  Google Scholar 

  • Al-Kharabsheh S (2006) An innovative reverse osmosis desalination system using hydrostatic pressure. Desalination 196(1–3):210–214

    Article  Google Scholar 

  • Allan JA (2005) Virtual water: a strategic resource global solutions to regional deficits. Ground Water 36(4):545–546

    Article  Google Scholar 

  • Allenby B (2006) The ontologies of industrial ecology. Prog Ind Ecol 3(1/2):28–40

    Article  Google Scholar 

  • Al-Mansour F, Merse S, Tomsic M (2003) Comparison of energy efficiency strategies in the industrial sector of Slovenia. Energy 28(5):421–440

    Article  Google Scholar 

  • Al-Mofleh A, Taib S, Mujeebu MA, Salah W (2009) Analysis of sectoral energy conservation in Malaysia. Energy 34(6):733–739

    Article  Google Scholar 

  • Alvarado S, Maldonado P, Barrios A, Jaques I (2002) Long term energy-related environmental issues of copper production. Energy 27(2):183–196

    Article  Google Scholar 

  • Amtrak (2015) http://www.amtrak.com/. Accessed 1 Jan 2015

  • Anastas P, Warner JC (2000) Green chemistry: theory and practice. Oxford University Press, Oxford. ISBN 978-0198506980

    Google Scholar 

  • Anda M, Temmen J (2014) Smart metering for residential energy efficiency: the use of community based social marketing for behavioural change and smart grid introduction. Renew Energy 67:119–127

    Article  Google Scholar 

  • Ang BW (2006) Monitoring changes in economy-wide energy efficiency: from energy–GDP ratio to composite efficiency index. Energy Policy 34(5):574–582

    Article  Google Scholar 

  • Annunziata E, Rizzi F, Frey M (2014) Enhancing energy efficiency in public buildings: the role of local energy audit programmes. Energy Policy 69:364–373

    Article  Google Scholar 

  • Atilla Oner M, Nuri Basoglu A, Sýtký Kok M (2007) Megatrends as perceived in Turkey in comparison to Austria and Germany. Technol Forecast Soc Chang 74(4):538–557

    Article  Google Scholar 

  • Axelsson E, Olsson MR, Berntsson T (2008) Opportunities for process-integrated evaporation in a hardwood pulp mill and comparison with a softwood model mill study. Appl Therm Eng 28(16):2100–2107

    Article  Google Scholar 

  • Ball M, Wietschel M (2009) The hydrogen economy: opportunities and challenges. Cambridge University Press, Cambridge. ISBN 978-0521882163

    Book  Google Scholar 

  • Bannister K (2010) Industrial energy efficiency handbook: eliminating energy waste from mechanical systems. Mcgraw-Hill Book. ISBN: 978-0071490665, New York, USA

    Google Scholar 

  • BBC (2008) Airline in first biofuel flight, BBC News UK, Sunday, 24 Feb 2008. http://news.bbc.co.uk/2/hi/7261214.stm. Accessed 1 Jan 2015

  • Beaumont P (2000) The quest for water efficiency – restructuring of water use in the Middle East. Water Air Soil Pollut 123(1–4):551–564

    Article  Google Scholar 

  • Bedford N, Pitcher G (2005) Austria, Lonely planet Austria. Lonely Planet Publications, Torino, page 56. ISBN 978-1740594844

    Google Scholar 

  • Belaissaoui B, Le Moullec Y, Hagi H, Favre E (2014) Energy efficiency of oxygen enriched air production technologies: cryogeny vs membranes. Sep Purif Technol 125:142–150

    Article  Google Scholar 

  • Berns H, Theisen W, Scheibelein G (2008) Ferrous materials: steel and cast iron. Springer, Berlin. ISBN 978-3540718475

    Google Scholar 

  • Bevilacqua M, Braglia M (2002) Environmental efficiency analysis for ENI oil refineries. J Clean Prod 10(1):85–92

    Article  Google Scholar 

  • Bieling H-H (2007) Chemical reaction – an energy-intensive industry finds the solution in CHP. Cogeneration & On-Site Power. http://www.cospp.com/articles/article_display.cfm?ARTICLE_ID=288130&p=122. Accessed 1 Jan 2015

  • Bilek M, Hardy C, Lenzen M, Dey C (2008) Life-cycle energy balance and greenhouse gas emissions of nuclear energy: a review. Energy Convers Manag 49(8):2178–2199

    Article  Google Scholar 

  • Blok K, Luiten EEM, De Groot HLF (2004) The effectiveness of policy instruments for energy-efficiency improvement in firms: the dutch experience. Springer, Dordrecht. ISBN 978-1402019654

    Book  Google Scholar 

  • Bologna M, Flores JC (2008) A simple mathematical model of society collapse applied to Easter Island. EPL 81:48006

    Article  MathSciNet  Google Scholar 

  • Bor YJ (2008) Consistent multi-level energy efficiency indicators and their policy implications. Energy Econ 30(5):2401–2419

    Article  Google Scholar 

  • Boyce MP (2006) The gas turbine engineering handbook, 3rd edn. Elsevier, Oxford. ISBN 978-0750678469

    Google Scholar 

  • Braun E, Leiber W (2007) The right pump lowers total cost of ownership. World Pumps 2007(491):30–33

    Article  Google Scholar 

  • Braungart M, McDonough W, Bollinger A (2007) Cradle-to-cradle design: creating healthy emissions – a strategy for eco-effective product and system design. J Clean Prod 15(13–14):1337–1348

    Article  Google Scholar 

  • Brown R (2008) U.S. building-sector energy efficiency potential. Lawrence Berkeley National Laboratory, LBNL paper LBNL-1096E. Retrieved from http://www.escholarship.org/uc/item/8vs9k2q8. Accessed 1 Jan 2015

  • Buchanan JM, Stubblebine WC (1962) Externality. Econ New Ser 29(116):371–384

    Article  Google Scholar 

  • Buckminster Fuller R (1973) Nine chains to the moon. Jonathan Cape, London. ISBN 978-0224008006

    Google Scholar 

  • Budin R, Mihelić-Bogdanić A, Sutlović I, Filipan V (2006) Advanced polymerization process with cogeneration and heat recovery. Appl Therm Eng 26(16):1998–2004

    Article  Google Scholar 

  • Bujak J (2009) Experimental study of the energy efficiency of an incinerator for medical waste. Appl Energy 86(11):2386–2393

    Article  Google Scholar 

  • Burgin N, Wilson PA (1985) The influence of cable forces on the efficiency of kite devices as a means of alternative propulsion. J Wind Eng Ind Aerodyn 20(1–3):349–367

    Article  Google Scholar 

  • Çakir U, Çomakli K, Yüksel F (2012) The role of cogeneration systems in sustainability of energy. Energy Convers Manag 63:196–202

    Article  Google Scholar 

  • Callen HB (1985) Thermodynamics and an introduction to thermostatistics, 2nd edn. Wiley, New York. ISBN 978 0471862567

    MATH  Google Scholar 

  • Chambadal P (1957) Les centrales nucléaires, vol 4. Armand Colin, Paris, pp 1–58

    Google Scholar 

  • Chang D, Rhee T, Nam K, Chang K, Lee D, Jeong S (2008) A study on availability and safety of new propulsion systems for LNG carriers. Reliab Eng Syst Saf 93(12):1877–1885

    Article  Google Scholar 

  • Chapagain AK (2006) Globalisation of water: opportunities and threats of virtual water trade. Taylor & Francis, London. ISBN 978-0415409162

    Google Scholar 

  • Charcosset C (2009) A review of membrane processes and renewable energies for desalination. Desalination 245(1–3):214–231

    Article  Google Scholar 

  • Cherubini F, Raugei M, Ulgiati S (2008) LCA of magnesium production: technological overview and worldwide estimation of environmental burdens. Resour Conserv Recycl 52(8–9):1093–1100

    Article  Google Scholar 

  • Cherubini F, Bargigli S, Ulgiati S (2009) Life cycle assessment (LCA) of waste management strategies: landfilling, sorting plant and incineration. Energy 34(12):2116–2123

    Article  Google Scholar 

  • Chirarattananon S, Taweekun J (2003) A technical review of energy conservation programs for commercial and government buildings in Thailand. Energy Convers Manag 44(5):743–762

    Article  Google Scholar 

  • CHP Installation Database (2015) ICF International/EEA. http://www.eea-inc.com/chpdata/index.html. Accessed 1 Jan 2015

  • Christensen CM, Overdorf M, Thomke S (2001) Harvard business review on innovation. Mcgraw-Hill Professional. ISBN: 978-1578516148, New York, USA

    Google Scholar 

  • Clark A (2001) Making provision for energy-efficiency investment in changing markets: an international review. Energy Sustain Dev 5(2):26–38

    Article  Google Scholar 

  • Climate Action Team (2015) http://www.climatechange.ca.gov/climate_action_team/index.html. Accessed 1 Jan 2015

  • Coletti F, Macchietto S (2009a) A heat exchanger model to increase energy efficiency in refinery pre heat trains. Comput Aided Chem Eng 26:1245–1250

    Article  Google Scholar 

  • Coletti F, Macchietto S (2009b) Predicting refinery energy losses due to fouling in heat exchangers. Comput Aided Chem Eng 27:219–224

    Article  Google Scholar 

  • Collantes G, Sperling D (2008) The origin of California’s zero emission vehicle mandate. Transp Res A Policy Pract 42(10):1302–1313

    Article  Google Scholar 

  • Costa A, Paris J, Towers M, Browne T (2007) Economics of trigeneration in a kraft pulp mill for enhanced energy efficiency and reduced GHG emissions. Energy 32(4):474–481

    Article  Google Scholar 

  • Costa A, Bakhtiari B, Schuster S, Paris J (2009) Integration of absorption heat pumps in a Kraft pulp process for enhanced energy efficiency. Energy 34(3):254–260

    Article  Google Scholar 

  • Cullen JM, Allwood JM (2010) Theoretical efficiency limits for energy conversion devices. Energy 35(5):2059–2069

    Article  Google Scholar 

  • Curzon FL, Ahlborn B (1975) Efficiency of a carnot engine at maximum power output. Am J Phys 43:22–24

    Article  Google Scholar 

  • D’Agosto M, Ribeiro SK (2004) Eco-efficiency management program (EEMP) – a model for road fleet operation. Transp Res Part D: Transp Environ 9(6):497–511

    Article  Google Scholar 

  • da Graça Carvalho M, Nogueira M (1997) Improvement of energy efficiency in glass-melting furnaces, cement kilns and baking ovens. Appl Therm Eng 17(8–10):921–933

    Article  Google Scholar 

  • Danish Ministry of Transport and Energy (2005) Action plan for renewed energy-conservation. ISBN: 87-7844-564-7, Copenhagen, Denmark. http://188.64.159.37/graphics/Publikationer/Energipolitik_UK/Action_plan_for_renewed_energy_conservation/index.htm

  • Davies REG, Birtles PJ (1999) Comet: the world’s first jet airliner. Paladwr Press, McLean. ISBN 1-888962-14-3

    Google Scholar 

  • de Swaan Arons J (2010) Efficiency and sustainability in the energy and chemical industries: scientific principles and case studies, 2nd edn. CRC Press, Boca Raton. ISBN 978-1439814710

    Google Scholar 

  • DECHEMA (2013) Energy and GHG reductions in the chemical industry via catalytic processes: ANNEXES. http://www.dechema.de/dechema_media/Chemical_Roadmap_2013_Annexes-p-4582-view_image-1-called_by-dechema2013-original_site-dechema_eV-original_page-124930.pdf. Accessed 1 Jan 2015

  • Demirbas A, Caglar A, Akdeniz F, Gullu D (2000) Conversion of olive husk to liquid fuel by pyrolysis and catalytic liquefaction. Energy Sources Part A Recov Util Environ Eff 22(7):631–639

    Google Scholar 

  • Deolalkar SP (2009) Handbook for designing cement plants. CRC Press. ISBN: 978-8178001456, Boca Raton, USA

    Google Scholar 

  • Dewulf J, van Langenhove H, Muys B, Stijn B, Bakshi BR, Grubb GF, Paulus DM, Sciubba E (2008) Exergy: its potential and limitations in environmental, science and technology. Environ Sci Technol 42(7):2221–2232

    Article  Google Scholar 

  • Dijkgraaf E, Vollebergh HRJ (2004) Burn or bury? A social cost comparison of final waste disposal methods. Ecol Econ 50(3–4):233–247

    Article  Google Scholar 

  • DOE (1995) Landscaping for energy efficiency. DOE/GO-10095-046 FS 220, The Energy Efficiency and Renewable Energy Clearinghouse (EREC), Merrifield, USA. http://www1.eere.energy.gov/library/pdfs/16632.pdf

  • Doheim MA, Sayed SA, Hamed OA (1987) Analysis of waste heat and its recovery in a cement factory. Heat Recovery Syst CHP 7(5):441–444

    Article  Google Scholar 

  • Doukas H, Papadopoulou AG, Psarras J, Ragwitz M, Schlomann B (2008) Sustainable reference methodology for energy end-use efficiency data in the EU. Renew Sustain Energy Rev 12(8):2159–2176

    Article  Google Scholar 

  • Drucker PF (2003) The essential Drucker: the best of sixty years of Peter Drucker’s essential writings on management. HarperCollins, New York. ISBN 978-0060935740

    Google Scholar 

  • Ehrhardt-Martinez K, Laitner JA (2008) The size of the U.S. energy efficiency market: generating a more complete picture. ACEEE, Washington, DC

    Google Scholar 

  • EIA (2015) US Energy Information Administration. http://www.eia.doe.gov/emeu/international/energyconsumption.html. Accessed 1 Jan 2015

  • EIA (U.S. Energy Information Administration) (2014) International energy outlook 2014. http://www.eia.gov/forecasts/ieo/pdf/0484%282014%29.pdf. Accessed 1 Jan 2015

  • Einstein D, Worrell E, Khrushch M (2001) Steam systems in industry: energy use and energy efficiency improvement potentials. Lawrence Berkeley National Laboratory, LBNL paper LBNL-49081. Retrieved from http://www.escholarship.org/uc/item/3m1781f1. Accessed 1 Jan 2015

  • Electric Power Research Institute (EPRI) (2015) http://www.epri.com/. Accessed 1 Jan 2015

  • Elkinton MR, McGowan JG, Manwell JF (2009) Wind power systems for zero net energy housing in the United States. Renew Energy 34(5):1270–1278

    Article  Google Scholar 

  • Ellenberger P (2010) Piping and pipeline calculations manual: construction, design fabrication and examination. Butterworth Heinemann, Amsterdam. ISBN 978-1856176934

    Google Scholar 

  • Ellinger R, Meitz K, Prenninger P, Salchenegger S, Brandstätter W (2001) Comparison of CO2 emission levels for internal combustion engine and fuel cell automotive propulsion systems. SAE paper 2001-01-3751, Warrendale, USA. http://papers.sae.org/2001-01-3751/

  • Elvers B (2007) Handbook of fuels: energy sources for transportation. Wiley-VCH, Weinheim. ISBN 978-3527307401

    Google Scholar 

  • Energy Efficient Motor Driven Systems (2010) The Motor Challenge Programme. http://www.motor-challenge.eu/. Accessed 1 Jan 2015

  • Entchev E, Gusdorf J, Swinton M, Bell M, Szadkowski F, Kalbfleisch W, Marchand R (2004) Micro-generation technology assessment for housing technology. Energy Build 36(9):925–931

    Article  Google Scholar 

  • Etchells JC (2005) Process intensification: safety pros and cons. Process Saf Environ Prot 83(2):85–89

    Article  Google Scholar 

  • Eyring V, Isaksen ISA, Berntsen T, Collins WJ, Corbett JJ, Endresen O, Grainger RG, Moldanova J, Schlager H, Stevenson DS (2010) Transport impacts on atmosphere and climate: shipping. Atmos Environ 44(37):4735–4771

    Article  Google Scholar 

  • Fadare DA, Bamiro OA, Oni AO (2010) Energy and cost analysis of organic fertilizer production in Nigeria. Energy 35(1):332–340

    Article  Google Scholar 

  • Fahim MA, Al-Sahhaf TA, Lababidi HMS (2009) Fundamentals of petroleum refining. Elsevier Science & Technology, Amsterdam. ISBN 978-0444527851

    Google Scholar 

  • FAQ, US Energy Information Administration (2014) How much electricity is lost in transmission and distribution in the United States? http://www.eia.gov/tools/faqs/faq.cfm?id=105&t=3. Accessed 1 Jan 2015

  • Farzaneh-Gord M, Deymi-Dashtebayaz M (2009) A new approach for enhancing performance of a gas turbine (case study: Khangiran refinery). Appl Energy 86(12):2750–2759

