Skip to main content

Heterogeneous Biomechanical Model on Correcting Brain Deformation Induced by Tumor Resection

  • Conference paper
  • First Online:
Computational Biomechanics for Medicine
  • 1450 Accesses

Abstract

In this paper we present a non-rigid registration method to align pre-operative MRI (preMRI) with resected intra-operative MRI (iMRI) to compensate for brain deformation during tumor resection. This method formulates the registration as a three-variable (point correspondence, deformation field and resection region) functional minimization problem, in which point correspondence is represented by a fuzzy assign matrix, deformation field is represented by a piece-wise linear function regularized by the strain energy of a heterogeneous biomechanical model, and resection region is represented by a maximal connected tetrahedral mesh. A Nested Expectation and Maximization framework is developed to simultaneously resolve these three variables. This method accommodates a heterogeneous biomechanical model as the regularization term to realistically describe the underlying deformation field and allows the removal of the tetrahedra from the model to simulate the tumor resection. A simple two tissue heterogeneous model (ventricle plus the rest of the brain) is used to evaluate this method on 14 clinical cases. The experimental results show the effectiveness of this method in correcting the deformation induced by resection. The comparison between the homogeneous model and the heterogeneous model demonstrates the statistical significance of the improvement brought by the heterogeneous model (P-value 0.04)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miga, M.I., Paulsen, K.D., Lemery, J.M., Eisner, S.D., Hartov, A., Kennedy, F.E., Roberts, D.W.: Model-updated image guidance: initial clinical experiences with gravity-induced brain deformation. IEEE Trans. Med. Imag. 18(10), 866–74 (1999)

    Article  Google Scholar 

  2. Ferrant, M., Nabavi, A., Macq, B., Jolesz, F., Kikinis, R., Warfield, S.: Registration of 3-d intraoperative mr images of the brain using a finite-element biomechanical model. IEEE Trans. Med. Imag. 20(12), 1384–97 (2001)

    Article  Google Scholar 

  3. Skrinjar, O., Nabavi, A., Duncan, J.: Model-driven brain shift compensation. Med. Image Anal. 6(4), 361–73 (2002)

    Article  Google Scholar 

  4. Liu, Y., Foteinos, P., Chernikov, A., Chrisochoides, N.: Multitissue mesh generation for brain images. In: International Meshing Roundtable, 19, pp. 367–384 (2010)

    Google Scholar 

  5. Miga, M.I., Roberts, D., Kennedy, F., Platenik, L., Hartov, A., Lunn, K., Paulsen, K.: Modeling of retraction and resection for intraoperative updating of images. Neurosurgery 49(1), 75–84 (2001)

    Google Scholar 

  6. Ding, S., Miga, M.I., Noble, J.H., Cao, A., Dumpuri, P., Thompson, R.C., Dawant, B.M.: Semiautomatic registration of pre- and post brain tumor resection laser range data: method and validation. IEEE Trans. Biomed. Eng. 56(3), 770–80 (2009)

    Article  Google Scholar 

  7. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the em algorithm. J. R. Stat. Soc. Ser. B 39, 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  8. Risholm, P., Melvær, E.L., Mørken, K., Samset, E.: Intra-operative adaptive fem-based registration accommodating tissue resection. Medical Imaging 2009: Image Processing 7259(1), pp. 72 592Y–72 592Y–11. SPIE (2009)

    Google Scholar 

  9. Haili, C., Rangarajan, A.: A new point matching algorithm for nonrigid registration. Comput. Vis. Image Underst. 89(2–3), 114–141 (2003)

    MATH  Google Scholar 

  10. Bookstein, F.L.: Principal warps: thin-plate splines and the decompostion of deformations. IEEE Trans. Pattern Anal. Mach. Intell. 11(6), 567–585 (1989)

    Article  MATH  Google Scholar 

  11. Liu, Y., Yao, C., Zhou, L., Chrisochoides, N.: A point based non-rigid registration for tumor resection using IMRI. In: 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 1217–1220 (2010)

    Google Scholar 

  12. Besl, P.J., McKay, N.D.: A method for registration of 3-d shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)

    Article  Google Scholar 

  13. Rangarajan, A., Chui, H., Bookstein, F.L.: The softassign procrustes matching algorithm. In: Information Processing in Medical Imaging, pp. 29–42. Springer, New York (1997)

    Google Scholar 

  14. Bathe, K.: Finite Element Procedure. Prentice-Hall, Englewood Cliffs (1996)

    Google Scholar 

  15. Hughes, T.J.R.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, pp. 207–208. Dover Publications, Mineola (2000)

    Google Scholar 

  16. Clatz, O., Delingette, H., Talos, I.-F., Golby, A., Kikinis, R., Jolesz, F., Ayache, N., Warfield, S.: Robust non-rigid registration to capture brain shift from intra-operative MRI. IEEE Trans. Med. Imag. 24(11), 1417–1427 (2005)

    Article  Google Scholar 

  17. John, A.: R. a. fisher and the making of maximum likelihood 1912–1922. Stat. Sci. 12(3), 162–176 (1997)

    Google Scholar 

  18. Hausdorff, F.: Set Theory, 2nd edn. Helsea Publishing, New York (1962)

    Google Scholar 

  19. Wittek, A., Miller, K., Kikinis, R., Warfield, S.K.: Patient-specific model of brain deformation: application to medical image registration. J. Biomech. 40(4), 919–929 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NSF grants CCF-1139864, CCF-1139864, and CSI-1139864, as well as by the John Simon Guggenheim Foundation and the Richard T. Cheng Endowment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikos Chrisochoides .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Liu, Y., Chrisochoides, N. (2013). Heterogeneous Biomechanical Model on Correcting Brain Deformation Induced by Tumor Resection. In: Wittek, A., Miller, K., Nielsen, P. (eds) Computational Biomechanics for Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6351-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6351-1_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6350-4

  • Online ISBN: 978-1-4614-6351-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics