Skip to main content

Research on the Pathophysiology of Chiari I-Related Symptoms and Syringomyelia, with Emphasis on Dynamic MRI Techniques

  • Chapter
  • First Online:
The Chiari Malformations

Abstract

The pathophysiology of Chiari-related symptoms and syringomyelia remains enigmatic. Present-day technology, most notably MR imaging, is providing progressively more sophisticated opportunities to test traditional as well as contemporary theories while adding to conventional animal models a selection of promising mechanical and computational representations of syringomyelia and its etiologies. We will briefly touch on the past and present of Chiari-related syringomyelia research with emphasis on essential questions related to the development of not just the anatomical anomalies but also the constellation of symptoms with which they are associated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gardner WJ, Angel J. The mechanism of syringomyelia and its surgical correction. Clin Neurosurg. 1959;6:131–40.

    Google Scholar 

  2. Gardner WJ. Syringomyelia. Surg Neurol. 1977;7:370.

    PubMed  CAS  Google Scholar 

  3. Gardner WJ, McMurray FG. “Non-communicating” syringomyelia: a non-existent entity. Surg Neurol. 1976;6:251–6.

    PubMed  CAS  Google Scholar 

  4. Pillay PK, Awad IA, Hahn JF. Gardner’s hydrodynamic theory of syringomyelia revisited. Cleve Clin J Med. 1992;59:373–80.

    Article  PubMed  CAS  Google Scholar 

  5. West RJ, Williams B. Radiographic studies of the ventricles in syringomyelia. Neuroradiology. 1980;20:5–16.

    Article  PubMed  CAS  Google Scholar 

  6. Batzdorf U. Pathogenesis and development theories. In: Anson JA, Benzel EC, Awad IA, editors. Syringomyelia and the Chiari malformations. Park Ridge: AANS; 1997. p. 35–40.

    Google Scholar 

  7. Milhorat TH, Kotzen RM. Stenosis of the central canal of the spinal cord following inoculation of suckling hamsters with reovirus type I. J Neurosurg. 1994;81:103–6.

    Article  PubMed  CAS  Google Scholar 

  8. Williams B. The distending force in the production of “communicating syringomyelia”. Lancet. 1969;2:189–93.

    Article  PubMed  CAS  Google Scholar 

  9. Williams B. A demonstration analogue for ventricular and intraspinal dynamics (DAVID). J Neurol Sci. 1974;23:445–61.

    Article  PubMed  CAS  Google Scholar 

  10. Williams B. Progress in syringomyelia. Neurol Res. 1986;8:130–45.

    PubMed  CAS  Google Scholar 

  11. Rusbridge C, Greitz D, Iskandar BJ. Syringomyelia: current concepts in pathogenesis, diagnosis, and treatment. J Vet Intern Med. 2006;20:469–79.

    Article  PubMed  Google Scholar 

  12. Ball MJ, Dayan AD. Pathogenesis of syringomyelia. Lancet. 1972;2:799–801.

    Article  PubMed  CAS  Google Scholar 

  13. Lonser RR, Heiss JD, Oldfield EH. Syringomyelia, hemangioblastomas, and Chiari I malformation. Case illustration. J Neurosurg. 1999;90:169.

    Article  PubMed  CAS  Google Scholar 

  14. Oldfield EH, Muraszko K, Shawker TH, Patronas NJ. Pathophysiology of syringomyelia associated with Chiari I malformation of the cerebellar tonsils. Implications for diagnosis and treatment. J Neurosurg. 1994;80:3–15.

    Article  PubMed  CAS  Google Scholar 

  15. Oldfield EH. Syringomyelia. J Neurosurg. 2001;95:153–5.

    PubMed  CAS  Google Scholar 

  16. Fischbein NJ, Dillon WP, Cobbs C, Weinstein PR. The “presyrinx” state: a reversible myelopathic condition that may precede syringomyelia. AJNR Am J Neuroradiol. 1999;20:7–20.

    PubMed  CAS  Google Scholar 

  17. Levy EI, Heiss JD, Kent MS, Riedel CJ, Oldfield EH. Spinal cord swelling preceding syrinx development. Case report. J Neurosurg. 2000;92:93–7.

    PubMed  CAS  Google Scholar 

  18. Stoodley MA, Brown SA, Brown CJ, Jones NR. Arterial pulsation-dependent perivascular cerebrospinal fluid flow into the central canal in the sheep spinal cord. J Neurosurg. 1997;86:686–93.

    Article  PubMed  CAS  Google Scholar 

  19. Stoodley MA, Jones NR, Brown CJ. Evidence for rapid fluid flow from the subarachnoid space into the spinal cord central canal in the rat. Brain Res. 1996;707:155–64.

    Article  PubMed  CAS  Google Scholar 

  20. Egnor M, Rosiello A, Zheng L. A model of intracranial pulsations. Pediatr Neurosurg. 2001;35:284–98.

    Article  PubMed  CAS  Google Scholar 

  21. Greitz D. Unraveling the riddle of syringomyelia. Neurosurg Rev. 2006;29:251–63; discussion 264.

    Article  PubMed  Google Scholar 

  22. Josephson A, Greitz D, Klason T, Olson L, Spenger C. A spinal thecal sac constriction model supports the theory that induced pressure gradients in the cord cause edema and cyst formation. Neurosurgery. 2001;48:636–45; discussion 645–6.

    Article  PubMed  CAS  Google Scholar 

  23. Carpenter PW, Berkouk K, Lucey AD. Pressure wave propagation in fluid-filled co-axial elastic tubes. Part 2: mechanisms for the pathogenesis of syringomyelia. J Biomech Eng. 2003;125:857–63.

    Article  PubMed  CAS  Google Scholar 

  24. Williams B. Chronic herniation of the hindbrain. Ann R Coll Surg Engl. 1981;63:9–17.

    PubMed  CAS  Google Scholar 

  25. Williams B. Simultaneous cerebral and spinal fluid pressure recordings. 2. Cerebrospinal dissociation with lesions at the foramen magnum. Acta Neurochir (Wien). 1981;59:123–42.

    Article  CAS  Google Scholar 

  26. Williams B. Cerebrospinal fluid pressure changes in response to coughing. Brain. 1976;99:331–46.

    Article  PubMed  CAS  Google Scholar 

  27. Greitz D, Wirestam R, Franck A, Nordell B, Thomsen C, Stahlberg F. Pulsatile brain movement and associated hydrodynamics studied by magnetic resonance phase imaging. The Monro-Kellie doctrine revisited. Neuroradiology. 1992;34:370–80.

    Article  PubMed  CAS  Google Scholar 

  28. Citrin CM, Sherman JL, Gangarosa RE, Scanlon D. Physiology of the CSF flow-void sign: modification by cardiac gating. AJR Am J Roentgenol. 1987;148:205–8.

    Article  PubMed  CAS  Google Scholar 

  29. Armonda RA, Citrin CM, Foley KT, Ellenbogen RG. Quantitative cine-mode magnetic resonance imaging of Chiari I malformations: an analysis of cerebrospinal fluid dynamics. Neurosurgery. 1994;35:214–23; discussion 223–4.

    Article  PubMed  CAS  Google Scholar 

  30. Heiss JD, Patronas N, DeVroom HL, Shawker T, Ennis R, Kammerer W, et al. Elucidating the pathophysiology of syringomyelia. J Neurosurg. 1999;91:553–62.

    Article  PubMed  CAS  Google Scholar 

  31. Alperin N, Sivaramakrishnan A, Lichtor T. Magnetic resonance imaging-based measurements of cerebrospinal fluid and blood flow as indicators of intracranial compliance in patients with Chiari malformation. J Neurosurg. 2005;103:46–52.

    Article  PubMed  Google Scholar 

  32. Nitz WR, Bradley Jr WG, Watanabe AS, Lee RR, Burgoyne B, O’Sullivan RM, et al. Flow dynamics of cerebrospinal fluid: assessment with phase-contrast velocity MR imaging performed with retrospective cardiac gating. Radiology. 1992;183:395–405.

    PubMed  CAS  Google Scholar 

  33. Connor SE, O’Gorman R, Summers P, Simmons A, Moore EM, Chandler C, et al. SPAMM, cine phase contrast imaging and fast spin-echo T2-weighted imaging in the study of intracranial cerebrospinal fluid (CSF) flow. Clin Radiol. 2001;56:763–72.