    Article  Google Scholar 

  • Fath HES, Hashem HH (1988) Waste heat recovery of dura (Iraq) oil refinery and alternative cogeneration energy plant. Heat Recovery Syst CHP 8(3):265–270

    Article  Google Scholar 

  • Favre B, Peuportier B (2014) Application of dynamic programming to study load shifting in buildings. Energy Build 82:57–64

    Article  Google Scholar 

  • Frosch RA, Gallopoulos NE (1989) Strategies for manufacturing. Sci Am 261(3):144–152

    Article  Google Scholar 

  • Gahleitner G (2013) Hydrogen from renewable electricity: an international review of power-to-gas pilot plants for stationary applications. Int J Hydrog Energy 38(5):2039–2061

    Article  Google Scholar 

  • Gale J, Freund P (2014) Greenhouse gas abatement in energy intensive industries. IEA Greenhouse Gas R&D Programme. http://ccs101.ca/assets/Documents/ghgt5.pdf. Accessed 1 Jan 2015

  • Galitsky C (2008) Energy efficiency improvement and cost saving opportunities for the pharmaceutical industry, an ENERGY STAR guide for energy and plant managers. Lawrence Berkeley National Laboratory, LBNL paper, LBNL-57260. Retrieved from http://www.escholarship.org/uc/item/9zw158vm. Accessed 1 Jan 2015

  • Gan CK, Sapar AF, Mun YC, Chong KE (2013) Techno-economic analysis of LED lighting: a case study in UTeM’s faculty building. Procedia Eng 53:208–216

    Article  Google Scholar 

  • Gehani N (2003) Bell Labs: life in the crown jewel. Silicon Press, Summit. ISBN 978-0929306278

    Google Scholar 

  • Geller H, Harrington P, Rosenfeld AH, Tanishima S, Unander F (2006) Polices for increasing energy efficiency: thirty years of experience in OECD countries. Energy Policy 34(5):556–573

    Article  Google Scholar 

  • Ghafoori E, Flynn PC, Feddes JJ (2007) Pipeline vs. truck transport of beef cattle manure. Biomass Bioenergy 31(2–3):168–175

    Article  Google Scholar 

  • Glass Manufacturing Industry Council (GMIC) (2015) http://www.gmic.org/. Accessed 1 Jan 2015

  • Gomri R (2009) Energy and exergy analyses of seawater desalination system integrated in a solar heat transformer. Desalination 249(1):188–196

    Article  Google Scholar 

  • Gow D (2009) Russia-Ukraine gas crisis intensifies as all European supplies are cut off. The Guardian, 7 Jan 2009. http://www.theguardian.com/business/2009/jan/07/gas-ukraine. Accessed 1 Jan 2015

  • Granade HC, Creyts J, Derkach A, Farese P, Nyquist S, Ostrowski K (2009) Unlocking energy efficiency in the U.S. economy, McKinsey Global Energy and Materials. McKinsey & Company, Washington DC. http://www.mckinsey.com/client_service/electric_power_and_natural_gas/latest_thinking/unlocking_energy_efficiency_in_the_us_economy

  • Graus W, Worrell E (2009) Trend in efficiency and capacity of fossil power generation in the EU. Energy Policy 37:2147–2160

    Article  Google Scholar 

  • Grossman G, Krueger A (1991) Environmental impacts of a North American free trade agreement, National Bureau of Economic Research, Working paper, 3914. NBER, Cambridge, MA

    Book  Google Scholar 

  • Guineé JB (2002) Handbook on life cycle assessment: operational guide to the ISO standards, 2nd edn, Eco-efficiency in industry and science. Springer, Dordrecht. ISBN 978-1402005572

    Google Scholar 

  • Gunner A, Hultmark G, Vorre A, Afshari A, Bergsøe NC (2014) Energy-saving potential of a novel ventilation system with decentralised fans in an office building. Energy Build 84:360–366

    Article  Google Scholar 

  • Hadjipaschalis I, Poullikkas A, Efthimiou V (2009) Overview of current and future energy storage technologies for electric power applications. Renew Sustain Energy Rev 13(6–7):1513–1522

    Article  Google Scholar 

  • Hall DO, Rao K (1999) Photosynthesis, 6th edn. Cambridge University Press, Cambridge. ISBN 978-0521644976

    Google Scholar 

  • Hamelinck CN, Faaij APC (2002) Future prospects for production of methanol and hydrogen from biomass. J Power Sources 111(1):1–22

    Article  Google Scholar 

  • Häring H-W, Belloni A, Ahner C (2007) Industrial gases processing. Wiley-VCH, Weinheim. ISBN 978-3527316854

    Book  Google Scholar 

  • Heitland H, Hiller H, Hoffmann HJ (1990) Factors influencing CO2 emission of future passenger car traffic. MTZ 51:2

    Google Scholar 

  • Hekkert MP, Hendriks FHJF, Faaij APC, Neelis ML (2005) Natural gas as an alternative to crude oil in automotive fuel chains well-to-wheel analysis and transition strategy development. Energy Policy 33(5):579–594

    Article  Google Scholar 

  • Hernandez P, Kenny P (2010) From net energy to zero energy buildings: defining life cycle zero energy buildings (LC-ZEB). Energy Build 42(6):815–821

    Article  Google Scholar 

  • Herring H, Sorrell S (2009) Energy efficiency and sustainable consumption: the rebound effect, Energy, climate and the environment. Palgrave, New York. ISBN 978-0230525344

    Book  Google Scholar 

  • Heselton KE (2004) Boiler operator’s handbook. Marcel Dekker, New York. ISBN 978-0824742904

    Google Scholar 

  • Hinderink P, van der Kooi HJ, De Swaan Arons J (1999) On the efficiency and sustainability of the process industry. Green Chem 176–180. http://www.rsc.org/delivery/_ArticleLinking/DisplayArticleForFree.cfm?doi=a909915h&JournalCode=GC. Accessed 1 Jan 2015

  • Hirscher M, Hirose K (2010) Handbook of hydrogen storage: new materials for future energy storage. Wiley-VCH, Weinheim. ISBN 978-3527322732

    Book  Google Scholar 

  • Hoffmann KH, Burzler JM, Schubert S (1997) Endoreversible thermodynamics. J Non-Equilib Thermodyn 22(4):311–355

    MATH  Google Scholar 

  • Hollinger P (2014) Europe risks ‘significant’ gas shortages this winter. Financial Times, 11 July 2014. http://www.ft.com/cms/s/0/a119b2e4-082e-11e4-acd8-00144feab7de.html#axzz3NCxSbl9h. Accessed 1 Jan 2015

  • Holmberg K, Andersson P, Erdemir A (2012) Global energy consumption due to friction in passenger cars. Tribol Int 47:221–234

    Article  Google Scholar 

  • Hori M (2008) Nuclear energy for transportation: paths through electricity, hydrogen and liquid fuels. Prog Nucl Energy 50(2–6):411–416

    Article  Google Scholar 

  • http://www.energystar.gov/ (2015). Accessed 1 Jan 2015

  • http://www.epa.gov/nrmrl/std/lca/lca.html (2015). Accessed 1 Jan 2015

  • http://www.essentialchemicalindustry.org/processes/recycling-in-the-chemical-industry.html (2015). Accessed 1 Jan 2015

  • http://www.eu-energystar.org/ (2015). Accessed 1 Jan 2015

  • http://www.fueleconomy.gov/ (2015). Accessed 1 Jan 2015

  • http://www.ics-shipping.org/publications/ (2015). Accessed 1 Jan 2015

  • http://www.osti.gov/glass/bestpractices.html (2015). Accessed 1 Jan 2015

  • Ibrahim H, Ilinca A, Perron J (2008) Energy storage systems – characteristics and comparisons. Renew Sustain Energy Rev 12(5):1221–1250

    Article  Google Scholar 

  • IEA (2009) World energy outlook 2009. International Energy Association (IEA), Paris. ISBN 9789264061309

    Google Scholar 

  • IEA (2014a) World energy outlook 2014. ISBN 978-92-64-20804-9. http://www.iea.org/W/bookshop/477-World_Energy_Outlook_2014. Accessed 1 Jan 2015

  • IEA (2014b) World energy outlook 2014. Presentation to the Press. http://www.worldenergyoutlook.org/media/weowebsite/2014/WEO2014_LondonNovember.pdf. Accessed 1 Jan 2015

  • Intergovernmental Panel on Climate Change (IPCC) (2015) http://www.ipcc.ch/. Accessed 1 Jan 2015

  • International Energy Agency (2008) Promoting energy efficiency investments: case studies in the residential sector. Organization for Economic Cooperation & Development, Paris. ISBN 978-9264042148

    Book  Google Scholar 

  • International Energy Agency (2014) CO2 emissions from fuel combustion, IEA statistics. http://www.iea.org/publications/freepublications/publication/CO2EmissionsFromFuelCombustionHighlights2014.pdf. Accessed 1 Jan 2015

  • International Transport Forum (2013) Statistics brief, Dec 2013, Global transport trends in perspective. http://www.internationaltransportforum.org/statistics/StatBrief/2013-12-Trends-Perspective.pdf. Accessed 1 Jan 2015

  • IPCC (2000) Aviation and the global atmosphere. IPCC special reports on climate change. http://www.grida.no/publications/other/ipcc_sr/?src=/climate/ipcc/aviation/avf9-3.htm. Accessed 1 Jan 2015

  • Iriarte A, Almeida MG, Villalobos P (2014) Carbon footprint of premium quality export bananas: case study in Ecuador, the world’s largest exporter. Sci Total Environ 472:1082–1088

    Article  Google Scholar 

  • ISO (2015) http://www.iso-14001.org.uk/index.htm. Accessed 1 Jan 2015

  • Jaffe AB, Stavins RN (1994) The energy-efficiency gap, what does it mean? Energy Policy 22(10):804–810

    Article  Google Scholar 

  • Jamieson A (2009) Customers buy up traditional light bulbs before switch to low energy alternatives. The Telegraph, 18 Apr 2009. http://www.telegraph.co.uk/technology/news/5179266/Customers-buy-up-traditional-light-bulbs-before-switch-to-low-energy-alternatives.html. Accessed 1 Jan 2015

  • Jechoutek KG, Lamech R (1995) New directions in electric power financing. Energy Policy 23(11):941–953

    Article  Google Scholar 

  • Jevons WS (2008) The coal question. Lulu Press, Gloucester. ISBN 978-1409952312

    Google Scholar 

  • Jiang P (2011) Analysis of national and local energy-efficiency design standards in the public building sector in China. Energy Sustain Dev 15(4):443–450

    Article  Google Scholar 

  • Jiang R, Rong C, Chu D (2004) Determination of energy efficiency for a direct methanol fuel cell stack by a fuel circulation method. J Power Sources 126(1–2):119–124

    Article  Google Scholar 

  • Jin JC, Choi J-Y, Yu ESH (2009) Energy prices, energy conservation, and economic growth: evidence from the postwar United States. Int Rev Econ Financ 18(4):691–699

    Article  Google Scholar 

  • Johansson J-E (2015) Compelling facts about plastics, plastics Europe. http://www.plasticseurope.org/. Accessed 1 Jan 2015

  • Johansson B, Åhman M (2002) A comparison of technologies for carbon-neutral passenger transport. Transp Res Part D: Transp Environ 7(3):175–196

    Article  Google Scholar 

  • Johnston P, Stringer R (2001) Chlorine and the environment: an overview of the chlorine industry. Springer, Dordrecht. ISBN 978-0792367970

    Google Scholar 

  • Jönsson J, Algehed J (2010) Pathways to a sustainable European kraft pulp industry: trade-offs between economy and CO2 emissions for different technologies and system solutions. Appl Therm Eng 30(16):2315–2325

    Article  Google Scholar 

  • Jordan P, Jordan JW, McClelland IL (1996) Usability evaluation in industry. Taylor & Francis, London. ISBN 978-0748404605

    Book  Google Scholar 

  • Joshi R, Pathak M (2014) Decentralized grid-connected power generation potential in India: from perspective of energy efficient buildings. Energy Procedia 57:716–724

    Article  Google Scholar 

  • Joskow PL, Marron DB (1993) What does a negawatt really cost? Further thoughts and evidence. Electr J 6(6):14–26

    Article  Google Scholar 

  • Kamga C, Yazici MA (2014) Achieving environmental sustainability beyond technological improvements: potential role of high-speed rail in the United States of America. Transp Res Part D: Transp Environ 31:148–164

    Article  Google Scholar 

  • Kania JJ (1984) Economics of coal transport by slurry pipeline versus unit train: a case study. Energy Econ 6(2):131–138

    Article  Google Scholar 

  • Kanimozhi R, Selvi K, Balaji KM (2014) Multi-objective approach for load shedding based on voltage stability index consideration. Alex Eng J 53(4):817–825

    Article  Google Scholar 

  • Ke J, Price L, Ohshita S, Fridley D, Khanna NZ, Zhou N, Levine M (2012) China’s industrial energy consumption trends and impacts of the Top-1000 Enterprises Energy-Saving Program and the Ten Key Energy-Saving Projects. Energy Policy 50:562–569

    Article  Google Scholar 

  • Kemp RJ (1994) The European high speed network. In: Feilden GBR, Wickens AH, Yates I (eds) Passenger transport after 2000 AD. Spon Press, London. ISBN 0419194703

    Google Scholar 

  • Kemp RJ (1997) Rail transport in the next Millennium, Visions of Tomorrow. IMechE 150 year symposium, London. ISBN: 186058098X

    Google Scholar 

  • Kemp R (2004) Take the car and save the planet. Power Eng 18(5):12–17

    Article  Google Scholar 

  • Khurana S, Banerjee R, Gaitonde U (2002) Energy balance and cogeneration for a cement plant. Appl Therm Eng 22(5):485–494

    Article  Google Scholar 

  • Kilponen L, Ahtila P, Parpala J, Pihko M (2001) Improvement of pulp mill energy efficiency in an integrated pulp and paper mill. In: Proceedings ACEEE summer study on energy efficiency in industry, Washington DC, pp 363–374. http://aceee.org/files/proceedings/2001/data/papers/SS01_Panel1_Paper32.pdf

  • Kim J, Park C (2010) Wind power generation with a parawing on ships, a proposal. Energy 35(3):1425–1432

    Article  Google Scholar 

  • Kodama Y, Kakugawa A, Takahashi T, Kawashima H (2000) Experimental study on microbubbles and their applicability to ships for skin friction reduction. Int J Heat Fluid Flow 21(5):582–588

    Article  Google Scholar 

  • Koros WJ, Fleming GK (1993) Membrane-based gas separation. J Membr Sci 83(1):1–80

    Article  Google Scholar 

  • Kotegawa T, Fry D, DeLaurentis D, Puchaty E (2014) Impact of service network topology on air transportation efficiency. Transp Res Part C Emerg Technol 40:231–250

    Article  Google Scholar 

  • Krigger J, Dorsi C (2008) The homeowner’s handbook to energy efficiency: a guide to big and small improvements. Saturn Resource Management, Helena. ISBN 978-1880120187

    Google Scholar 

  • Kruyt B, van Vuuren DP, de Vries HJM, Groenenberg H (2009) Indicators for energy security. Energy Policy 37(6):2166–2181

    Article  Google Scholar 

  • Kumar S (2002) Cleaner production technology and bankable energy efficiency drives in fertilizer industry in India to minimise greenhouse gas emissions – case study. In: Greenhouse gas control technologies – 6th international conference, Pergamon Press, Oxford. pp 1031–1036

    Google Scholar 

  • Kumar A, Cameron JB, Flynn PC (2007) Pipeline transport of biomass. Appl Biochem Biotechnol 113(1–3):27–39

    Google Scholar 

  • Kumar A, Demirel Y, Jones DD, Hanna MA (2010) Optimization and economic evaluation of industrial gas production and combined heat and power generation from gasification of corn stover and distillers grains. Bioresour Technol 101(10):3696–3701

    Article  Google Scholar 

  • Lackner M (2007) Innovation in business unit pipe: shaping a strategy for the future. Master thesis, LIMAK Johannes Kepler University Business School, Linz

    Google Scholar 

  • Lackner M (ed) (2009) Alternative ignition systems. ProcessEng Engineering GmbH, Vienna. ISBN 978-3902655059

    Google Scholar 

  • Lackner M (ed) (2010) Scale-up in metallurgy. ProcessEng Engineering GmbH, Vienna. ISBN 978-3-902655-10-3

    Google Scholar 

  • Lackner M, Winter F, Geringer B (2005) Chemie im Motor. Chemie in unserer Zeit 4:228–229

    Google Scholar 

  • Lackner M, Winter F, Agarwal AK (2010) Handbook of combustion. Wiley-VCH, Weinheim. ISBN 978-3527324491

