Skip to main content

Kisspeptin and Seasonality of Reproduction

  • Chapter
  • First Online:
Kisspeptin Signaling in Reproductive Biology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 784))

Abstract

Wild and domesticated species display seasonality in reproductive function, controlled predominantly by photoperiod. Seasonal alterations in breeding status are caused by changes in the secretion of gonadotropin-releasing hormone (GnRH) that are mediated by upstream neuronal afferents that regulate the GnRH cells. In particular, kisspeptin appears to play a major role in seasonality of reproduction, transducing the feedback effect of gonadal steroids as well as having an independent (nonsteroid dependent) circannual rhythm. A substantial body of data on this issue has been obtained from studies in sheep and hamsters and this is reviewed here in detail. Kisspeptin function is upregulated during the breeding season in sheep, stimulating reproductive function, but contradictory data are found in Siberian and Syrian hamsters. The relative quiescence of kisspeptin cells in the nonbreeding season can be counteracted by administration of the peptide, leading to activation of reproductive function. Although there is a major role for melatonin in the transduction of photoperiod to the reproductive system, kisspeptin cells do not appear to express the melatonin receptor, so the means by which seasonality changes the level of kisspeptin activity remains unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Robinson TJ (1959) The oestrus cycle of the ewe and doe. In: Cole HH, Cupps PT (eds) Reproduction in domestic animals. Academic, New York, pp 292–333

    Google Scholar 

  2. Boden MJ, Kennaway DJ (2006) Circadian rhythms and reproduction [review]. Reproduction 132(3):379–392

    Article  PubMed  CAS  Google Scholar 

  3. Kennaway DJ (2005) The role of circadian rhythmicity in reproduction [review]. Hum Reprod Update 11(1):91–101

    Article  PubMed  Google Scholar 

  4. Reiter RJ (1980) The pineal and its hormones in the control of reproduction in mammals [review]. Endocr Rev 1(2):109–131

    Article  PubMed  CAS  Google Scholar 

  5. Lincoln GA, Andersson H, Loudon A (2003) Clock genes in calendar cells as the basis of annual timekeeping in mammals—a unifying hypothesis [review]. J Endocrinol 179(1):1–13

    Article  PubMed  CAS  Google Scholar 

  6. Karsch FJ, Bittman EL, Foster DL, Goodman RL, Legan SJ, Robinson JE (1984) Neuroendocrine basis of seasonal reproduction [review]. Recent Prog Horm Res 40:185–232

    PubMed  CAS  Google Scholar 

  7. Barrell GK, Moenter SM, Caraty A, Karsch FJ (1992) Seasonal changes of gonadotropin-­releasing hormone secretion in the ewe. Biol Reprod 46(6):1130–1135

    Article  PubMed  CAS  Google Scholar 

  8. Robinson JE, Radford HM, Karsch FJ (1985) Seasonal changes in pulsatile luteinizing hormone (LH) secretion in the ewe: relationship of frequency of LH pulses to day length and response to estradiol negative feedback. Biol Reprod 33(2):324–334

    Article  PubMed  CAS  Google Scholar 

  9. Legan SJ, Karsch FJ, Foster DL (1977) The endocrine control of seasonal reproductive function in the ewe: a marked change in response to the negative feedback action of estradiol on luteinizing hormone secretion. Endocrinology 101(3):818–824

    Article  PubMed  CAS  Google Scholar 

  10. Clarke IJ, Cummins JT (1982) The temporal relationship between gonadotropin releasing hormone (GnRH) and luteinizing hormone (LH) secretion in ovariectomized ewes. Endocrinology 111(5):1737–1739

    Article  PubMed  CAS  Google Scholar 

  11. Karsch FJ, Cummins JT, Thomas GB, Clarke IJ (1987) Steroid feedback inhibition of pulsatile secretion of gonadotropin-releasing hormone in the ewe. Biol Reprod 36(5):1207–1218

    Article  PubMed  CAS  Google Scholar 

  12. Karsch FJ, Dahl GE, Evans NP, Manning JM, Mayfield KP, Moenter SM et al (1993) Seasonal changes in gonadotropin-releasing hormone secretion in the ewe: alteration in response to the negative feedback action of estradiol. Biol Reprod 49(6):1377–1383

    Article  PubMed  CAS  Google Scholar 

  13. Clarke IJ (1993) Variable patterns of gonadotropin-releasing hormone secretion during the estrogen-induced luteinizing hormone surge in ovariectomized ewes. Endocrinology 133(4):1624–1632

    Article  PubMed  CAS  Google Scholar 

  14. Herbison AE (1998) Multimodal influence of estrogen upon gonadotropin-releasing hormone neurons. Endocr Rev 19(3):302–330

    Article  PubMed  CAS  Google Scholar 

  15. Herbison AE, Theodosis DT (1992) Localization of oestrogen receptors in preoptic neurons containing neurotensin but not tyrosine hydroxylase, cholecystokinin or luteinizing hormone-­releasing hormone in the male and female rat. Neuroscience 50(2):283–298

    Article  PubMed  CAS  Google Scholar 

  16. Dorling AA, Todman MG, Korach KS, Herbison AE (2003) Critical role for estrogen receptor alpha in negative feedback regulation of gonadotropin-releasing hormone mRNA expression in the female mouse. Neuroendocrinology 78(4):204–209

    Article  PubMed  CAS  Google Scholar 

  17. Tilbrook AJ, Turner AI, Clarke IJ (2002) Stress and reproduction: central mechanisms and sex differences in non-rodent species. Stress 5(2):83–100

    Article  PubMed  CAS  Google Scholar 

  18. de Roux N, Genin E, Carel JC, Matsuda F, Chaussain JL, Milgrom E (2003) Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc Natl Acad Sci U S A 100(19):10972–10976

    Article  PubMed  Google Scholar 

  19. Seminara SB, Dipietro MJ, Ramaswamy S, Crowley WF Jr, Plant TM (2006) Continuous human metastin 45–54 infusion desensitizes G protein-coupled receptor 54-induced gonadotropin-­releasing hormone release monitored indirectly in the juvenile male Rhesus monkey (Macaca mulatta): a finding with therapeutic implications. Endocrinology 147(5):2122–2126

    Article  PubMed  CAS  Google Scholar 

  20. Franceschini I, Lomet D, Cateau M, Delsol G, Tillet Y, Caraty A (2006) Kisspeptin immunoreactive cells of the ovine preoptic area and arcuate nucleus co-express estrogen receptor alpha. Neurosci Lett 401(3):225–230

    Article  PubMed  CAS  Google Scholar 

  21. Greives TJ, Mason AO, Scotti MA, Levine J, Ketterson ED, Kriegsfeld LJ et al (2007) Environmental control of kisspeptin: implications for seasonal reproduction. Endocrinology 148(3):1158–1166

    Article  PubMed  CAS  Google Scholar 

  22. Backholer K, Smith JT, Rao A, Pereira A, Iqbal J, Ogawa S et al (2010) Kisspeptin cells in the ewe brain respond to leptin and communicate with neuropeptide Y and proopiomelanocortin cells. Endocrinology 151(5):2233–2243

    Article  PubMed  Google Scholar 

  23. Pompolo S, Rawson JA, Clarke IJ (2001) Projections from the arcuate/ventromedial region of the hypothalamus to the preoptic area and bed nucleus of stria terminalis in the brain of the ewe; lack of direct input to gonadotropin-releasing hormone neurons. Brain Res 904(1):1–12

    Article  PubMed  CAS  Google Scholar 

  24. Backholer K, Smith J, Clarke IJ (2009) Melanocortins may stimulate reproduction by activating orexin neurons in the dorsomedial hypothalamus and kisspeptin neurons in the preoptic area of the ewe. Endocrinology 150(12):5488–5497

    Article  PubMed  CAS  Google Scholar 

  25. Kallo I, Vida B, Deli L, Molnar CS, Hrabovszky E, Caraty A et al (2012) Co-localisation of kisspeptin with galanin or neurokinin B in afferents to mouse GnRH neurones. J Neuroendocrinol 24(3):464–476

    Article  PubMed  CAS  Google Scholar 

  26. Smith JT, Li Q, Yap KS, Shahab M, Roseweir AK, Millar RP et al (2011) Kisspeptin is essential for the full preovulatory LH surge and stimulates GnRH release from the isolated ovine median eminence. Endocrinology 152(3):1001–1012

    Article  PubMed  CAS  Google Scholar 

  27. Goodman RL, Lehman MN, Smith JT, Coolen LM, de Oliveira CV, Jafarzadehshirazi MR et al (2007) Kisspeptin neurons in the arcuate nucleus of the ewe express both dynorphin A and neurokinin B. Endocrinology 148(12):5752–5760

    Article  PubMed  CAS  Google Scholar 

  28. d’Anglemont de Tassigny X, Fagg LA, Carlton MB, Colledge WH (2008) Kisspeptin can stimulate gonadotropin-releasing hormone (GnRH) release by a direct action at GnRH nerve terminals. Endocrinology 149(8):3926–3932

    Article  PubMed  Google Scholar 

  29. Smith JT, Rao A, Pereira A, Caraty A, Millar RP, Clarke IJ (2008) Kisspeptin is present in ovine hypophysial portal blood but does not increase during the preovulatory luteinizing hormone surge: evidence that gonadotropes are not direct targets of kisspeptin in vivo. Endocrinology 149(4):1951–1959

    Article  PubMed  CAS  Google Scholar 

  30. Smith JT, Coolen LM, Kriegsfeld LJ, Sari IP, Jaafarzadehshirazi MR, Maltby M et al (2008) Variation in kisspeptin and RFamide-related peptide (RFRP) expression and terminal connections to gonadotropin-releasing hormone neurons in the brain: a novel medium for seasonal breeding in the sheep. Endocrinology 149(11):5770–5782

    Article  PubMed  CAS  Google Scholar 

  31. Li Q, Roa A, Clarke IJ, Smith JT (2012) Seasonal variation in the gonadotropin-releasing hormone response to kisspeptin in sheep: possible kisspeptin regulation of the kisspeptin receptor. Neuroendocrinology 96(3):212–221

    Article  PubMed  CAS  Google Scholar 

  32. Hanchate NK, Parkash J, Bellefontaine N, Mazur D, Colledge WH, d’Anglemont de Tassigny X et al (2012) Kisspeptin-GPR54 signaling in mouse NO-synthesizing neurons participates in the hypothalamic control of ovulation. J Neurosci 32(3):932–945

    Article  PubMed  CAS  Google Scholar 

  33. Oakley AE, Clifton DK, Steiner RA (2009) Kisspeptin signaling in the brain [review]. Endocr Rev 30(6):713–743

    Article  PubMed  CAS  Google Scholar 

  34. Caraty A, Fabre-Nys C, Delaleu B, Locatelli A, Bruneau G, Karsch FJ et al (1998) Evidence that the mediobasal hypothalamus is the primary site of action of estradiol in inducing the preovulatory gonadotropin releasing hormone surge in the ewe. Endocrinology 139(4):1752–1760

    Article  PubMed  CAS  Google Scholar 

  35. Estrada KM, Clay CM, Pompolo S, Smith JT, Clarke IJ (2006) Elevated KiSS-1 expression in the arcuate nucleus prior to the cyclic preovulatory gonadotrophin-releasing hormone/lutenising hormone surge in the ewe suggests a stimulatory role for kisspeptin in oestrogen-­positive feedback. J Neuroendocrinol 18(10):806–809

    Article  PubMed  CAS  Google Scholar 

  36. Smith JT, Li Q, Pereira A, Clarke IJ (2009) Kisspeptin neurons in the ovine arcuate nucleus and preoptic area are involved in the preovulatory luteinizing hormone surge. Endocrinology 150(12):5530–5538

    Article  PubMed  CAS  Google Scholar 

  37. Clarke IJ (1995) The preovulatory LH surge A case of a neuroendocrine switch. Trends Endocrinol Metab 6(7):241–247

    Article  PubMed  CAS  Google Scholar 

  38. Hoffman GE, Le WW, Franceschini I, Caraty A, Advis JP (2011) Expression of fos and in vivo median eminence release of LHRH identifies an active role for preoptic area kisspeptin neurons in synchronized surges of LH and LHRH in the ewe. Endocrinology 152(1):214–222

    Article  PubMed  CAS  Google Scholar 

  39. Iqbal J, Pompolo S, Sakurai T, Clarke IJ (2001) Evidence that orexin-containing neurones provide direct input to gonadotropin-releasing hormone neurones in the ovine hypothalamus. J Neuroendocrinol 13(12):1033–1041

    Article  PubMed  CAS  Google Scholar 

  40. Pompolo S, Ischenko O, Pereira A, Iqbal J, Clarke IJ (2005) Evidence that projections from the bed nucleus of the stria terminalis and from the lateral and medial regions of the preoptic area provide input to gonadotropin releasing hormone (GNRH) neurons in the female sheep brain. Neuroscience 132(2):421–436

    Article  PubMed  CAS  Google Scholar 

  41. Pompolo S, Pereira A, Kaneko T, Clarke IJ (2003) Seasonal changes in the inputs to gonadotropin-­releasing hormone neurones in the ewe brain: an assessment by conventional fluorescence and confocal microscopy. J Neuroendocrinol 15(5):538–545

    Article  PubMed  CAS  Google Scholar 

  42. Pompolo S, Pereira A, Scott CJ, Fujiyma F, Clarke IJ (2003) Evidence for estrogenic regulation of gonadotropin-releasing hormone neurons by glutamatergic neurons in the ewe brain: an immunohistochemical study using an antibody against vesicular glutamate transporter-2. J Comp Neurol 465(1):136–144

    Article  PubMed  CAS  Google Scholar 

  43. Pereira A, Rawson J, Jakubowska A, Clarke IJ (2010) Estradiol-17beta-responsive A1 and A2 noradrenergic cells of the brain stem project to the bed nucleus of the stria terminalis in the ewe brain: a possible route for regulation of gonadotropin releasing hormone cells. Neuroscience 165(3):758–773

    Article  PubMed  CAS  Google Scholar 

  44. Clarke IJ, Scott CJ, Pereira A, Rawson J (1999) Levels of dopamine beta hydroxylase immunoreactivity in the preoptic hypothalamus of the ovariectomised ewe following injection of oestrogen: evidence for increased noradrenaline release around the time of the ­oestrogen-­induced surge in luteinizing hormone. J Neuroendocrinol 11(7):503–512

    Article  PubMed  CAS  Google Scholar 

  45. Mohankumar PS, Thyagarajan S, Quadri SK (1994) Correlations of catecholamine release in the medial preoptic area with proestrous surges of luteinizing hormone and prolactin: effects of aging. Endocrinology 135(1):119–126

    Article  PubMed  CAS  Google Scholar 

  46. Constantin S, Jasoni CL, Wadas B, Herbison AE (2010) Gamma-aminobutyric acid and glutamate differentially regulate intracellular calcium concentrations in mouse gonadotropin-­releasing hormone neurons. Endocrinology 151(1):262–270

    Article  PubMed  CAS  Google Scholar 

  47. Herbison AE (1997) Estrogen regulation of GABA transmission in rat preoptic area. Brain Res Bull 44(4):321–326

    Article  PubMed  CAS  Google Scholar 

  48. Kuehl-Kovarik MC, Pouliot WA, Halterman GL, Handa RJ, Dudek FE, Partin KM (2002) Episodic bursting activity and response to excitatory amino acids in acutely dissociated gonadotropin-releasing hormone neurons genetically targeted with green fluorescent protein. J Neurosci 22(6):2313–2322

    PubMed  CAS  Google Scholar 

  49. Smith JT, Clay CM, Caraty A, Clarke IJ (2007) KiSS-1 messenger ribonucleic acid expression in the hypothalamus of the ewe is regulated by sex steroids and season. Endocrinology 148(3):1150–1157

    Article  PubMed  CAS  Google Scholar 

  50. Pompolo S, Pereira A, Estrada KM, Clarke IJ (2006) Colocalization of kisspeptin and gonadotropin-­releasing hormone in the ovine brain. Endocrinology 147(2):804–810

    Article  PubMed  CAS  Google Scholar 

  51. Cheng G, Coolen LM, Padmanabhan V, Goodman RL, Lehman MN (2010) The kisspeptin/neurokinin B/dynorphin (KNDy) cell population of the arcuate nucleus: sex differences and effects of prenatal testosterone in sheep. Endocrinology 151(1):301–311

    Article  PubMed  CAS  Google Scholar 

  52. Foradori CD, Goodman RL, Adams VL, Valent M, Lehman MN (2005) Progesterone increases dynorphin a concentrations in cerebrospinal fluid and preprodynorphin messenger ribonucleic acid levels in a subset of dynorphin neurons in the sheep. Endocrinology 146(4):1835–1842

    Article  PubMed  CAS  Google Scholar 

  53. Goodman RL, Coolen LM, Anderson GM, Hardy SL, Valent M, Connors JM et al (2004) Evidence that dynorphin plays a major role in mediating progesterone negative feedback on gonadotropin-releasing hormone neurons in sheep. Endocrinology 145(6):2959–2967

    Article  PubMed  CAS  Google Scholar 

  54. Billings HJ, Connors JM, Altman SN, Hileman SM, Holaskova I, Lehman MN et al (2010) Neurokinin B acts via the neurokinin-3 receptor in the retrochiasmatic area to stimulate luteinizing hormone secretion in sheep. Endocrinology 151(8):3836–3846

    Article  PubMed  CAS  Google Scholar 

  55. Amstalden M, Coolen LM, Hemmerle AM, Billings HJ, Connors JM, Goodman RL et al (2010) Neurokinin 3 receptor immunoreactivity in the septal region, preoptic area and hypothalamus of the female sheep: colocalisation in neurokinin B cells of the arcuate nucleus but not in gonadotrophin-releasing hormone neurones. J Neuroendocrinol 22(1):1–12

    Article  PubMed  CAS  Google Scholar 

  56. Young J, George JT, Tello JA, Francou B, Bouligand J, Guiochon-Mantel A et al (2012) Kisspeptin restores pulsatile LH secretion in patients with neurokinin B signaling deficiencies: physiological, pathophysiological and therapeutic implications. Neuroendocrinology

    Google Scholar 

  57. Ansel L, Bolborea M, Bentsen AH, Klosen P, Mikkelsen JD, Simonneaux V (2010) Differential regulation of kiss1 expression by melatonin and gonadal hormones in male and female Syrian hamsters. J Biol Rhythms 25(2):81–91

    Article  PubMed  CAS  Google Scholar 

  58. Greives TJ, Kriegsfeld LJ, Demas GE (2008) Exogenous kisspeptin does not alter photoperiod-­induced gonadal regression in Siberian hamsters (Phodopus sungorus). Gen Comp Endocrinol 156(3):552–558

    Article  PubMed  CAS  Google Scholar 

  59. Smith JT, Dungan HM, Stoll EA, Gottsch ML, Braun RE, Eacker SM et al (2005) Differential regulation of KiSS-1 mRNA expression by sex steroids in the brain of the male mouse. Endocrinology 146(7):2976–2984

    Article  PubMed  CAS  Google Scholar 

  60. Wagner GC, Johnston JD, Clarke IJ, Lincoln GA, Hazlerigg DG (2008) Redefining the limits of day length responsiveness in a seasonal mammal. Endocrinology 149(1):32–39

    Article  PubMed  CAS  Google Scholar 

  61. Chalivoix S, Bagnolini A, Caraty A, Cognie J, Malpaux B, Dufourny L (2010) Effects of photoperiod on kisspeptin neuronal populations of the ewe diencephalon in connection with reproductive function. J Neuroendocrinol 22(2):110–118

    Article  PubMed  CAS  Google Scholar 

  62. Revel FG, Ansel L, Klosen P, Saboureau M, Pevet P, Mikkelsen JD et al (2007) Kisspeptin: a key link to seasonal breeding [review]. Rev Endocr Metab Disord 8(1):57–65

    Article  PubMed  CAS  Google Scholar 

  63. Revel FG, Saboureau M, Masson-Pevet M, Pevet P, Mikkelsen JD, Simonneaux V (2006) Kisspeptin mediates the photoperiodic control of reproduction in hamsters. Curr Biol 16(17):1730–1735

    Article  PubMed  CAS  Google Scholar 

  64. Simonneaux V, Ansel L, Revel FG, Klosen P, Pevet P, Mikkelsen JD (2009) Kisspeptin and the seasonal control of reproduction in hamsters. Peptides 30(1):146–153

    Article  PubMed  CAS  Google Scholar 

  65. Bartness TJ, Powers JB, Hastings MH, Bittman EL, Goldman BD (1993) The timed infusion paradigm for melatonin delivery: what has it taught us about the melatonin signal, its reception, and the photoperiodic control of seasonal responses? [review]. J Pineal Res 15(4):161–190

    Article  PubMed  CAS  Google Scholar 

  66. Bartness TJ, Goldman BD, Bittman EL (1991) SCN lesions block responses to systemic melatonin infusions in Siberian hamsters. Am J Physiol 260(1 pt 2):R102–R112

    PubMed  CAS  Google Scholar 

  67. Bittman EL, Crandell RG, Lehman MN (1989) Influences of the paraventricular and suprachiasmatic nuclei and olfactory bulbs on melatonin responses in the golden hamster. Biol Reprod 40(1):118–126

    Article  PubMed  CAS  Google Scholar 

  68. Thiery JC, Gayrard V, Le Corre S, Viguie C, Martin GB, Chemineau P et al (1995) Dopaminergic control of LH secretion by the A15 nucleus in anoestrous ewes. J Reprod Fertil Suppl 49:285–296

    PubMed  CAS  Google Scholar 

  69. Goodman RL, Jansen HT, Billings HJ, Coolen LM, Lehman MN (2010) Neural systems mediating seasonal breeding in the ewe. J Neuroendocrinol 22(7):674–681

    PubMed  CAS  Google Scholar 

  70. Havern RL, Whisnant CS, Goodman RL (1994) Dopaminergic structures in the ovine hypothalamus mediating estradiol negative feedback in anestrous ewes. Endocrinology 134(4):1905–1914

    Article  PubMed  CAS  Google Scholar 

  71. Meyer SL, Goodman RL (1985) Neurotransmitters involved in mediating the steroid-­dependent suppression of pulsatile luteinizing hormone secretion in anestrous ewes: effects of receptor antagonists. Endocrinology 116(5):2054–2061

    Article  PubMed  CAS  Google Scholar 

  72. Lehman MN, Durham DM, Jansen HT, Adrian B, Goodman RL (1996) Dopaminergic A14/A15 neurons are activated during estradiol negative feedback in anestrous, but not breeding season, ewes. Endocrinology 137(10):4443–4450

    Article  PubMed  CAS  Google Scholar 

  73. Singh SR, Hileman SM, Connors JM, McManus CJ, Coolen LM, Lehman MN et al (2009) Estradiol negative feedback regulation by glutamatergic afferents to A15 dopaminergic neurons: variation with season. Endocrinology 150(10):4663–4671

    Article  PubMed  CAS  Google Scholar 

  74. Tillet Y, Thibault J (1989) Catecholamine-containing neurons in the sheep brainstem and diencephalon: immunohistochemical study with tyrosine hydroxylase (TH) and dopamine-­beta-hydroxylase (DBH) antibodies. J Comp Neurol 290(1):69–104

    Article  PubMed  CAS  Google Scholar 

  75. Malpaux B, Daveau A, Maurice F, Gayrard V, Thiery JC (1993) Short-day effects of melatonin on luteinizing hormone secretion in the ewe: evidence for central sites of action in the mediobasal hypothalamus. Biol Reprod 48(4):752–760

    Article  PubMed  CAS  Google Scholar 

  76. Malpaux B, Daveau A, Maurice-Mandon F, Duarte G, Chemineau P (1998) Evidence that melatonin acts in the premammillary hypothalamic area to control reproduction in the ewe: presence of binding sites and stimulation of luteinizing hormone secretion by in situ microimplant delivery. Endocrinology 139(4):1508–1516

