Skip to main content

Host–Pathogen Specificity in Tuberculosis

  • Chapter
  • First Online:
The New Paradigm of Immunity to Tuberculosis

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 783))

Abstract

The host response to mycobacterial infection including tuberculosis depends on genetically controlled host and bacterial factors and their interaction. A largely unknown aspect of this interaction is whether disease results from an additive and independent effect of host and pathogen or from specific host–pathogen combinations. The preferential association of specific mycobacterial strains with specific ethnic groups provided tentative evidence in favor of host–pathogen specificity in tuberculosis and is consistent with the hypothesis of host–mycobacterial co-adaptation. Substantial evidence for specificity has now been provided by animal models and human case–control association studies. These studies indicate that differences in the host response to infection are at least in part due to specific combinations of host genetic factors and genetic and phenotypic characteristics of the infecting mycobacterial strain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rieder HL (1999) Epidemiologic basis of tuberculosis control. International Union Against Tuberculosis and Lung Disease, Paris, p 166

    Google Scholar 

  2. Stead WW (1992) Genetics and resistance to tuberculosis. Could resistance be enhanced by genetic engineering? Ann Intern Med 116(11):937–941

    PubMed  CAS  Google Scholar 

  3. Stead WW, Senner JW, Reddick WT, Lofgren JP (1990) Racial differences in susceptibility to infection by Mycobacterium tuberculosis. N Engl J Med 322(7):422–427

    Article  PubMed  CAS  Google Scholar 

  4. Comstock GW (1978) Tuberculosis in twins: a re-analysis of the Prophit survey. Am Rev Respir Dis 117(4):621–624

    PubMed  CAS  Google Scholar 

  5. Kallman FJ, Reisner D (1943) Twin studies on the significance of genetic factors in tuberculosis. Am Rev Tuberc 47:549–574

    Google Scholar 

  6. Boisson-Dupuis S, El Baghdadi J, Parvaneh N, Bousfiha A, Bustamante J, Feinberg J et al (2011) IL-12Rbeta1 deficiency in two of fifty children with severe tuberculosis from Iran, Morocco, and Turkey. PLoS One 6(4):e18524

    Article  PubMed  CAS  Google Scholar 

  7. Sologuren I, Boisson-Dupuis S, Pestano J, Vincent QB, Fernandez-Perez L, Chapgier A et al (2011) Partial recessive IFN-gammaR1 deficiency: genetic, immunological and clinical features of 14 patients from 11 kindreds. Hum Mol Genet 20(8):1509–1523

    Article  PubMed  CAS  Google Scholar 

  8. Mahasirimongkol S, Yanai H, Nishida N, Ridruechai C, Matsushita I, Ohashi J et al (2009) Genome-wide SNP-based linkage analysis of tuberculosis in Thais. Genes Immun 10(1):77–83

    Article  PubMed  CAS  Google Scholar 

  9. Baghdadi JE, Orlova M, Alter A, Ranque B, Chentoufi M, Lazrak F et al (2006) An autosomal dominant major gene confers predisposition to pulmonary tuberculosis in adults. J Exp Med 203(7):1679–1684

    Article  PubMed  Google Scholar 

  10. Stein CM, Zalwango S, Malone LL, Won S, Mayanja-Kizza H, Mugerwa RD et al (2008) Genome scan of M. tuberculosis infection and disease in Ugandans. PLoS ONE 3(12):e4094

    Article  PubMed  Google Scholar 

  11. Cooke GS, Campbell SJ, Bennett S, Lienhardt C, McAdam KP, Sirugo G et al (2008) Mapping of a novel susceptibility locus suggests a role for MC3R and CTSZ in human tuberculosis. Am J Respir Crit Care Med 178(2):203–207

    Article  PubMed  CAS  Google Scholar 

  12. Jamieson SE, Miller EN, Black GF, Peacock CS, Cordell HJ, Howson JM et al (2004) Evidence for a cluster of genes on chromosome 17q11-q21 controlling susceptibility to tuberculosis and leprosy in Brazilians. Genes Immun 5(1):46–57

    Article  PubMed  CAS  Google Scholar 

  13. Miller EN, Jamieson SE, Joberty C, Fakiola M, Hudson D, Peacock CS et al (2004) Genome-wide scans for leprosy and tuberculosis susceptibility genes in Brazilians. Genes Immun 5(1):63–67

    Article  PubMed  CAS  Google Scholar 

  14. Bellamy R, Beyers N, McAdam KP, Ruwende C, Gie R, Samaai P et al (2000) Genetic susceptibility to tuberculosis in Africans: a genome-wide scan. Proc Natl Acad Sci USA 97(14):8005–8009