    Book  Google Scholar 

  • Lackner M, Palotás AB, Winter F (2013) Combustion: from basics to applications. Wiley-VCH, Weinheim. ISBN 978-3527333516

    Book  Google Scholar 

  • Ladha JK, Pathak H, Krupnik TJ, Six J, van Kessel C (2005) Efficiency of fertilizer nitrogen in cereal production: retrospects and prospects. Adv Agron 87:85–156

    Article  Google Scholar 

  • Le Pen Y, Sévi B (2010) What trends in energy efficiencies? Evidence from a robust test. Energy Econ 32(3):702–708

    Article  Google Scholar 

  • Lechtenböhmer S, Dienst C, Fischedick M, Hanke T, Fernandez R, Robinson D, Kantamaneni R, Gillis B (2007) Tapping the leakages: methane losses, mitigation options and policy issues for Russian long distance gas transmission pipelines. Int J Greenhouse Gas Control 1(4):387–395

    Article  Google Scholar 

  • Lee M-K, Park H, Noh J, Painuly JP (2003) Promoting energy efficiency financing and ESCOs in developing countries: experiences from Korean ESCO business. J Clean Prod 11(6):651–657

    Article  Google Scholar 

  • Li T, Hassan M, Kuwana K, Saito K, King P (2006) Performance of secondary aluminum melting: thermodynamic analysis and plant-site experiments. Energy 31(12):1769–1779

    Article  Google Scholar 

  • Li Z, Gao D, Chang L, Liu P, Pistikopoulos EN (2010) Coal-derived methanol for hydrogen vehicles in China: energy, environment, and economic analysis for distributed reforming. Chem Eng Res Des 88(1):73–80

    Article  Google Scholar 

  • Liang Y, Lee Y-C, Teng A (2007) Real-time communication: internet protocol voice and video telephony and teleconferencing. In: Multimedia over IP and wireless networks. Academic Press, New York, pp 503–525

    Google Scholar 

  • Lin J (2007) Energy conservation investments: a comparison between China and the US. Energy Policy 35(2):916–924

    Article  Google Scholar 

  • Liu F, Ross M, Wang S (1995) Energy efficiency of China’s cement industry. Energy 20(7):669–681

    Article  Google Scholar 

  • López MA, de la Torre S, Martín S, Aguado JA (2015) Demand-side management in smart grid operation considering electric vehicles load shifting and vehicle-to-grid support. Int J Electr Power Energy Syst 64:689–698

    Article  Google Scholar 

  • Loughran DS, Kulick J (2004) Demand-side management and energy efficiency in the United States. Energy J 25(1):19–44

    Article  Google Scholar 

  • Lugt PM, de Niet A, Bouwman WH, Bosma JCN, van den Bleek CM (1996) Catalytic removal of NOx from total energy installation flue-gases for carbon dioxide fertilization in greenhouses. Catal Today 29(1–4):127–131

    Article  Google Scholar 

  • Lund P (2006) Market penetration rates of new energy technologies. Energy Policy 34(17):3317–3326

    Article  Google Scholar 

  • Lutz E (2008) Identification and analysis of energy saving projects in a Kraft mill. Pulp Paper Can 109(5):13–17

    Google Scholar 

  • Malça J, Freire F (2006) Renewability and life-cycle energy efficiency of bioethanol and bio-ethyl tertiary butyl ether (bioETBE): assessing the implications of allocation. Energy 31(15):3362–3380

    Article  Google Scholar 

  • Malkov T (2004) Novel and innovative pyrolysis and gasification technologies for energy efficient and environmentally sound MSW disposal. Waste Manag 24(1):53–79

    Article  Google Scholar 

  • Mandal SK, Madheswaran S (2010) Environmental efficiency of the Indian cement industry: an interstate analysis. Energy Policy 38(2):1108–1118

    Article  Google Scholar 

  • Markis T, Paravantis JA (2007) Energy conservation in small enterprises. Energy Build 39(4):404–415

    Article  Google Scholar 

  • Marks P (2009) ‘Morphing’ winglets to boost aircraft efficiency. New Sci 201(2692):22–23

    Article  Google Scholar 

  • Marsh G (2007) Airbus takes on Boeing with reinforced plastic A350 XWB. Reinf Plast 51(11):26–27, 29

    Article  Google Scholar 

  • Marsh G (2008) Biofuels: aviation alternative? Renew Energy Focus 9(4):48–51

    Article  Google Scholar 

  • Max Appl (2006) Ammonia. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  • McCabe WL, Smith J, Harriott P (2004) Unit operations of chemical engineering, 7th edn. Mcgraw-Hill, New York. ISBN 978-0072848236

    Google Scholar 

  • McKay G, Holland CR (1981) Energy savings from steam losses on an oil refinery. Eng Cost Prod Econ 5(3–4):193–203

    Article  Google Scholar 

  • McKinsey & Company, Inc. (2009) Energy: a key to competitive advantage, new sources of growth and productivity. Anja Hartmann, Wolfgang Huhn, Christian Malorny, Martin Stuchtey, Thomas Vahlenkamp, Detlef Kayser, Detlev Mohr, Claudia Funke Frankfurt/Germany http://www.mckinsey.com/~/media/mckinsey/dotcom/client_service/sustainability/pdfs/energy_competitive_advantage_in_germany.ashx

  • McLean-Conner P (2009) Energy efficiency: principles and practices. Pennwell, Tulsa. ISBN 978-1593701789

    Google Scholar 

  • McMichael AJ, Powles JW, Butler CD, Uauy R (2007) Food, livestock production, energy, climate change, and health. Lancet 370:1253–1263

    Article  Google Scholar 

  • Mesa AA, Gómez CM, Azpitarte RU (1997) Design of the maximum energy efficiency desalination plant (PAME). Desalination 108(1–3):111–116

    Article  Google Scholar 

  • Meyers RA (2004) Handbook of petrochemicals production processes. Mcgraw-Hill Professional, New York. ISBN 978-0071410427

    Google Scholar 

  • Miller FP, Vandome AF, McBrewster J (2009) Zero-energy building. Energy efficiency in British housing, energy conservation, passive house. Alphascript Publishing. ISBN: 978-6130023331, Beau Bassin, Mauritius

    Google Scholar 

  • Minas L, Ellison B (2009) Energy efficiency for information technology: how to reduce power consumption in servers and data centers. Intel Press, Santa Clara. ISBN 978-1934053201

    Google Scholar 

  • Mitsos A, Chachuat B, Barton PI (2007) What is the design objective for portable power generation: efficiency or energy density? J Power Sources 164(2):678–687

    Article  Google Scholar 

  • Moore DA (2005) Sustaining performance improvements in energy intensive industries. In: Proceedings of the twenty-seventh industrial energy technology conference, New Orleans, ESL-IE-05-05-31, 10–13 May 2005

    Google Scholar 

  • Moors EHM (2006) Technology strategies for sustainable metals production systems: a case study of primary aluminium production in The Netherlands and Norway. J Clean Prod 14(12–13):1121–1138

    Article  Google Scholar 

  • Morris DR, Steward FR, Evans P (1983) Energy efficiency of a lead smelter. Energy 8(5):337–349

    Article  Google Scholar 

  • Mudahar MS, Hignett TP (1985) Energy efficiency in nitrogen fertilizer production. Energy Agric 4:159–177

    Article  Google Scholar 

  • Mundaca L (2009) Energy Efficiency Trading: concepts, practice and evaluation of tradable certificates for energy efficiency improvements. VDM Verlag, Saarbrücken. ISBN 978-3639139730

    Google Scholar 

  • Musa C, Licheri R, Locci AM, Orrù R, Cao G, Rodriguez MA, Jaworska L (2009) Energy efficiency during conventional and novel sintering processes: the case of Ti–Al2O3–TiC composites. J Clean Prod 17(9):877–882

    Article  Google Scholar 

  • Nachreiner F, Nickel P, Meyer I (2006) Human factors in process control systems: the design of human–machine interfaces. Saf Sci 44(1):5–26

    Article  Google Scholar 

  • Naisbitt J (1985) Megatrends: ten new directions transforming our lives. Grand Central Publishing, New York. ISBN: 978-0446512510,

    Google Scholar 

  • Najjar YSH, Habeebullah MB (1991) Energy conservation in the refinery by utilizing reformed fuel gas and furnace flue gases. Heat Recovery Syst CHP 11(6):517–521

    Article  Google Scholar 

  • Namboodiri V (2009) Algorithms & protocols towards energy-efficiency in wireless networks. VDM Verlag, Saarbrücken. ISBN 978-3639157024

    Google Scholar 

  • Nässén J, Holmberg J (2005) Energy efficiency – a forgotten goal in the Swedish building sector? Energy Policy 33(8):1037–1051

    Article  Google Scholar 

  • Nässén J, Sprei F, Holmberg J (2008) Stagnating energy efficiency in the Swedish building sector – economic and organisational explanations. Energy Policy 36(10):3814–3822

    Article  Google Scholar 

  • NDRC (2007) Bulletin of energy consumption in the top 1000 Chinese enterprises. Beijing, Sept 2007 (Chinese)

    Google Scholar 

  • Nelson P, Safirova E, Walls M (2007) Telecommuting and environmental policy: lessons from the ecommute program. Transp Res Part D: Transp Environ 12(3):195–207

    Article  Google Scholar 

  • Next 10’s California Green Innovation Index (2010) http://www.nextten.org/environment/greenInnovation.html. Accessed 1 Jan 2015

  • Nishitani H, Kawamura T, Suzuki G (2000) University – industry cooperative study on plant operations. Comput Chem Eng 24(2–7):557–567

    Article  Google Scholar 

  • Nordman R, Berntsson T (2009) Use of advanced composite curves for assessing cost-effective HEN retrofit II. Case studies. Appl Therm Eng 29(2–3):282–289

    Article  Google Scholar 

  • Novikov II (1958) The efficiency of atomic power stations. J Nucl Energy II 7:125–128 (translated from Atomnaya Energiya 3:409 (1957))

    Google Scholar 

  • Nuo G, Gaoshang W (2008) Analysis on China’s energy efficiency. Energy China 7:32–36

    Google Scholar 

  • Office of Energy Efficiency, Natural Resources Canada (2002) Energy efficiency planning and management guide. Canadian Industry Program for Energy Conservation, Ottawa. ISBN 0-662-31457-3

    Google Scholar 

  • Okura S, Rubin R, Brost M (2006) What types of appliances and lighting are being used in California residences? http://mail.mtprog.com/CD_Layout/Day_2_22.06.06/1615-1815/ID147_Okura_final.pdf, http://escholarship.org/uc/item/7qz3b977. Accessed 1 Jan 2015

  • Olah GA, Goeppert A, Surya Prakash GK (2009) Beyond oil and gas: the methanol economy, 2nd edn. Wiley-VCH, Weinheim. ISBN 978-3527324224

    Book  Google Scholar 

  • Oude Lansink A, Bezlepkin I (2003) The effect of heating technologies on CO2 and energy efficiency of Dutch greenhouse firms. J Environ Manage 68(1):73–82

    Article  Google Scholar 

  • Page S, Krumdieck S (2009) System-level energy efficiency is the greatest barrier to development of the hydrogen economy. Energy Policy 37(9):3325–3335

    Article  Google Scholar 

  • Panjeshahi MH, Ghasemian Langeroudi E, Tahouni N (2008) Retrofit of ammonia plant for improving energy efficiency. Energy 33(1):46–64

    Article  Google Scholar 

  • Patel M, Mutha N (2004) Plastics production and energy. Encycl Energy 3:81–91

    Article  Google Scholar 

  • Patrick DR, Fardo S, Richardson RE (2007) Energy conservation guidebook, 2nd edn. CRC Press, Boca Raton. ISBN 978-0849391781

    Google Scholar 

  • Patterson MG (1996) What is energy efficiency? Concepts, indicators and methodological issues. Energy Policy 24(5):377–390

    Article  Google Scholar 

  • Peeters PM, Middel J, Hoolhorst A (2005) Fuel efficiency of commercial aircraft, an overview of historical and future trends, NLR-CR-2005-669. Nationaal Lucht- en Ruimtevaartlaboratorium, National Aerospace Laboratory NLR. http://www.transportenvironment.org/Publications/prep_hand_out/lid/398. Accessed 1 Jan 2015

  • Penner JE, Lister DH, Griggs DJ, Dokken DJ, McFarland M (1999) Aviation and the global atmosphere; a special report to IPCC working groups I and III. Cambridge University Press, Cambridge

    Google Scholar 

  • Perrot P (1998) A to Z of thermodynamics. Oxford University Press, Oxford. ISBN 978-0198565529

    Google Scholar 

  • Phylipsen GJM (Dian), Blok K, Bode J-W (2002) Industrial energy efficiency in the climate change debate: comparing the US and major developing countries. Energy Sustain Dev 6(4):30–44

    Google Scholar 

  • Phylipsen GJM, Blok K, Worrell E (1997) International comparisons of energy efficiency-methodologies for the manufacturing industry. Energy Policy 25(7–9):715–725

    Article  Google Scholar 

  • Pilavachi PA (2000) Power generation with gas turbine systems and combined heat and power. Appl Therm Eng 20(15–16):1421–1429

    Article  Google Scholar 

  • Poliakoff M, Fitzpatrick JM, Farren TR, Anastas PT (2002) Green chemistry: science and politics of change. Science 297:807–810

    Article  Google Scholar 

  • Pootakham T, Kumar A (2010) A comparison of pipeline versus truck transport of bio-oil. Bioresour Technol 101(1):414–421

    Article  Google Scholar 

  • Principi P, Fioretti R (2014) A comparative life cycle assessment of luminaires for general lighting for the office – compact fluorescent (CFL) vs Light Emitting Diode (LED) – a case study. J Clean Prod 83(15):96–107

    Article  Google Scholar 

  • Prins MJ, Ptasinski KJ, Janssen FJJG (2004) Exergetic optimisation of a production process of Fischer–Tropsch fuels from biomass. Fuel Process Technol 86:375–389

    Article  Google Scholar 

  • Quadrelli R, Peterson S (2007) The energy–climate challenge: recent trends in CO2 emissions from fuel combustion. Energy Policy 35(11):5938–5952

    Article  Google Scholar 

  • Radulovic D, Skok S, Kirincic V (2011) Energy efficiency public lighting management in the cities. Energy 36(4):1908–1915

    Article  Google Scholar 

  • Rafiqul I, Weber C, Lehmann B, Voss A (2005) Energy efficiency improvements in ammonia production – perspectives and uncertainties. Energy 30(13):2487–2504

    Article  Google Scholar 

  • Raj NT, Iniyan S, Goic R (2011) A review of renewable energy based cogeneration technologies. Renew Sustain Energy Rev 15(8):3640–3648

    Article  Google Scholar 

  • Rajan GG (2002) Optimizing energy efficiencies in industry. McGraw-Hill Professional, London. ISBN 978-0071396929

    Google Scholar 

  • Ramírez CA, Blok K, Neelis M, Patel M (2006a) Adding apples and oranges: the monitoring of energy efficiency in the Dutch food industry. Energy Policy 34(14):1720–1735

    Article  Google Scholar 

  • Ramírez CA, Patel M, Blok K (2006b) From fluid milk to milk powder: energy use and energy efficiency in the European dairy industry. Energy 31(12):1984–2004

    Article  Google Scholar 

  • Ranaiefar F, Amelia R (2011) Freight-Transportation Externalities, Logistics Operations and Management, pp 333–358

    Google Scholar 

  • Ren T, Patel MK, Blok K (2008) Steam cracking and methane to olefins: energy use, CO2 emissions and production costs. Energy 33(5):817–833

    Google Scholar 

  • Rhee H-J (2008) Home-based telecommuting and commuting behavior. J Urban Econ 63(1):198–216

    Article  Google Scholar 

  • Rietbergen MG, Farla JCM, Blok K (2002) Do agreements enhance energy efficiency improvement?: analysing the actual outcome of long-term agreements on industrial energy efficiency improvement in The Netherlands. J Clean Prod 10(20):153–163

    Article  Google Scholar 

  • Rosen MA, Scott DS (1988) Energy and exergy analyses of a production process for methanol from natural gas. Int J Hydrog Energy 13(10):617–623

    Article  Google Scholar 

  • Rosenfeld A (2008) Energy efficiency: the first and most profitable way to delay climate change. EPA Region IX, California Energy Commission, Sacramento

    Google Scholar 

  • Rugman AM, Li J (2005) Real options and international investment. Edward Elgar, Northampton. ISBN 1840649011

    Google Scholar 

  • Russell C (2009) Managing energy from the top down: connecting industrial energy efficiency to business performance. CRC Press. ISBN: 978-1439829967, Boca Raton, USA

    Google Scholar 

  • Rydh CJ, Sandén BA (2005) Energy analysis of batteries in photovoltaic systems. Part II: energy return factors and overall battery efficiencies. Energy Convers Manag 46(11–12):1980–2000