    Article  PubMed  CAS  Google Scholar 

  77. Li Q, Rao A, Pereira A, Clarke IJ, Smith JT (2011) Kisspeptin cells in the ovine arcuate nucleus express prolactin receptor but not melatonin receptor. J Neuroendocrinol 23(10):871–882

    Article  PubMed  CAS  Google Scholar 

  78. Dardente H (2012) Melatonin-dependent timing of seasonal reproduction by the pars tuberalis: pivotal roles for long daylengths and thyroid hormones. J Neuroendocrinol 24(2):249–266

    Article  PubMed  CAS  Google Scholar 

  79. Dufourny L, Gennetay D, Beltramo M (2011) Kisspeptin neurons contain thyroid hormone receptor alpha in the ovine hypothalamus. In: Proceedings of the Society for Neuroscience annual meeting, Washington, 2011, Poster 712.12

    Google Scholar 

  80. Tsutsui K, Saigoh E, Ukena K, Teranishi H, Fujisawa Y, Kikuchi M et al (2000) A novel avian hypothalamic peptide inhibiting gonadotropin release. Biochem Biophys Res Commun 275(2):661–667

    Article  PubMed  CAS  Google Scholar 

  81. Bentley GE, Perfito N, Ukena K, Tsutsui K, Wingfield JC (2003) Gonadotropin-inhibitory peptide in song sparrows (Melospiza melodia) in different reproductive conditions, and in house sparrows (Passer domesticus) relative to chicken-gonadotropin-releasing hormone. J Neuroendocrinol 15(8):794–802

    Article  PubMed  CAS  Google Scholar 

  82. Caraty A, Blomenrohr M, Vogel GM, Lomet D, Briant C, Beltramo M (2012) RF9 powerfully stimulates gonadotrophin secretion in the ewe: evidence for a seasonal threshold of sensitivity. J Neuroendocrinol 24(5):725–736

    Article  PubMed  CAS  Google Scholar 

  83. Simonin F, Schmitt M, Laulin JP, Laboureyras E, Jhamandas JH, MacTavish D et al (2006) RF9, a potent and selective neuropeptide FF receptor antagonist, prevents opioid-induced tolerance associated with hyperalgesia. Proc Natl Acad Sci U S A 103(2):466–471

    Article  PubMed  CAS  Google Scholar 

  84. Clarke IJ, Sari IP, Qi Y, Smith JT, Parkington HC, Ubuka T et al (2008) Potent action of RFamide-related peptide-3 on pituitary gonadotropes indicative of a hypophysiotropic role in the negative regulation of gonadotropin secretion. Endocrinology 149(11):5811–5821

    Article  PubMed  CAS  Google Scholar 

  85. Smith JT, Ross Young I, Veldhuis JD, Clarke IJ (2012) Gonadotropin-inhibitory hormone (GnIH) secretion into the ovine hypophyseal portal system. Endocrinology 153(7):3368–3375

    Article  PubMed  CAS  Google Scholar 

  86. Ubuka T, Inoue K, Fukuda Y, Mizuno T, Ukena K, Kriegsfeld LJ et al (2012) Identification, expression, and physiological functions of Siberian hamster gonadotropin-inhibitory hormone. Endocrinology 153(1):373–385

    Article  PubMed  CAS  Google Scholar 

  87. Revel FG, Saboureau M, Pevet P, Simonneaux V, Mikkelsen JD (2008) RFamide-related peptide gene is a melatonin-driven photoperiodic gene. Endocrinology 149(3):902–912

    Article  PubMed  CAS  Google Scholar 

  88. Johnson MA, Tsutsui K, Fraley GS (2007) Rat RFamide-related peptide-3 stimulates GH secretion, inhibits LH secretion, and has variable effects on sex behavior in the adult male rat. Horm Behav 51(1):171–180

    Article  PubMed  CAS  Google Scholar 

  89. Kirby ED, Geraghty AC, Ubuka T, Bentley GE, Kaufer D (2009) Stress increases putative gonadotropin inhibitory hormone and decreases luteinizing hormone in male rats. Proc Natl Acad Sci U S A 106(27):11324–11329