    Article  PubMed  CAS  Google Scholar 

  15. Mahasirimongkol S, Yanai H, Mushiroda T, Promphittayarat W, Wattanapokayakit S, Phromjai J et al (2012) Genome-wide association studies of tuberculosis in Asians identify distinct at-risk locus for young tuberculosis. J Hum Genet 57(6):363–367

    Article  PubMed  CAS  Google Scholar 

  16. Thye T, Owusu-Dabo E, Vannberg FO, van Crevel R, Curtis J, Sahiratmadja E et al (2012) Common variants at 11p13 are associated with susceptibility to tuberculosis. Nat Genet 44(3):257–259

    Article  PubMed  CAS  Google Scholar 

  17. Moller M, de Wit E, Hoal EG (2010) Past, present and future directions in human genetic susceptibility to tuberculosis. FEMS Immunol Med Microbiol 58(1):3–26

    Article  PubMed  CAS  Google Scholar 

  18. Stein CM (2011) Genetic epidemiology of tuberculosis susceptibility: impact of study design. PLoS Pathog 7(1):e1001189

    Article  PubMed  CAS  Google Scholar 

  19. Lopez B, Aguilar D, Orozco H, Burger M, Espitia C, Ritacco V et al (2003) A marked difference in pathogenesis and immune response induced by different Mycobacterium tuberculosis genotypes. Clin Exp Immunol 133(1):30–37

    Article  PubMed  CAS  Google Scholar 

  20. Manca C, Tsenova L, Barry CE 3rd, Bergtold A, Freeman S, Haslett PA et al (1999) Mycobacterium tuberculosis CDC1551 induces a more vigorous host response in vivo and in vitro, but is not more virulent than other clinical isolates. J Immunol 162(11):6740–6746

    PubMed  CAS  Google Scholar 

  21. Manca C, Tsenova L, Bergtold A, Freeman S, Tovey M, Musser JM et al (2001) Virulence of a Mycobacterium tuberculosis clinical isolate in mice is determined by failure to induce Th1 type immunity and is associated with induction of IFN-alpha/beta. Proc Natl Acad Sci USA 98(10):5752–5757

    Article  PubMed  CAS  Google Scholar 

  22. Reed MB, Domenech P, Manca C, Su H, Barczak AK, Kreiswirth BN et al (2004) A glycolipid of hypervirulent tuberculosis strains that inhibits the innate immune response. Nature 431(7004):84–87

    Article  PubMed  CAS  Google Scholar 

  23. Caws M, Thwaites G, Dunstan S, Hawn TR, Lan NT, Thuong NT et al (2008) The influence of host and bacterial genotype on the development of disseminated disease with Mycobacterium tuberculosis. PLoS Pathog 4(3):e1000034

    Article  PubMed  Google Scholar 

  24. Gagneux S, Small PM (2007) Global phylogeography of Mycobacterium tuberculosis and implications for tuberculosis product development. Lancet Infect Dis 7(5):328–337

    Article  PubMed  Google Scholar 

  25. Gagneux S, DeRiemer K, Van T, Kato-Maeda M, de Jong BC, Narayanan S et al (2006) Variable host-pathogen compatibility in Mycobacterium tuberculosis. Proc Natl Acad Sci USA 103(8):2869–2873

    Article  PubMed  CAS  Google Scholar 

  26. Reed MB, Pichler VK, McIntosh F, Mattia A, Fallow A, Masala S et al (2009) Major Mycobacterium tuberculosis lineages associate with patient country of origin. J Clin Microbiol 47(4):1119–1128

    Article  PubMed  CAS  Google Scholar 

  27. Wirth T, Hildebrand F, Allix-Beguec C, Wolbeling F, Kubica T, Kremer K et al (2008) Origin, spread and demography of the Mycobacterium tuberculosis complex. PLoS Pathog 4(9):e1000160

    Article  PubMed  Google Scholar 

  28. Hirsh AE, Tsolaki AG, DeRiemer K, Feldman MW, Small PM (2004) Stable association between strains of Mycobacterium tuberculosis and their human host populations. Proc Natl Acad Sci USA 101(14):4871–4876

    Article  PubMed  CAS  Google Scholar 

  29. Hershberg R, Lipatov M, Small PM, Sheffer H, Niemann S, Homolka S et al (2008) High functional diversity in Mycobacterium tuberculosis driven by genetic drift and human demography. PLoS Biol 6(12):e311

    Article  PubMed  Google Scholar 

  30. Medina E, North RJ (1996) Evidence inconsistent with a role for the Bcg gene (Nramp1) in resistance of mice to infection with virulent Mycobacterium tuberculosis. J Exp Med 183(3):1045–1051

    Article  PubMed  CAS  Google Scholar 

  31. Medina E, North RJ (1998) Resistance ranking of some common inbred mouse strains to Mycobacterium tuberculosis and relationship to major histocompatibility complex haplotype and Nramp1 genotype. Immunology 93(2):270–274

    Article  PubMed  CAS  Google Scholar 

  32. Actor JK, Olsen M, Jagannath C, Hunter RL (1999) Relationship of survival, organism containment, and granuloma formation in acute murine tuberculosis. J Interferon Cytokine Res 19(10):1183–1193

    Article  PubMed  CAS  Google Scholar 

  33. Jagannath C, Hoffmann H, Sepulveda E, Actor JK, Wetsel RA, Hunter RL (2000) Hypersusceptibility of A/J mice to tuberculosis is in part due to a deficiency of the fifth complement component (C5). Scand J Immunol 52(4):369–379

    Article  PubMed  CAS  Google Scholar 

  34. Watson VE, Hill LL, Owen-Schaub LB, Davis DW, McConkey DJ, Jagannath C et al (2000) Apoptosis in Mycobacterium tuberculosis infection in mice exhibiting varied immunopathology. J Pathol 190(2):211–220

    Article  PubMed  CAS  Google Scholar 

  35. Gros P, Skamene E, Forget A (1981) Genetic control of natural resistance to Mycobacterium bovis (BCG) in mice. J Immunol 127(6):2417–2421

    PubMed  CAS  Google Scholar 

  36. Vidal SM, Malo D, Vogan K, Skamene E, Gros P (1993) Natural resistance to infection with intracellular parasites: isolation of a candidate for Bcg. Cell 73(3):469–485

    Article  PubMed  CAS  Google Scholar 

  37. Di Pietrantonio T, Correa JA, Orlova M, Behr MA, Schurr E (2011) Joint effects of host genetic background and mycobacterial pathogen on susceptibility to infection. Infect Immun 79(6):2372–2378

    Article  PubMed  Google Scholar 

  38. Woolhouse ME, Webster JP, Domingo E, Charlesworth B, Levin BR (2002) Biological and biomedical implications of the co-evolution of pathogens and their hosts. Nat Genet 32(4):569–577

    Article  PubMed  CAS  Google Scholar 

  39. Kramnik I, Dietrich WF, Demant P, Bloom BR (2000) Genetic control of resistance to experimental infection with virulent Mycobacterium tuberculosis. Proc Natl Acad Sci USA 97(15):8560–8565

    Article  PubMed  CAS  Google Scholar 

  40. Lavebratt C, Apt AS, Nikonenko BV, Schalling M, Schurr E (1999) Severity of tuberculosis in mice is linked to distal chromosome 3 and proximal chromosome 9. J Infect Dis 180(1):150–155

    Article  PubMed  CAS  Google Scholar 

  41. Mitsos LM, Cardon LR, Fortin A, Ryan L, LaCourse R, North RJ et al (2000) Genetic control of susceptibility to infection with Mycobacterium tuberculosis in mice. Genes Immun 1(8):467–477

    Article  PubMed  CAS  Google Scholar 

  42. Mitsos LM, Cardon LR, Ryan L, LaCourse R, North RJ, Gros P (2003) Susceptibility to tuberculosis: a locus on mouse chromosome 19 (Trl-4) regulates Mycobacterium tuberculosis replication in the lungs. Proc Natl Acad Sci USA 100(11):6610–6615

    Article  PubMed  CAS  Google Scholar 

  43. Sanchez F, Radaeva TV, Nikonenko BV, Persson AS, Sengul S, Schalling M et al (2003) Multigenic control of disease severity after virulent Mycobacterium tuberculosis infection in mice. Infect Immun 71(1):126–131

    Article  PubMed  CAS  Google Scholar 

  44. Di Pietrantonio T, Hernandez C, Girard M, Verville A, Orlova M, Belley A et al (2010) Strain-specific differences in the genetic control of two closely related mycobacteria. PLoS Pathog 6(10):e1001169

    Article  PubMed  Google Scholar 

  45. McInturff JE, Modlin RL, Kim J (2005) The role of toll-like receptors in the pathogenesis and treatment of dermatological disease. J Invest Dermatol 125(1):1–8

    Article  PubMed  CAS  Google Scholar 

  46. Tsenova L, Ellison E, Harbacheuski R, Moreira AL, Kurepina N, Reed MB et al (2005) Virulence of selected Mycobacterium tuberculosis clinical isolates in the rabbit model of meningitis is dependent on phenolic glycolipid produced by the bacilli. J Infect Dis 192(1):98–106

