Skip to main content

“Rainbows” in Homogeneous and Radially Inhomogeneous Spheres: Connections with Ray, Wave, and Potential Scattering Theory

  • Conference paper
  • First Online:
Advances in Interdisciplinary Mathematical Research

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 37))

Abstract

This chapter represents an attempt to summarize some of the direct and indirect connections that exist between ray theory, wave theory, and potential scattering theory. Such connections have been noted in the past and have been exploited to some degree, but in the opinion of this author, there is much more yet to be pursued in this regard. This article provides the framework for more detailed analysis in the future. In order to gain a better appreciation for a topic, it is frequently of value to examine it from as many complementary levels of description as possible, and that is the objective here. Drawing in part on the work of Nussenzveig, Lock, Debye, and others, the mathematical nature of the rainbow is discussed from several perspectives. The primary bow is the lowest-order bow that can occur by scattering from a spherical drop with constant refractive index n, but zero-order (or direct transmission) bows can exist when the sphere is radially inhomogeneous. The refractive index profile automatically defines a scattering potential but with a significant difference compared to the standard quantum mechanical form: the potential is k-dependent. A consequence of this is that there are no bound states for this system. The correspondences between the resonant modes in scattering by a potential of the “well-barrier” type and the behavior of electromagnetic “rays” in a transparent (or dielectric) sphere are discussed. The poles and saddle points of the associated scattering matrix have quite profound connections to electromagnetic tunneling, resonances, and “rainbows” arising within and from the sphere. The links between the various mathematical and physical viewpoints are most easily appreciated in the case of constant n, thus providing insight into possible extensions to these descriptions for bows of arbitrary order in radially inhomogeneous spheres (and cylinders).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sassen, K.: J. Opt. Soc. Am. 69, 1083–1089 (1979)

    Article  Google Scholar 

  2. Nussenzveig, H.M.: Sci. Am. 236(4), 116–127 (1977)

    Google Scholar 

  3. Lock, J.A.: J. Opt. Soc. Am. A5, 2032–2044 (1988)

    Article  MathSciNet  Google Scholar 

  4. Lock, J.A.: J. Opt. Soc. Am. A25, 2971–2979 (2008)

    Article  MathSciNet  Google Scholar 

  5. Lock, J.A.: J. Opt. Soc. Am. A25, 2980–2990 (2008)

    Article  MathSciNet  Google Scholar 

  6. Lock, J.A.: J. Opt. Soc. Am. A25, 2991–3000 (2008)

    Article  MathSciNet  Google Scholar 

  7. Grandy, W.T., Jr.: Scattering of Waves from Large Spheres. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  8. Nussenzveig, H.M.: Diffraction Effects in Semiclassical Scattering. Cambridge University Press, Cambridge (1992)

    Book  Google Scholar 

  9. Nussenzveig, H.M.: J. Math. Phys. 10, 82–125 (1969)

    Article  MathSciNet  Google Scholar 

  10. Nussenzveig, H.M.: J. Math. Phys. 10, 126–178 (1969)

    Google Scholar 

  11. Nussenzveig, H.M.: J. Opt. Soc. Am. 69, 1068–1079 (1979)

    Article  MathSciNet  Google Scholar 

  12. Nussenzveig, H.M.: Ann. Phys. 34, 23–95 (1965)

    Article  MathSciNet  Google Scholar 

  13. Adam, J.A.: Phys. Reports 356, 229–365 (2002)

    Article  MATH  Google Scholar 

  14. Adam, J.A.: Not AMS 49, 1360–1371 (2002)

    Google Scholar 

  15. Adam, J.A., Laven, P.: Appl. Opt. 46, 922–929 (2007)

    Article  Google Scholar 

  16. Adam, J.A.: Appl. Opt. 50, F50–F59 (2011)

    Article  MathSciNet  Google Scholar 

  17. Born, M., Wolf, E.: Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  18. Brockman, C.L., Alexopoulos, N.G.: Appl. Opt. 16, 166–174 (1977)