    Article  PubMed  CAS  Google Scholar 

  90. Smith JT, Saleh SN, Clarke IJ (2009) Seasonal and cyclical change in the luteinizing hormone response to kisspeptin in the ewe. Neuroendocrinology 90(3):283–291

    Article  PubMed  CAS  Google Scholar 

  91. Greives TJ, Long KL, Burns CM, Demas GE (2011) Response to exogenous kisspeptin varies according to sex and reproductive condition in Siberian hamsters (Phodopus sungorus). Gen Comp Endocrinol 170(1):172–179

    Article  PubMed  CAS  Google Scholar 

  92. Roa J, Navarro VM, Tena-Sempere M (2011) Kisspeptins in reproductive biology: consensus knowledge and recent developments. Biol Reprod 85(4):650–660

    Article  PubMed  CAS  Google Scholar 

  93. Caraty A, Smith JT, Lomet D, Ben Said S, Morrissey A, Cognie J et al (2007) Kisspeptin synchronizes preovulatory surges in cyclical ewes and causes ovulation in seasonally acyclic ewes. Endocrinology 148(11):5258–5267

    Article  PubMed  CAS  Google Scholar 

  94. Roa J, Vigo E, Garcia-Galiano D, Castellano JM, Navarro VM, Pineda R et al (2008) Desensitization of gonadotropin responses to kisspeptin in the female rat: analyses of LH and FSH secretion at different developmental and metabolic states. Am J Physiol Endocrinol Metab 294(6):E1088–E1096

    Article  PubMed  CAS  Google Scholar 

  95. Sebert ME, Lomet D, Said SB, Monget P, Briant C, Scaramuzzi RJ et al (2010) Insights into the mechanism by which kisspeptin stimulates a preovulatory LH surge and ovulation in seasonally acyclic ewes: potential role of estradiol. Domest Anim Endocrinol 38(4):289–298

    Article  PubMed  CAS  Google Scholar 

  96. Ben Said S, Lomet D, Chesneau D, Lardic L, Canepa S, Guillaume D et al (2007) Differential estradiol requirement for the induction of estrus behavior and the luteinizing hormone surge in two breeds of sheep. Biol Reprod 76(4):673–680

    Article  PubMed  CAS  Google Scholar 

  97. Curtis AE, Cooke JH, Baxter JE, Parkinson JR, Bataveljic A, Ghatei MA et al (2010) A kisspeptin-­10 analog with greater in vivo bioactivity than kisspeptin-10. Am J Physiol Endocrinol Metab 298(2):E296–E303

    Article  PubMed  CAS  Google Scholar 

  98. Whelan P (2010) Triptorelin embonate: a 6-month formulation for prostate cancer [review]. Expert Opin Pharmacother 11(17):2929–2932

    Article  PubMed  CAS  Google Scholar 

  99. Redmond JS, Macedo GG, Velez IC, Caraty A, Williams GL, Amstalden M (2011) Kisspeptin activates the hypothalamic-adenohypophyseal-gonadal axis in prepubertal ewe lambs. Reproduction 141(4):541–548

    Article  PubMed  CAS  Google Scholar 

  100. Ansel L, Bentsen AH, Ancel C, Bolborea M, Klosen P, Mikkelsen JD et al (2011) Peripheral kisspeptin reverses short photoperiod-induced gonadal regression in Syrian hamsters by promoting GNRH release. Reproduction 142(3):417–425

    Article  PubMed  CAS  Google Scholar 

  101. Mikkelsen JD, Bentsen AH, Ansel L, Simonneaux V, Juul A (2009) Comparison of the effects of peripherally administered kisspeptins. Regul Pept 152(1–3):95–100

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iain J. Clarke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Clarke, I.J., Caraty, A. (2013). Kisspeptin and Seasonality of Reproduction. In: Kauffman, A., Smith, J. (eds) Kisspeptin Signaling in Reproductive Biology. Advances in Experimental Medicine and Biology, vol 784. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6199-9_19

Download citation

Publish with us

Policies and ethics