    Article  PubMed  Google Scholar 

  47. Constant P, Perez E, Malaga W, Laneelle MA, Saurel O, Daffe M et al (2002) Role of the pks15/1 gene in the biosynthesis of phenolglycolipids in the Mycobacterium tuberculosis complex. Evidence that all strains synthesize glycosylated p-hydroxybenzoic methyl esters and that strains devoid of phenolglycolipids harbor a frameshift mutation in the pks15/1 gene. J Biol Chem 277(41):38148–38158

    Article  PubMed  CAS  Google Scholar 

  48. Malo D, Vogan K, Vidal S, Hu J, Cellier M, Schurr E et al (1994) Haplotype mapping and sequence analysis of the mouse Nramp gene predict susceptibility to infection with intracellular parasites. Genomics 23(1):51–61

    Article  PubMed  CAS  Google Scholar 

  49. Hackam DJ, Rotstein OD, Zhang W, Gruenheid S, Gros P, Grinstein S (1998) Host resistance to intracellular infection: mutation of natural resistance-associated macrophage protein 1 (Nramp1) impairs phagosomal acidification. J Exp Med 188(2):351–364

    Article  PubMed  CAS  Google Scholar 

  50. Gallant CJ, Malik S, Jabado N, Cellier M, Simkin L, Finlay BB et al (2007) Reduced in vitro functional activity of human NRAMP1 (SLC11A1) allele that predisposes to increased risk of pediatric tuberculosis disease. Genes Immun 8(8):691–698

    Article  PubMed  CAS  Google Scholar 

  51. van Crevel R, Parwati I, Sahiratmadja E, Marzuki S, Ottenhoff TH, Netea MG et al (2009) Infection with Mycobacterium tuberculosis Beijing genotype strains is associated with polymorphisms in SLC11A1/NRAMP1 in Indonesian patients with tuberculosis. J Infect Dis 200(11):1671–1674

    Article  PubMed  Google Scholar 

  52. Deretic V, Levine B (2009) Autophagy, immunity, and microbial adaptations. Cell Host Microbe 5(6):527–549

    Article  PubMed  CAS  Google Scholar 

  53. Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V (2004) Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119(6):753–766

    Article  PubMed  CAS  Google Scholar 

  54. Singh SB, Davis AS, Taylor GA, Deretic V (2006) Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science 313(5792):1438–1441

    Article  PubMed  CAS  Google Scholar 

  55. Intemann CD, Thye T, Niemann S, Browne EN, Amanua Chinbuah M, Enimil A et al (2009) Autophagy gene variant IRGM -261T contributes to protection from tuberculosis caused by Mycobacterium tuberculosis but not by M. africanum strains. PLoS Pathog 5(9):e1000577

    Google Scholar 

  56. Aliberti J, Hieny S, Reis e Sousa C, Serhan CN, Sher A (2002) Lipoxin-mediated inhibition of IL-12 production by DCs: a mechanism for regulation of microbial immunity. Nature Immunol 3(1):76–82

    Google Scholar 

  57. Parkinson JF (2006) Lipoxin and synthetic lipoxin analogs: an overview of anti-inflammatory functions and new concepts in immunomodulation. Inflamm Allergy Drug Targets 5(2):91–106

    Article  PubMed  CAS  Google Scholar 

  58. Hachicha M, Pouliot M, Petasis NA, Serhan CN (1999) Lipoxin (LX)A4 and aspirin-triggered 15-epi-LXA4 inhibit tumor necrosis factor 1alpha-initiated neutrophil responses and trafficking: regulators of a cytokine-chemokine axis. J Exp Med 189(12):1923–1930

    Article  PubMed  CAS  Google Scholar 

  59. Herb F, Thye T, Niemann S, Browne EN, Chinbuah MA, Gyapong J et al (2008) ALOX5 variants associated with susceptibility to human pulmonary tuberculosis. Hum Mol Genet 17(7):1052–1060

    Article  PubMed  CAS  Google Scholar 

  60. Neth O, Jack DL, Dodds AW, Holzel H, Klein NJ, Turner MW (2000) Mannose-binding lectin binds to a range of clinically relevant microorganisms and promotes complement deposition. Infect Immun 68(2):688–693

    Article  PubMed  CAS  Google Scholar 

  61. Thye T, Niemann S, Walter K, Homolka S, Intemann CD, Chinbuah MA et al (2011) Variant G57E of mannose binding lectin associated with protection against tuberculosis caused by Mycobacterium africanum but not by M. tuberculosis. PLoS One 6(6):e20908

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erwin Schurr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Di Pietrantonio, T., Schurr, E. (2013). Host–Pathogen Specificity in Tuberculosis. In: Divangahi, M. (eds) The New Paradigm of Immunity to Tuberculosis. Advances in Experimental Medicine and Biology, vol 783. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6111-1_2

Download citation

Publish with us

Policies and ethics