    Article  Google Scholar 

  • Ryerson MS, Kim H (2014) The impact of airline mergers and hub reorganization on aviation fuel consumption. J Clean Prod 85:395–407

    Article  Google Scholar 

  • Saunders H (1992) The Khazzoom-Brookes postulate and neoclassical economic growth. Energy J 13(14):131–148

    Google Scholar 

  • Saunders C, Barber A, Taylor G (2006) Food miles – comparative energy/emissions; performance of New Zealand’s agriculture industry, vol 285, Research report. Agribusiness & Economics Research Unit, Lincoln University, Christchurch. ISBN 0-909042-71-3

    Google Scholar 

  • Scheirs J (2006) Recycling of waste plastics. In: Pyrolysis and related feedstock recycling technologies: converting waste plastics into diesel and other fuels. Wiley, ISBN: 978-0470021521, Weinheim, Germany

    Google Scholar 

  • Schipper L, Meyers S, Howarth RB, Steiner R (2005) Energy efficiency and human activity: past trends, future prospects. Cambridge University Press, Cambridge. ISBN 978-0521479851

    Google Scholar 

  • Schleich J (2009) Barriers to energy efficiency: a comparison across the German commercial and services sector. Ecol Econ 68(7):2150–2159

    Article  MathSciNet  Google Scholar 

  • Schneekluth H, Bertram V (1998) Ship propulsion. In: Ship design for efficiency and economy, 2nd edn. Butterworth Heinemann, Oxford, pp 180–205

    Google Scholar 

  • Serra LM, Lozano M-A, Ramos J, Ensinas AV, Nebra SA (2009) Polygeneration and efficient use of natural resources. Energy 34(5):575–586

    Article  Google Scholar 

  • Sharma SD (2009) Fuels – hydrogen production|gas cleaning: pressure swing adsorption. In: Encyclopedia of electrochemical power sources. Elsevier Science & Technology, Amsterdam/Netherlands, pp 335–349

    Google Scholar 

  • Shell Eco Marathon (2015) http://www.shell.com/home/content/ecomarathon/about/current_records/. Accessed 1 Jan 2015

  • Sheredeka VV, Krivoruchko PA, Polokhlivets EK, Kiyan VI, Atkarskaya AB (2001) Energy-saving technologies in glass production. Glas Ceram 58(1–2):70–71

    Article  Google Scholar 

  • Sloan P, Legrand W, Chen JS (2009) Energy efficiency. In: Sustainability in the hospitality industry. Butterworth Heinemann, Oxford, pp 13–26

    Google Scholar 

  • Smith P (2009) The processing of high silica bauxites – review of existing and potential processes. Hydrometallurgy 98(1–2):162–176

    Article  Google Scholar 

  • Sorrell S (2009) Jevons’ Paradox revisited: the evidence for backfire from improved energy efficiency. Energy Policy 37(4):1456–1469

    Article  Google Scholar 

  • Sorrell S, O’Malley E, Schleich J (2004) The economics of energy efficiency: barriers to cost-effective investment. Edward Elgar, Cheltenham. ISBN 978-1840648898

    Google Scholar 

  • Sorrell S, Lehtonen M, Stapleton L, Pujol J, Champion T (2009) Decomposing road freight energy use in the United Kingdom. Energy Policy 37(8):3115–3129

    Article  Google Scholar 

  • Stepanov V, Stepanov S (1998) Energy use efficiency of metallurgical processes. Energy Convers Manag 39(16–18):1803–1809

    Article  Google Scholar 

  • Stern N (2007) The economics of climate change: the stern review. Cambridge University Press, Cambridge. ISBN 978-0521700801

    Book  Google Scholar 

  • Stuart D, Schewe RL, McDermott M (2014) Reducing nitrogen fertilizer application as a climate change mitigation strategy: Understanding farmer decision-making and potential barriers to change in the US. Land Use Policy 36:210–218

    Article  Google Scholar 

  • Sustainable Energy Ireland (SEI) (2015) http://www.sei.ie. Accessed 1 Jan 2015

  • Svensson AM, Møller-Holst S, Glöckner R, Maurstad O (2007) Well-to-wheel study of passenger vehicles in the Norwegian energy system. Energy 32(4):437–445

    Article  Google Scholar 

  • Swanton CJ, Murphy SD, Hume DJ, Clements DR (1996) Recent improvements in the energy efficiency of agriculture: case studies from Ontario, Canada. Agric Syst 52(4):399–418

    Article  Google Scholar 

  • Santin J (2005) Swiss fuel cell car breaks fuel efficiency record. Fuel Cells Bull 2005(8):8–9

    Google Scholar 

  • Szentennai P, Lackner M (2014) Advanced control methods for combustion. Chem Eng 2–6:08

    Google Scholar 

  • Tapio P, Banister D, Luukkanen J, Vehmas J, Willamo R (2007) Energy and transport in comparison: immaterialisation, dematerialisation and decarbonisation in the EU15 between 1970 and 2000. Energy Policy 35(1):433–451

    Article  Google Scholar 

  • Tay JH, Low SC, Jeyaseelanb S (1996) Vacuum desalination for water purification using waste heat. Desalination 106(1–3):131–135

    Article  Google Scholar 

  • Taylor AMKP (2008) Science review of internal combustion engines. Energy Policy 36(12):4657–4667

    Article  Google Scholar 

  • Taylor RP, Govindarajalu C, Levin J (2008) Financing energy efficiency: lessons from Brazil, China, India, and beyond. World Bank, Washington, DC. ISBN 978-0821373040

    Book  Google Scholar 

  • Techato K-a, Watts DJ, Chaiprapat S (2009) Life cycle analysis of retrofitting with high energy efficiency air-conditioner and fluorescent lamp in existing buildings. Energy Policy 37(1):318–325

    Article  Google Scholar 

  • The International Energy Association in Collaboration with CEFIC (2007) Feedstock substitutes, energy efficient technology and CO2 reduction for petrochemical products, A workshop in the framework of the G8 dialogue on climate change, clean energy and sustainable development, Paris, France

    Google Scholar 

  • Thomas CE (2009) Fuel cell and battery electric vehicles compared. Int J Hydrog Energy 34(15):6005–6020

    Article  Google Scholar 

  • Thumann A, Dunning S (2008) Plant engineers and managers guide to energy conservation, 9th edn. CRC Press, Boca Raton. ISBN 978-1420052466

    Google Scholar 

  • Tin T, Sovacool BK, Blake D, Magill P, El Naggar S, Lidstrom S, Ishizawa K, Berte J (2010) Energy efficiency and renewable energy under extreme conditions: case studies from Antarctica. Renew Energy 35(8):1715–1723

    Article  Google Scholar 

  • Todorovic MS, Kim JT (2014) Data centre’s energy efficiency optimization and greening – case study methodology and R&D needs. Energy Build 85:564–578

    Article  Google Scholar 

  • Tromans D (2008) Mineral comminution: energy efficiency considerations. Miner Eng 21(8):613–620

    Article  Google Scholar 

  • Tuomaala M, Hurme M, Leino A-M (2010) Evaluating the efficiency of integrated systems in the process industry–case: steam cracker. Appl Therm Eng 30(1):45–52

    Article  Google Scholar 

  • Tutterow V, Casada D, McKane A (2002) Pumping systems efficiency improvements flow straight to the bottom line. Lawrence Berkeley National Laboratory, LBNL paper LBNL-51043. Retrieved from http://www.escholarship.org/uc/item/8s4315r9. Accessed 1 Jan 2015

  • UK Carbon Trust (2015) http://www.carbontrust.co.uk. Accessed 1 Jan 2015

  • United Nations (2006) Energy efficiency guide for industry in Asia. United Nations, Nairobi. ISBN 978-9280726473

    Google Scholar 

  • University of York (2010) Recycling in the chemical industry. http://www.wasteonline.org.uk/resources/InformationSheets/Plastics.htm. Accessed 1 Jan 2015

  • US Department of Energy (2005) A manual for the economic evaluation of energy efficiency and renewable energy technologies. International Law & Taxation, Washington, DC. ISBN 978-1410221056

    Google Scholar 

  • US Department of Energy (2010) Energy efficiency & renewable energy, best practices, motors, pumps and fans. http://www1.eere.energy.gov/industry/bestpractices/motors.html. Accessed 1 Jan 2015

  • US Green Building Council (2015) http://www.usgbc.org. Accessed 1 Jan 2015

  • Utlu Z, Hepbasli A (2007) A review on analyzing and evaluating the energy utilization efficiency of countries. Renew Sustain Energy Rev 11(1):1–29

    Article  Google Scholar 

  • Utlu Z, Sogut Z, Hepbasli A, Oktay Z (2006) Energy and exergy analyses of a raw mill in a cement production. Appl Therm Eng 26(17–18):2479–2489

    Article  Google Scholar 

  • van Vliet OPR, Faaij APC, Turkenburg WC (2009) Fischer–Tropsch diesel production in a well-to-wheel perspective: a carbon, energy flow and cost analysis. Energy Convers Manag 50(4):855–876

    Article  Google Scholar 

  • Venkatarama Reddy BV, Jagadish KS (2003) Embodied energy of common and alternative building materials and technologies. Energy Build 35(2):129–137

    Article  Google Scholar 

  • Vine E (2002) Promoting emerging energy-efficiency technologies and practices by utilities in a restructured energy industry: a report from California. Energy 27(4):317–328

    Article  Google Scholar 

  • Vine E, Rhee CH, Lee KD (2006) Measurement and evaluation of energy efficiency programs: California and South Korea. Energy 31(6–7):1100–1113

    Article  Google Scholar 

  • Wall G, Sciubba E, Naso V (1994) Exergy use in the Italian society. Energy 19(12):1267–1274

    Article  Google Scholar 

  • Wang L (2008) Energy efficiency and management in food processing facilities. CRC Press, Boca Raton. ISBN 978-1420063387

    Book  Google Scholar 

  • Wang Y, Feng X, Cai Y, Zhu M, Chu KH (2009) Improving a process’s efficiency by exploiting heat pockets in its heat exchange network. Energy 34(11):1925–1932

    Article  Google Scholar 

  • Wang Z, Roberts RR, Naterer GF, Gabriel KS (2012) Comparison of thermochemical, electrolytic, photoelectrolytic and photochemical solar-to-hydrogen production technologies. Int J Hydrog Energy 37(21):16287–16301

    Article  Google Scholar 

  • Wei Y-M, Liao H, Fan Y (2007) An empirical analysis of energy efficiency in China’s iron and steel sector. Energy 32(12):2262–2270

    Article  Google Scholar 

  • Wei M, Patadia S, Kammen DM (2010) Putting renewables and energy efficiency to work: how many jobs can the clean energy industry generate in the US? Energy Policy 38(2):919–931

    Article  Google Scholar 

  • Wu W, Wang B, Shi W, Li X (2014) An overview of ammonia-based absorption chillers and heat pumps. Renew Sustain Energy Rev 31:681–707

    Article  Google Scholar 

  • Wells C (2001) Total energy indicators of agricultural sustainability: dairy farming case study. Ministry of Agriculture and Forestry, Wellington

    Google Scholar 

  • Wenkai L, Hui C-W, Hua B, Tong Z (2003) Material and energy integration in a petroleum refinery complex. Comput Aided Chem Eng 15(Part 2):934–939

    Article  Google Scholar 

  • Wernick IK, Herman R, Govind S, Ausubel JH (1996) Materialization and dematerialization: measures and trends. Daedalus 125(3):171–198

    Google Scholar 

  • White SB, Howe C (1998) Water efficiency and reuse: a least cost planning approach. In: Proceedings of the 6th NSW recycled water seminar, Sydney

    Google Scholar 

  • Williams V, Noland RB, Toumi R (2002) Reducing the climate change impacts of aviation by restricting cruise altitudes. Transp Res Part D: Transp Environ 7(6):451–464

    Article  Google Scholar 

  • Winchester N, McConnachie D, Wollersheim C, Waitz IA (2013) Economic and emissions impacts of renewable fuel goals for aviation in the US. Transp Res A Policy Pract 58:116–128

    Article  Google Scholar 

  • World Business Council for Sustainable Development (WBCSD) (2000) Eco-efficiency: creating more value with less impact. World Business Council for Sustainable Development, Geneva. ISBN 2-94-024017-5

    Google Scholar 

  • Worrell E, Blok K (1994) Energy savings in the nitrogen fertilizer industry in the Netherlands. Energy 19(2):195–209

    Article  Google Scholar 

  • Worrell E, Galitsky C (2005) Energy efficiency improvement and cost saving opportunities for petroleum refineries. Lawrence Berkeley National Laboratory, LBNL paper LBNL-56183. Retrieved from http://www.escholarship.org/uc/item/96m8d8gm. Accessed 1 Jan 2015

  • Worrell E, Galitsky C (2008) Energy efficiency improvement and cost saving opportunities for cement making, an ENERGY STAR® guide for energy and plant managers. Ernest Orlando Lawrence Berkeley National Laboratory, LBNL-54036-Revision

    Google Scholar 

  • Worrell E, De Beer JG, Faaij APC, Blok K (1994a) Potential energy savings in the production route for plastics. Energy Convers Manag 35(12):1073–1085

    Article  Google Scholar 

  • Worrell E, Cuelenaere FA, Blok K, Turkenburg WC (1994b) Energy consumption of industrial processes in the European union. Energy 11(19):1113–1129

    Article  Google Scholar 

  • Worrell E, Martin N, Price L (2000a) Potentials for energy efficiency improvement in the US cement industry. Energy 25(12):1189–1214

    Article  Google Scholar 

  • Worrell E, Phylipsen D, Einstein D, Martin N (2000b) Energy use and energy intensity of the U.S. chemical industry. Lawrence Berkeley National Laboratory, LBNL paper LBNL-44314. Retrieved from http://www.escholarship.org/uc/item/2925w8g6. Accessed 1 Jan 2015

  • Worrell E, Phylipsen D, Einstein D, Martin N (2000c) Energy use and energy intensity of the U.S. chemical industry, LBNL-44314. Lawrence Berkeley National Laboratory, Berkeley

    Book  Google Scholar 

  • Worrell E, Martin N, Anglani N, Einstein D, Khrushch M, Price L (2001) Opportunities to improve energy efficiency in the U.S. pulp and paper industry. Lawrence Berkeley National Laboratory. LBNL paper LBNL-48354. Retrieved from http://www.escholarship.org/uc/item/7sv597fv. Accessed 1 Jan 2015

  • Worrell E, Galitsky C, Masanet E, Graus W (2008) Energy efficiency improvement and cost saving opportunities for the glass industry: an energy star guide for energy and plant managers. Lawrence Berkeley National Laboratory, Publication no LBNL-57335-Revision

    Google Scholar 

  • Xia A, Cheng J, Ding L, Lin R, Song W, Zhou J, Cen K (2014) Enhancement of energy production efficiency from mixed biomass of Chlorella pyrenoidosa and cassava starch through combined hydrogen fermentation and methanogenesis. Appl Energy 120:23–30

    Article  Google Scholar 

  • Yang M (2010) Energy efficiency improving opportunities in a large Chinese shoe-making enterprise. Energy Policy 38:452–462

    Article  Google Scholar 

  • Yildiz B, Kazimi MS (2006) Efficiency of hydrogen production systems using alternative nuclear energy technologies. Int J Hydrog Energy 31(1):77–92

    Article  Google Scholar 

  • Yudken JS, Bassi AM (2009) Climate policy and energy-intensive manufacturing impacts and options. Millenium Institute, 2111 Wilson Boulevard, Suite 700, Arlington 22201. http://www.globalurban.org/Climate_Policy_and_Energy-Intensive_Manufacturing.pdf. Accessed 1 Jan 2015

  • Zamfirescu C, Dincer I (2009) Ammonia as a green fuel and hydrogen source for vehicular applications. Fuel Process Technol 90(5):729–737

    Article  Google Scholar 

  • Zhao H (2007) HCCI and CAI engines for the automotive industry. Woodhead Publishing, Cambridge. ISBN 978-1845691288

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilian Lackner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Lackner, M. (2021). Energy Efficiency: Comparison of Different Systems and Technologies. In: Lackner, M., Sajjadi, B., Chen, WY. (eds) Handbook of Climate Change Mitigation and Adaptation. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6431-0_24-2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6431-0_24-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6431-0

  • Online ISBN: 978-1-4614-6431-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Energy Efficiency: Comparison of Different Systems and Technologies
    Published:
    22 October 2021

    DOI: https://doi.org/10.1007/978-1-4614-6431-0_24-3

  2. Original

    Energy Efficiency: Comparison of Different Systems and Technologies
    Published:
    10 October 2020

    DOI: https://doi.org/10.1007/978-1-4614-6431-0_24-2