    Article  Google Scholar 

  19. Adam, J.A., Pohrivchak, M., Nuntaplook, U.: to be published

    Google Scholar 

  20. Vetrano, M.R., van Beeck, J.P., Riethmuller, M.: Opt. Lett. 30, 658–660 (2005)

    Article  Google Scholar 

  21. Uslenghi, P.L.E.: IEEE Trans. Ant. Prop. 17, 235–236 (1969)

    Article  Google Scholar 

  22. Luneberg, R.K.: The Mathematical Theory of Optics. University of California Press, Berkeley and Los Angeles (1964)

    Google Scholar 

  23. Lock, J.A.: J. Opt. Soc. Am. A20, 499–507 (2003)

    Article  Google Scholar 

  24. Leonhardt, U., Philbin, T.: Geometry and Light: The Science of Invisibility. Dover Publications, New York (2010)

    MATH  Google Scholar 

  25. Johnson, B.R.: J. Opt. Soc. Am. A10, 343–352 (1993)

    Article  Google Scholar 

  26. Sanz, P., Sanudo, J., Sesma, J.: J. Math. Phys. 22, 2594–2597 (1981)

    Article  MathSciNet  Google Scholar 

  27. Nussenzveig, H.M.: Nucl. Phys. 11, 499–521 (1959)

    Article  Google Scholar 

  28. Burke, P.G.: Potential Scattering in Atomic Physics. Plenum Press, New York & London (1977)

    Book  Google Scholar 

  29. Burke, P.G., Berrington, K.A. (eds.): Atomic and Molecular Processes: an R-Matrix Approach. Taylor & Francis Group (1993)

    Google Scholar 

  30. Schiff, L.I.: Quantum Mechanics, 3rd edn. McGraw-Hill, New York (1968)

    Google Scholar 

  31. de Alfaro, V., Regge, T.: Potential Scattering. North-Holland Publishing, Amsterdam (1965)

    MATH  Google Scholar 

  32. Frisk, G.V., DeSanto, J.A.: J. Acoust. Soc. Am. 47, 172–180 (1970)

    Article  Google Scholar 

  33. Kronenfeld, R.: Am. J. Phys. 39, 1056–1068 (1971)

    Article  Google Scholar 

  34. Omnes, R., Froissart, M.: Mandelstam Theory and Regge Poles. W.A. Benjamin, New York (1963)

    MATH  Google Scholar 

  35. Newton, R.G.: The Complex j-Plane. W.A. Benjamin, New York (1964)

    MATH  Google Scholar 

  36. Schutzer, W., Tiomno, J.: Phys. Rev. 83, 249–251 (1951)

    Article  MathSciNet  Google Scholar 

  37. Sitenko, A.G.: Scattering Theory. Springer, Berlin (1991)

    Book  Google Scholar 

  38. van de Hulst, H.C.: Light Scattering by Small Particles. Dover, New York (1981)

    Google Scholar 

  39. Wang, R.T., van de Hulst, H.C.: Appl. Opt. 30, 106–117 (1991)

    Article  Google Scholar 

  40. Ungut, A., Grehan, G., Gouesbet, G.: Appl. Opt. 20, 2911–2918 (1981)

    Article  Google Scholar 

  41. Gouesbet, G.: Opt. Comm. 231, 9–15 (2004)

    Article  Google Scholar 

  42. Pendry, J.B.: Phys. Rev. Lett. 85, 3966–3969 (2000)

    Article  Google Scholar 

  43. Eftimiu, C.: J. Math. Phys. 23, 2140–2146 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  44. Newton, R.G.: Scattering Theory of Waves and Particles, 2nd edn. Springer, Berlin (1982)

    MATH  Google Scholar 

  45. Baym, G.: Lectures on Quantum Mechanics. W.A. Benjamin, New York (1969)

    MATH  Google Scholar 

Download references

Acknowledgements

I have been heavily influenced by the work of Professors H. M. Nussenzveig and J. A. Lock in the preparation of this chapter. I would particularly like to thank Professor Lock for his generous advice, detailed and constructive suggestions on this material (also pointing out an error in Appendix 5), and permission to use the quotation from his paper [3]. The comments of an anonymous reviewer also contributed significantly to the improvement of this chapter and are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Adam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Adam, J.A. (2013). “Rainbows” in Homogeneous and Radially Inhomogeneous Spheres: Connections with Ray, Wave, and Potential Scattering Theory. In: Toni, B. (eds) Advances in Interdisciplinary Mathematical Research. Springer Proceedings in Mathematics & Statistics, vol 37. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6345-0_3

Download citation

Publish with us

Policies and ethics