Skip to main content

On the \(\Gamma \)-Convergence Theory and Its Application to Block Copolymer Morphology

  • Conference paper
  • First Online:
Advances in Interdisciplinary Mathematical Research

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 37))

Abstract

The \(\Gamma \) -convergence theory deals with a singular limit phenomenon in the calculus of variations. It provides a rigorous notion for a family of functionals to converge to a functional of seemingly a different type, while still retaining vital properties in the limiting functional. For instance, global minimizers of the functionals in the family converge to a global minimizer of the limiting functional. Near an isolated local minimizer of the limiting functional, there exist local minimizers of the functionals in the converging family that are sufficiently close to the limiting functional. This theory has found a surprising application in the study of block copolymer morphology. Block copolymers are soft materials characterized by fluid-like disorder on the molecular scale and a high degree of order at a longer length scale. This chapter presents a description of the Ohta–Kawasaki theory density theory for block copolymer morphology and applies the \(\Gamma \) -convergence theory to reduce the Ohta–Kawasaki theory to a geometric problem containing perimeter minimization and nonlocal interaction. As an application of \(\Gamma \) -convergence, one determines all the global and local minimizers in one dimension. Consequently global and local minimizers are also characterized for the Ohta–Kawasaki theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28(2), 258–267 (1958)

    Google Scholar 

  2. Chen, X., Oshita, Y.: Periodicity and uniqueness of global minimizers of an energy functional containing a long-range interaction. SIAM J. Math. Anal. 37(4), 1299–1332 (2005)

    Article  MathSciNet  Google Scholar 

  3. Choksi, R., Ren, X.: On the derivation of a density functional theory for microphase separation of diblock copolymers. J. Stat. Phys. 113(1–2), 151–176 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Choksi, R., Ren, X.: Diblock copolymer - homopolymer blends: derivation of a density functional theory. Phys. D 203(1–2), 100–119 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. De Giorgi, E.: Sulla convergenza di alcune successioni d’integrali del tipo dell’area. Rend. Mat. 8(6), 277–294 (1975)

    MathSciNet  MATH  Google Scholar 

  6. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992)

    MATH  Google Scholar 

  7. Hewitt, E., Stromberg, K.: Real and Abstract Analysis. Springer, New York (1965)

    Book  MATH  Google Scholar 

  8. Kohn, R., Sternberg, P.: Local minimisers and singular perturbations. Proc. Roy. Soc. Edinburgh Sect. A 111(1–2), 69–84 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  9. Modica, L.: The gradient theory of phase transitions and the minimal interface criterion. Arch. Rat. Mech. Anal. 98(2), 123–142 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  10. Modica, L., Mortola, S.: Un esempio di \({\Gamma }^{-}\) -convergenza. Boll. Un. Mat. Ital. B (5) 14(1), 285–299 (1977)

    Google Scholar 

  11. Müller, S.: Singular perturbations as a selection criterion for periodic minimizing sequences. Calc. Var. Part. Differ. Equat. 1(2), 169–204 (1993)

    Article  MATH  Google Scholar 

  12. Nishiura, Y., Ohnishi, I.: Some mathematical aspects of the microphase separation in diblock copolymers. Phys. D 84(1–2), 31–39 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ohta, T., Kawasaki, K.: Equilibrium morphology of block copolymer melts. Macromolecules 19(10), 2621–2632 (1986)

    Article  Google Scholar 

  14. Ren, X., Truskinovsky, L.: Finite scale microstructures in nonlocal elasticity. J. Elasticity 59(1–3), 319–355 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ren, X., Wei, J.: On the multiplicity of solutions of two nonlocal variational problems. SIAM J. Math. Anal. 31(4), 909–924 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ren, X., Wei, J.: Concentrically layered energy equilibria of the di-block copolymer problem. Eur. J. Appl. Math. 13(5), 479–496 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ren, X., Wei, J.: On energy minimizers of the di-block copolymer problem. Interfac. Free Boundaries 5(2), 193–238 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ren, X., Wei, J.: On the spectra of 3-D lamellar solutions of the diblock copolymer problem. SIAM J. Math. Anal. 35(1), 1–32 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ren, X., Wei, J.: Soliton-stripe patterns in charged Langmuir monolayers. J. Nonlinear Sci. 13(6), 603–624 (2003)

    Article  MathSciNet  Google Scholar 

  20. Ren, X., Wei, J.: Triblock copolymer theory: ordered ABC lamellar phase. J. Nonlinear Sci. 13(2), 175–208 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ren, X., Wei, J.: Chiral symmetry breaking and the soliton-stripe pattern in Langmuir monolayers and smectic films. Nonlinearity 17(2), 617–632 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ren, X., Wei, J.:. The soliton-stripe pattern in the Seul-Andelman membrane. Phys. D 188 (3–4), 277–291 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ren, X., Wei, J.: Stability of spot and ring solutions of the diblock copolymer equation. J. Math. Phys. 45(11), 4106–4133 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ren, X., Wei, J.: Droplet solutions in the diblock copolymer problem with skewed monomer composition. Calc. Var. Part. Differ. Equat. 25(3), 333–359 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ren, X., Wei, J.: Existence and stability of spherically layered solutions of the diblock copolymer equation. SIAM J. Appl. Math. 66(3), 1080–1099 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ren, X., Wei, J.: Many droplet pattern in the cylindrical phase of diblock copolymer morphology. Rev. Math. Phys. 19(8), 879–921 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ren, X., Wei, J.: Single droplet pattern in the cylindrical phase of diblock copolymer morphology. J. Nonlinear Sci. 17(5), 471–503 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ren, X., Wei, J.: Spherical solutions to a nonlocal free boundary problem from diblock copolymer morphology. SIAM J. Math. Anal. 39(5), 1497–1535 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Supported in part by NSF grant DMS-0907777.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Ren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Ren, X. (2013). On the \(\Gamma \)-Convergence Theory and Its Application to Block Copolymer Morphology. In: Toni, B. (eds) Advances in Interdisciplinary Mathematical Research. Springer Proceedings in Mathematics & Statistics, vol 37. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6345-0_2

Download citation

Publish with us

Policies and ethics