    Article  PubMed  CAS  Google Scholar 

  34. Battal B, Kocaoglu M, Bulakbasi N, Husmen G, Tuba Sanal H, Tayfun C. Cerebrospinal fluid flow imaging by using phase-contrast MR technique. Br J Radiol. 2011;84:758–65.

    Article  PubMed  CAS  Google Scholar 

  35. McGirt MJ, Nimjee SM, Fuchs HE, George TM. Relationship of cine phase-contrast magnetic resonance imaging with outcome after decompression for Chiari I malformations. Neurosurgery. 2006;59:140–6; discussion 140–6.

    Article  PubMed  Google Scholar 

  36. Hofkes SK, Iskandar BJ, Turski PA, Gentry LR, McCue JB, Haughton VM. Differentiation between symptomatic Chiari I malformation and asymptomatic tonsilar ectopia by using cerebrospinal fluid flow imaging: initial estimate of imaging accuracy. Radiology. 2007;245:532–40.

    Article  PubMed  Google Scholar 

  37. Brugieres P, Idy-Peretti I, Iffenecker C, Parker F, Jolivet O, Hurth M, et al. CSF flow measurement in syringomyelia. AJNR Am J Neuroradiol. 2000;21:1785–92.

    PubMed  CAS  Google Scholar 

  38. Mauer UM, Gottschalk A, Mueller C, Weselek L, Kunz U, Schulz C. Standard and cardiac-gated phase-contrast magnetic resonance imaging in the clinical course of patients with Chiari malformation type I. Neurosurg Focus. 2011;31:E5.

    Article  PubMed  Google Scholar 

  39. Alperin N, Kulkarni K, Loth F, Roitberg B, Foroohar M, Mafee MF, et al. Analysis of magnetic resonance imaging-based blood and cerebrospinal fluid flow measurements in patients with Chiari I malformation: a system approach. Neurosurg Focus. 2001;11:E6.

    Article  PubMed  CAS  Google Scholar 

  40. Iskandar BJ, Quigley M, Haughton VM. Foramen magnum cerebrospinal fluid flow characteristics in children with Chiari I malformation before and after craniocervical decompression. J Neurosurg. 2004;101:169–78.

    PubMed  Google Scholar 

  41. Quigley MF, Iskandar B, Quigley ME, Nicosia M, Haughton V. Cerebrospinal fluid flow in foramen magnum: temporal and spatial patterns at MR imaging in volunteers and in patients with Chiari I malformation. Radiology. 2004;232:229–36.

    Article  PubMed  Google Scholar 

  42. Kalata W. Effects of Chiari malformation on cerebrospinal fluid dynamics within the spinal canal. PhD thesis, Advisor Frank Loth, PhD, Department of Mechanical Engineering, University of Illinois at Chicago, Chicago; 2012.

    Google Scholar 

  43. Loth F, Yardimci MA, Alperin N. Hydrodynamic modeling of cerebrospinal fluid motion within the spinal cavity. J Biomech Eng. 2001;123:71–9.

    PubMed  CAS  Google Scholar 

  44. Hentschel S, Mardal KA, Lovgren AE, Linge S, Haughton V. Characterization of cyclic CSF flow in the foramen magnum and upper cervical spinal canal with MR flow imaging and computational fluid dynamics. AJNR Am J Neuroradiol. 2010;31:997–1002.

    Article  PubMed  CAS  Google Scholar 

  45. Iskandar BJ, Hedlund GL, Grabb PA, Oakes WJ. The resolution of syringohydromyelia without hindbrain herniation after posterior fossa decompression. J Neurosurg. 1998;89:212–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bermans J. Iskandar MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sandoval-Garcia, C., Iskandar, B.J. (2013). Research on the Pathophysiology of Chiari I-Related Symptoms and Syringomyelia, with Emphasis on Dynamic MRI Techniques. In: Tubbs, R., Oakes, W. (eds) The Chiari Malformations. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6369-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6369-6_13

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6368-9

  • Online ISBN: 978-1-4614-6369-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics