Skip to main content

Plant Tissue Culture: A Useful Measure for the Screening of Salt Tolerance in Plants

  • Chapter
  • First Online:
Salt Stress in Plants

Abstract

Soil salinity is one of the most important problems worldwide, which has decreased crop production to a great extent. The major or deleterious effects of salinity on plant growth and development are associated with low osmotic potential of soil solution, nutritional imbalance etc. Consequently these can ultimately lead to plant death because of growth arrest and molecular damage. Salt stress affects all the major processes such as photosynthesis, protein synthesis, lipid metabolism etc. The use of plant cell and tissue culture offers a means to focus on those physiological and biochemical processes inherent to cell which contribute to the adaptation to salt stress. The response depends on the species and the genotype, the length and the severity of the salt stress, the age and stage of development, the organ and cell type. In this article, various in vitro strategies have been made for salt tolerance. Effect of salinity on biochemical and antioxidant properties of plants have also been highlighted. The chapter also covers the role of genetic transformation for the development of salt tolerance in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham E, Rigo G, Szekely G, Nagy R, Koncz C, Szabados L (2003) Light-dependent induction of proline biosynthesis by abscisic acid and salt stress is inhibited by brassinosteroid in Arabidopsis. Plant Mol Biol 51:363–372

    PubMed  CAS  Google Scholar 

  • Ahmad P, Sharma S, Srivastava PS (2006) Differential physio-biochemical responses of high yielding varieties of Mulberry (Morus alba) under alkalinity (Na2CO3) stress in vitro. Physiol Mol Biol Plants 12(1):59–66

    CAS  Google Scholar 

  • Ahmad P, Sarwat M, Sharma S (2008) Reactive oxygen species, antioxidants and signaling in plants. J Plant Biol 51(3):167–173

    CAS  Google Scholar 

  • Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S (2010) Roles of Enzymatic and non-enzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol 30(3):161–175

    PubMed  CAS  Google Scholar 

  • Ahmad P, Nabi G, Jeleel CA, Umar S (2011) Free radical production, oxidative damage and antioxidant defense mechanisms in plants under abiotic stress. In: Ahmad P, Umar S (eds) Oxidative stress: role of antioxidants in plants. Studium Press, New Delhi, pp 19–53

    Google Scholar 

  • Ahmad P, Hakeem KR, Kumar A, Ashraf M, Akram NA (2012a) Salt-induced changes in photosynthetic activity and oxidative defense system of three cultivars of mustard (Brassica juncea L.). Afr J Biotechnol 11(11):2694–2703

    CAS  Google Scholar 

  • Alamgir ANM, Ali MY (1999) Effect of salinity on leaf pigments, sugar and protein concentrations and chloroplast ATPAase activity of rice (Oryza sativa L.). Bangladesh J Bot 28:145–149

    Google Scholar 

  • Allakhverdiev SI, Sakamoto A, Nishiyama Y, Inaba M, Murata N (2000) Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in Synechococcus sp. Plant Physiol 123:1047–1056

    PubMed  CAS  Google Scholar 

  • Alvarez I, Tomaro LM, Benavides PM (2003) Changes in polyamines, proline and ethylene in sunflower calluses treated with NaCl. Plant Cell Tissu Org Cult 00:1–9

    CAS  Google Scholar 

  • Anju G, Pawan J (1997) The potential of plant tissue culture and related techniques for the improvement of salt tolerance in higher plants. In: Jaiswal PK, Singh RP, Gulati A (eds) Strategies for improving salt tolerance in higher plants. Oxford & IBH Publishing, New Delhi, pp 321–363

    Google Scholar 

  • Ashraf M (1994) Organic substances responsible for salt tolerance in Eurica sativa. Biol Plant 36:255–259

    CAS  Google Scholar 

  • Ashraf M, Fatima H (1995) Responses of some salt tolerant and salt sensitive lines of safflower (Carthamus tinctorius L.). Acta Physiol Plant 17:61–71

    CAS  Google Scholar 

  • Ashraf M, Tufail M (1995) Variation in salinity tolerance in sunflower (Helianthus annuus L.). J Agron Soil Sci 174:351–362

    CAS  Google Scholar 

  • Babu V, Bansal KC (1998) Osmotin overexpression in transgenic potato plants provides protection against osmotic stress. In: Proceedings of the 5th international symposium on molecular biology of the Potato, Bogensee, Germany

    Google Scholar 

  • Barthakur S, Babu V, Bansal KC (2001) Over expression of osmotin induces proline accumulation and confers tolerance to osmotic stress in transgenic tobacco. J Plant Biochem Biotechnol 10:31–37

    CAS  Google Scholar 

  • Benderradj L, Brini F, Amar SB, Kellou K, Azaza J, Khaled Masmoudi K, Bouzerzou H, Hanin M (2011) Sodium transport in the seedlings of two bread wheat (Triticum aestivum L.) genotypes showing contrasting salt stress tolerance. AJCS 5(3):233–241

    Google Scholar 

  • Benderradji L, Brini F, Kellou K, Ykhlef N, Djekoun A, Masmoudi K, Bouzerzour H (2012) Callus induction, proliferation, and plantlets regeneration of two bread wheat (Triticum aestivum L.) genotypes under saline and heat stress conditions. ISRN Agron 2012:1–8

    Google Scholar 

  • Bernstein N (1975) Effect of salinity and sodicity on plant growth. Annu Rev Phytopathol 13:295–312

    Google Scholar 

  • Bhat MA, Ahmad S, Aslam J, Mujib A, Mahmooduzzfar (2008) Salinity stress enhances production of solasodine in Solanum nigrum L. Chem Pharm Bull 56(1):17–21

    PubMed  CAS  Google Scholar 

  • Bhatti S, Jha G (2010) Current trends and future prospects of biotechnological interventions through tissue culture in apple. Plant Cell Rep 29:1215–1225

    PubMed  CAS  Google Scholar 

  • Binzel ML, Hess FD, Bressan RA, Hasegawa PM (1988) Intracellular compartmentation of ions in salt adapted tobacco cells. Plant Physiol 86:607–614

    PubMed  CAS  Google Scholar 

  • Bolarin MC, Periz-Alfocea F, Cano EA, Estan MT, Caro M (1993) Growth, fruit yield and ion concentration in tomato genotype after pre-emergence and post emergence salt treatments. J Am Soc Hortic Sci 118:655–660

    CAS  Google Scholar 

  • Boo YC, Jung J (1999) Water deficit induced oxidative stress and antioxidative defence in rice plants. J Plant Physiol 51:255–261

    Google Scholar 

  • Bray EA (1997) Plant responses to water deficit. Trends Plant Sci 2:48–54

    Google Scholar 

  • Breusegem FV, Vranova E, Dat JF, Inze D (2001) The role of active oxygen species in plant signal transduction. Plant Sci 161:405–414

    Google Scholar 

  • Brussaard L, De Ruiter PC, Brown GG (2007) Soil biodiversity for agricultural sustainability. Agricul Ecosyst Environ 121:233–244

    Google Scholar 

  • Cakar J, Parick A, Maksimovic M, Bajrovic K (2012) Antioxidative and antitumor properties of in vitro-cultivated broccoli (Brassica oleracea var. italica). Pharm Biol 50:175–181

    PubMed  Google Scholar 

  • Calixto JB (2000) Efficacy, safety, quality control, marketing and regulatory guidelines for herbal medicines (phytotherapeutic agents). Braz J Med Biol Res 33:179–189

    PubMed  CAS  Google Scholar 

  • Chatterjee A, Cui Y, Yang H, Collmer A, Alfano JR, Chatterjee AK (2003) GacA, the response regulator of a two-component system, acts as a master regulator in Pseudomonas syringae pv. tomato DC3000 by controlling regulatory RNA, transcriptional activators, and alternate sigma factors. Mol Plant Microbe Interact 16:1106–11017

    PubMed  CAS  Google Scholar 

  • Chen Y, Zahavi E, Barek P, Umiel N (1980) Effect of salinity stresses on tobacco 1. The growth of Nicotiana tabacum callus cultures under water, NaCl and mannitol stress. Z Pflanzenphysiol 98:141–143

    CAS  Google Scholar 

  • Chen W, Li YM, Yu MH (2007) Effects of Astragalus polysaccharides on chymase, angiotensin-converting enzyme and angiotensin II in diabetic cardiomyopathy in hamsters. J Int Med Res 35:873–877

    PubMed  CAS  Google Scholar 

  • Cramer GR, Epstein E, Lauchli A (1990) Effects of sodium, potassium and calcium on salt stressed barley. Physiol Plant 80:83–88

    CAS  Google Scholar 

  • Croteau R, Kutchan TM, Lewis NG (2000) Natural products (secondary metabolites). In: Buchanan B, Gruissem W, Jone W, Jone R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 1250–1318

    Google Scholar 

  • Croughan TP, Stavared SJ, Rains DW (1981) In vitro development of salt resistant plants. Environ Exp Bot 21:317–324

    Google Scholar 

  • Cruz V, Cuartero J (1990) Effect on salinity at several developmental stages of six genotype of tomato (Lycopersicon sp.) In: Cuartero J, Gomez-Guillamon ML, Fernandez-Munoz (eds) Proceedings of the X1. Eucarpic meeting on tomato genetics and breeding, Spain, pp 81–86

    Google Scholar 

  • Csisar J, Szabo M, Erdei L, Marton L, Horvath F, Tari I (2004) Auxin autotrophic tobacco callus tissues resist oxidative stress: the importance of glutathione S-transferase and glutathione peroxidase activities in auxin heterotrophic and autotrophic calli. J Plant Physiol 161:691–699

    Google Scholar 

  • Dan Y, Baxter A, Zhang S, Pantazis CJ, Veilleux RE (2010) Development of efficient plant regeneration and transformation system for impatiens using Agrobacterium tumefaciens and multiple bud cultures as explants. BMC Plant Biol 10:165, Aug 9

    PubMed  Google Scholar 

  • Davey MR, Anthony P, Power JB, Lowe KC (2005) Plant protoplasts: status and biotechnological perspectives. Biotechnol Adv 23:131–171

    PubMed  CAS  Google Scholar 

  • Delauney AJ, Hu C-AA, Kavi Kishore PB, Verma DPS (1993) Cloning of ornithine δ-aminotransferase cDNA from Vigna acontifolia by trans complementation in Escherichia coli and regulation of proline biosynthesis. J Biol Chem 268:18673–18678

    PubMed  CAS  Google Scholar 

  • Dix PJ (1985) Cell line selection. In: Yeoman MM (ed) Plant cell culture technology. Blackwell Scientific, Oxford, pp 141–199

    Google Scholar 

  • Dix PG (1993) The role of mutant cell lines in studies on environmental stress tolerance: an assessment. Plant J 3:309–313

    CAS  Google Scholar 

  • Dix PJ, Street HE (1975) Sodium chloride-resistant cultured cell lines from Nicotiana sylvestris and Capsicum annum. Plant Sci Lett 5:231–237

    Google Scholar 

  • Downtwon WSJ (1977) Photosynthesis I salt-stressed grapevines. Aust J Plant Physiol 4:183–192

    Google Scholar 

  • Dubey R (1994) Protein synthesis by plants under stressful conditions. In: Mohammed P (ed) Handbook of plant and crop stress. Marcel Dekker, New York, pp 277–299

    Google Scholar 

  • Flowers TJ (2004) Improving crop salt tolerance. J Expt Bot 55:1–13

    Google Scholar 

  • Flowers TJ, Yeo AR (1992) Solute transport in plants. Chapman and Hall, Landon

    Google Scholar 

  • Fougere F, Le Rudulier D, Streeter JG (1991) Effects of salt stress on amino acid, organic acid, and carbohydrate composition of roots, bacteroids, and cytosol of alfalfa (Medicago sativa L.). Plant Physiol 96:1228–1236

    PubMed  CAS  Google Scholar 

  • Franco JA, Esteban C, Rodriguez C (1993) Effects of salinity on various growth stages of muskmelon cv. Revigal J Hort Sci 68:899–904

    CAS  Google Scholar 

  • Gadallah MAA (1999) Effect of proline and glycinebetaine on Vicia faba responses to salt stress. Biol Plant 42:249–257

    CAS  Google Scholar 

  • Gai YP, Ji XL, Lu W, Han XJ, Yang GD, Zheng CC (2011) A novel late embryogenesis abundant like protein associated with chilling stress in Nicotiana tabacum cv. bright yellow-2 cell suspension culture. Mol Cell Proteom 10:M111.010363

    Google Scholar 

  • Gao JP (2007) Understanding abiotic stress tolerance mechanisms: recent studies on stress response in rice. J Integ Plant Biol 49:742–750

    CAS  Google Scholar 

  • Gao H, Lamusta J, Zhang WF, Salmonsen R, Liu Y, O’Connell E, Evans JE, Burstein S, Chen JJ (2011) Tumor cell selective cytotoxicity and apoptosis induction by an herbal preparation from Brucea javanica. North Am J Med Sci 4:62–66

    Google Scholar 

  • Garg AK, Kim JK, Owens TG, Ranwala AP, DoChoi Y, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci USA 99:15898–15903

    PubMed  CAS  Google Scholar 

  • Gasparetto JC, Martins CA, Hayashi SS, Otuky MF, Pontarolo R (2012) Ethnobotanical and scientific aspects of Malva sylvestris L.: a millennial herbal medicine. J Pharm Pharmacol 64:172–189

    PubMed  CAS  Google Scholar 

  • Germanà MA (2011) Gametic embryogenesis and haploid technology as valuable support to plant breeding. Plant Cell Rep 30:839–857

    PubMed  Google Scholar 

  • Gersani M, Gorham EA, Nobel S (1993) Growth responses on individual roots of Opuntia ficus indica to salinity. Plant Cell Environ 16:827–834

    CAS  Google Scholar 

  • Ghasemzadeh A, Jaafar HZ (2011) Effect of CO(2) enrichment on synthesis of some primary and secondary metabolites in ginger (Zingiber officinale Roscoe). Int J Mol Sci 12:1101–1114

    PubMed  CAS  Google Scholar 

  • Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF (2000) Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol 124:1854–1865

    PubMed  CAS  Google Scholar 

  • Goddijn OJM, Van Dun K (1999) Trehalose metabolism in plants. Trends Plant Sci 4:315–319

    PubMed  Google Scholar 

  • Gomez JM, Hernandez JA, Jimenez A, del Rio LA, Sevilla F (1999) Differential response of antioxidative enzymes of chloroplast and mitochondria to long term NaCl stress of pea plants. Free Radic Res 31:11–18

    Google Scholar 

  • Gossett DR, Lucas MC, Millhollon EP, Caldwell WD, Barclay A (1992) Isozyme variation among salt tolerant and salt sensitive varieties of cotton. In: Herber DG (ed) Beltwide cotton production research conferences, Nashville, 6–10 Jan 1992. Cotton Council of America, Memphis, pp 1036–1039

    Google Scholar 

  • Gossett DR, Millhollon EP, Lucas MC, Marney MM (1993) Antioxidant enzymes and salt tolerance in cotton. In: Herber DG (ed) Beltwide cotton production conferences, New Orleans LA, 10–14 Jan 1993. National cotton council of America. Memphis TN, pp 1262–1266

    Google Scholar 

  • Gossett DR, Banks SW, Millhollon EP, Lucas MC (1996) Antioxidant response to NaCl stress in a control and a NaCl-tolerant cotton line grown in the presence of paraquat, buthionine sulphoxime, and exogenous glutathione. Plant Physiol 112:803–809

    PubMed  Google Scholar 

  • Greenway H, Munns R (1980) Mechanism of salt tolerance in non-halophytes. Ann Rev Plant Physiol 31:149–190

    CAS  Google Scholar 

  • Hamid A, Talibuddeen C (1976) Effect of sodium on the growth and ion uptake by barley sugar beet and broad beans. J Agric Sci 86:49–56

    Google Scholar 

  • He T, Cramer GR (1992) Growth and mineral nutrition of six rapid-cycling Brassica species in response to sea water salinity. Plant Soil 139:285–294

    CAS  Google Scholar 

  • Heath-Pagliuso S, Rappaport L (1990) Somaclonal variant UC-T3: the expression of Fusarium wilt resistance in progeny arrays of celery, Apium graveolens L. Theor Appl Genet 80:390–394

    Google Scholar 

  • Hernandez JA, Olmos E, Corpas FJ, Sevilla F, del Rio LA (1995) Salt-induced oxidative stress in chloroplasts of pea plants. Plant Sci 105:151–167

    CAS  Google Scholar 

  • Hernandez JA, Campillo A, Jimenez A, Alacon JJ, Sevilla F (1999) Response of antioxidant systems and leaf water relations to NaCl stress in pea plants. New Phytol 141:241–251

    CAS  Google Scholar 

  • Hernandez JA, Ferrer MA, Jimenez A, Barcelo AR, Sevilla F (2001) Antioxidant system and O2 .−/H2O2 production in the apoplast of pea leaves. Its relation with salt induced necrotic lesions in minor veins. Plant Physiol 127:817–831

    PubMed  CAS  Google Scholar 

  • Heuer B, Plaut Z (1989) Photosynthesis and osmotic adjustment of two sugarbeet cultivars grown under saline conditions. J Exp Bot 40:437–440

    Google Scholar 

  • Hounsa CG, Brandt EV, Thevelein J, Hohmann S, Prior BA (1998) Role of trehalose in survival of Saccharomyces cerevisiae under osmotic stress. Microbiology 144:671–680

    PubMed  CAS  Google Scholar 

  • Houshmand S, Arzani A, Maibody SAM, Feizi M (2005) Evaluation of salt-tolerant genotypes of drum wheat derived from in vitro and field experiments. Field Crop Res 91:345–354

    Google Scholar 

  • Hseih TH, Lee JT, Charng YY, Chan MT (2002) Tomato plant ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiol 130:618–626

    Google Scholar 

  • Hurkman WJ, Fornari CS, Tanaka CK (1989) A comparison of the effect of salt on the polypeptide and translatable mRNA in roots of the salt tolerant and salt sensitive cultivar of barley. Plant Physiol 90:1444–1456

    PubMed  CAS  Google Scholar 

  • Hurkman WJ, Rao HP, Tanaka CK (1991) Germinlike polypeptides increase in barley roots during salt stress. Plant Physiol 97:366–374

    PubMed  CAS  Google Scholar 

  • Hussain MS, Fareed S, Ansari S, Rahman MA, Ahmad IZ, Saeed M (2012) Current approaches toward production of secondary plant metabolites. J Pharm Bioallied Sci 4:10–20

    PubMed  Google Scholar 

  • Igarashi Y, Yoshiba Y, Sanada Y, Yamaguchi-Shinozaki K, Wada K, Shinozaki K (1997) Characterization of gene for σ ́-pyrroline-5-carboxylate synthetase and correlation between the expression of the gene and salt tolerance in Oryza sativa L. Plant Mol Biol 33:857–865

    PubMed  CAS  Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Ann Rev Plant Physiol Plant Mol Biol 47:377–403

    CAS  Google Scholar 

  • Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol 14:745–750

    PubMed  CAS  Google Scholar 

  • Jacobsen T, Adams RM (1958) Salt and silt in ancient mesopotamian agriculture. Science 128:1251–1258

    PubMed  CAS  Google Scholar 

  • Jindal A, Kumar P (2011) Antimicrobial flavonoids from Tridax procumbens. Nat Prod Res 26:2072–2077

    PubMed  Google Scholar 

  • Kaeppler SM (1998) Molecular basis of heritable tissue culture-induced variation in plants. In: Jain DSBJSM, Ahloowalia BS (eds) Somaclonal variation and induced mutations in crop improvement. Curr Plant Sci Biotech Agr, vol 32. Kluwer Academic, Dordrecht, The Netherlands, pp 465–484

    Google Scholar 

  • Kaeppler SM (2000) Epigenetic aspects of somaclonal variation in plants. Plant Mol Biol 43:179–188

    PubMed  CAS  Google Scholar 

  • Kärkönen A, Santanen A, Iwamoto K, Fukuda H (2011) Plant tissue cultures. Methods Mol Biol 715:1–20

    PubMed  Google Scholar 

  • Kavi Kishore PB, Hong Z, Miao GH, Hu CAA, Verma DPS (1995) Overexpression of σ1–pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108:1387–1394

    Google Scholar 

  • Khavarinejad RA, Mostofi Y (1998) Effects of NaCl on photosynthetic pigments, saccharides, and chloroplast ultrastructure in leaves of tomato cultivars. Photosynthetica 35:151–154

    CAS  Google Scholar 

  • Krause GH (1994) The role of oxygen in photoinhibition in photosynthesis. In: Foyer CH, Mullineux PM (eds) Cause of photoxidative stress and amelioration of defense system in plants. CRC, Boca Raton, pp 43–76

    Google Scholar 

  • Kulkarni H, Karadge BA (1991) Growth and mineral nutrition of mothbean (Phaseolus aconitifolius Jacb) under saline condition. Indian J Plant Physiol 14:14–24

    Google Scholar 

  • Lakshmanan P, Geijskes RJ, Wang L, Elliott A, Grof CP, Berding N, Smith GR (2006) Developmental and hormonal regulation of direct shoot organogenesis and somatic embryogenesis in sugarcane (Saccharum spp. interspecific hybrids) leaf culture. Plant Cell Rep 25:1007–1015

    PubMed  CAS  Google Scholar 

  • Lane A, Jarvis A (2007) Changes in climate will modify the geography of crop suitability: agricultural biodiversity can help with adaptation. SAT e J 4(1):1–12

    Google Scholar 

  • Larkin PJ (2004) Somaclonal variation: origins and causes. In: Goodman RM (ed) Encyclopedia of plant and crop science. Marcel Dekker, New York, pp 1185–1191

    Google Scholar 

  • Larkin PJ, Scowcroft WR (1981) Somaclonal variation- a novel source of variability from cell culture from plant improvement. Theor Appl Genet 60:197–214

    Google Scholar 

  • Lee DH, Kim YS, Lee CB (2001) The inductive responses of the antioxidant enzymes by salt stress in the rice (Oryza sativa L.). J Plant Physiol 158:737–745

    CAS  Google Scholar 

  • Liang YC (1999) Effects of silicon on enzyme activity and sodium, potassium and calcium concentration in barley under salt stress. Plant Soil 209:217–224

    CAS  Google Scholar 

  • Loyola-Vargas VM, Ochoa-Alejo N (2012) An introduction to plant cell culture: the future ahead. Methods Mol Biol 877:1–8

    PubMed  CAS  Google Scholar 

  • Lucchesini M, Mensuali-Sodi A (2010) Plant tissue culture–an opportunity for the production of nutraceuticals. Adv Exp Med Biol 698:185–202

    PubMed  CAS  Google Scholar 

  • Lutts S, Kinet JM, Bouharmont J (1996) Effects of salt stress on growth, mineral nutrition and proline accumulation in relation to osmotic adjustment in rice (Oryza sativa L.) cultivars differing in salinity tolerance. Plant Growth Regul 19:207–218

    CAS  Google Scholar 

  • Maestre FT, Jordi C, Susana B (2007) Mechanisms underlying the interaction between Pinus halepensis and the native late-successional shrub Pistacia lentiscus in a semi-arid plantation. Ecography 27:776–786

    Google Scholar 

  • Maggio A, Miyazaki S, Veronese P, Fujita T, Ibeas JI, Damsz B, Narasimhan ML, Hasegawa PM, Joly RJ, Bressan RA (2002) Does proline accumulation play an active role in stress induced growth reduction? Plant J 31:699–712

    PubMed  CAS  Google Scholar 

  • Mansour MMF (2000) Nitrogen containing compounds and adaptation of plants to salinity stress. Biol Plant 43:491–500

    CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, London

    Google Scholar 

  • McHughen A, Swartz M (1984) A tissue culture derived salt tolerant line of flax (Linum ustatissimum). J Plant Physiol 117:109–117

    PubMed  CAS  Google Scholar 

  • Mittler R (2002) Oxidation stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    PubMed  CAS  Google Scholar 

  • Mittler R, Ron V (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19

    PubMed  CAS  Google Scholar 

  • Mittova V, Tal M, Volokita M, Guy M (2002) Salt stress induces up-regulation of an efficient chloroplast antioxidant system in the salt-tolerant wild tomato species Lycopersicon pennellii but not in the cultivated species. Physiol Plant 115:393–400

    PubMed  CAS  Google Scholar 

  • Muller J, Boller T, Wiemken A (1995) Trehalose and trehalase in plants: recent developments. Plant Sci 112:1–9

    Google Scholar 

  • Munns R (1993) Physiological process limiting plant growth in saline soils: some dogmas and hypothesis. Plant Cell Environ 16:15–24

    CAS  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    PubMed  CAS  Google Scholar 

  • Munns R, Termaat A (1986) Whole plant responses to salinity. Aust J Plant Physiol 13:143–160

    Google Scholar 

  • Muralitharan MS, Chandler SF, Van Steveninck RFM (1992) Effect of Na2So4, K2SO4 and KCl on growth and ion uptake of callus cultures of Vaccinium carymbosum L. cv blue crop. Ann Bot 69:459–465

    CAS  Google Scholar 

  • Mustafa NR, de Winter W, van Iren F, Verpoorte R (2011) Initiation, growth and cryopreservation of plant cell suspension cultures. Nat Protoc 6:715–742

    PubMed  CAS  Google Scholar 

  • Nabores MW, Daniels A, Nadolmy L, Brown C (1975) Sodium chloride tolerant lines of tobacco cells. Plant Sci Lett 4:155–159

    Google Scholar 

  • Nabors MW, Dykes TA (1985) Tissue culture of cereal cultivars with increased salt drought and acid tolerance. In: Biotechnology in international research. IRRI, Manila, pp 121–138

    Google Scholar 

  • Namdeo AG, Sharma A, Sathiyanarayanan L, Fulzele D, Mahadik KR (2010) HPTLC densitometric evaluation of tissue culture extracts of Nothapodytes foetida compared to conventional extracts for camptothecin content and antimicrobial activity. Planta Med 76:474–480

    PubMed  CAS  Google Scholar 

  • Nanjo T, Kobayashi M, Yoshiba Y, Sanada Y, Wada K, Tsukaya H, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (1999) Antisence suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Lett 461:205–210

    PubMed  CAS  Google Scholar 

  • Narula A, Kumar S, Bansal KC, Srivastava PS (2004) Biotechnological approaches towards improvement of medicinal plants. In: Srivastava PS, Narula A, Srivastava S (eds) Plant biotechnology and molecular markers. Anamaya, New Delhi

    Google Scholar 

  • Neelakandan AK, Wang K (2012) Recent progress in the understanding of tissue culture-induced genome level changes in plants and potential applications. Plant Cell Rep 4:597–620

    Google Scholar 

  • Nieves M, Cerda A, Botalla M (1991) Salt tolerance of two lemon scions measured by leaf chloride and sodium accumulation. J Plant Nutr 14:623–636

    Google Scholar 

  • Nile SH, Kobragde CN, Park SW (2012) Optimized and comparative antioxidant assays and its application in herbal and synthetic drug analysis as an antioxidants. Mini Rev Med Chem 22:115–121

    Google Scholar 

  • Noble CL, Rogers ME (2002) Arguments for the use of physiological criteria for improving the salt tolerance in crops. Plant Soil 146:99–107

    Google Scholar 

  • Obert B, Zácková Z, Samaj J, Pretová A (2009) Doubled haploid production in flax (Linum usitatissimum L.). Biotechnol Adv 27:371–375

    PubMed  CAS  Google Scholar 

  • Ono NN, Tian L (2011) The multiplicity of hairy root cultures: prolific possibilities. Plant Sci 80:439–446

    Google Scholar 

  • Orton TJ (1980) Comparison of salt tolerance between Hordeum vulgare and H. jubatum in whole plants and callus cultures. Z Pflanzenphysiol 98:105

    CAS  Google Scholar 

  • Pandey UK, Srivastava RDL (1987) Salinity index in relation to nitrate reductase activity and proline accumulation in paddy genotypes. Indian J Plant Physiol 32:175–177

    Google Scholar 

  • Pareek A, Singla SL, Grover A (1997) Salt responsive proteins/genes in crop plants. In: Jaiwal PK, Singh RP, Gulati A (eds) Strategies for improving salt tolerance in higher plants. Oxford and IBH Publication Co, New Delhi, p 365

    Google Scholar 

  • Parida A, Das AB, Das P (2002) NaCl stress causes changes in photosynthetic pigments, proteins and other metabolic components in the leaves of a true mangrove, Bruguiera parviflora, in hydroponic cultures. J Plant Biol 45:28–36

    CAS  Google Scholar 

  • Pecetti L, Gorham J (1997) Screening of drum wheat germplasm for 22Na uptake under moderate salinity. Cereal Res Commun 25:923–930

    Google Scholar 

  • Peter S, Curtis PS, Luchli A (1986) The role of leaf area development and photosynthetic capacity in determining growth of Kenaf under moderate salt stress. Aust J Plant Physiol 13:553–565

    Google Scholar 

  • Phutela A, Jain V, Dhawan K, Nainawatee HS (2003) Proline metabolism and growth of Brassica juncea seedlings under water deficit stress. Indian J Agric Biochem 16:29–32

    CAS  Google Scholar 

  • Polard A, Wyn Jones RG (1979) Enzymes activities in concentrated solutions of glycinebetain and other solutes. Planta 144:291–298

    Google Scholar 

  • Polle A (2001) Dissecting the superoxide dismutase-ascorbate-glutathione-pathway in chloroplasts by metabolic modeling. Computer simulations as a step towards flux analysis. Plant Physiol 126:445–462

    PubMed  CAS  Google Scholar 

  • Rains DW (1989) Plant tissue and protoplast culture: application to stress physiology and biochemistry. In: Jones HG, Flowers TJ, Jones MB (eds) Plants under stress. Biochemistry, physiology and ecology and their application to plant improvement. Cambridge University Press, Cambridge, pp 181–196

    Google Scholar 

  • Rains DW, Croughan SS, Croughan TP (1986) Isolation and characterization of mutant cell lines and plants: salt tolerance. In: Vasil IK (ed) Cell culture and somatic cell genetics of plants. Academic, Orlando, pp 537–547

    Google Scholar 

  • Rodríguez-Rosales MP, Kerkeb L, Bueno P, Donaire JP (1999) Changes induced by NaCl in lipid content and composition, lipoxygenase, plasma membrane H+-ATPase and antioxidant enzyme activities of tomato (Lycopersicon esculentum. Mill) calli. Plant Sci 143:143–150

    Google Scholar 

  • Sairam RK, Tyagi A (2004) Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci 86:407–421

    CAS  Google Scholar 

  • Sarin N, Bhomkar P, Debroy S, Sharma N, Saxena M, Chandrama P, Upadhyaya, Muthusamy. A, Pooggin M, Hohn T (2004) Transformation of Vigna mungo (blackgram) for abiotic stress tolerance using marker free approach. In: Proceedings of the 4th international crop science congress, Brisbane, Australia, 2004

    Google Scholar 

  • Satheesan J, Narayanan AK, Sakunthala M (2012) Induction of root colonization by Piriformospora indica leads to enhanced asiaticoside production in Centella asiatica. Mycorrhiza 22:195–202

    PubMed  CAS  Google Scholar 

  • Savoure A, Jaoua S, Hua XJ, Van Ardiles W, Montagu M, Verbruggen N (1995) Isolation characterization and chromosomal location of a gene encoding pyrroline −5-carboxylate synthetase in Arabidopsis thaliana. FEBS Lett 372:13–19

    PubMed  CAS  Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    PubMed  Google Scholar 

  • Shalata A, Mittova V, Volokita M, Guy M, Tal M (2001) Response of the cultivated tomato and its wild salt- tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: the root antioxidant system. Physiol Plant 112:487–494

    PubMed  CAS  Google Scholar 

  • Shang G, Hong Z, Shao-zhen H, Qing-chang L (2012) Overexpression of SOS genes enhanced salt tolerance in sweet potato. J Integ Agricul 11:378–386

    Google Scholar 

  • Shannon MC (1998) Adaptation of plants to salinity. Adv Agron 60:75–119

    Google Scholar 

  • Sharry S, Adema M, Basiglio Cordal MA, Villarreal B, Nikoloff N, Briones V, Abedini W (2011) Propagation and conservation of native forest genetic resources of medicinal use by means of in vitro and ex vitro techniques. Nat Prod Commun 6:985–988

    PubMed  CAS  Google Scholar 

  • Shomer-Ilan A, Beno DM, Waisel Y (1985) Effect of NaCl on the properties of phosphoenol pyruvate carboxylase from Suaeda monoica and Chloris gayana. Physiol Plant 65:72–78

    CAS  Google Scholar 

  • Sibi ML, Fakiri M (2000) Androgenese et gynogenese, sources de vitrovariation et de tolerance a la salinite chez l’orge Hordeum vulgare. Secheresse 11(2):125–132

    Google Scholar 

  • Sinel’nikova VN, Bazhanov IA, Kosareva IA (1988) Effect of chloride salinity on functional changes in the photosynthetic apparatus of tomato cultivars. Plant Breed Abst 60:849–1990

    Google Scholar 

  • Singer MA, Lindquist S (1998) Multiple effects of trehalose on protein folding in vitro and in vivo. Mol Cell 1:639–648

    PubMed  CAS  Google Scholar 

  • Singh NK, Bracken CA, Hasegawa PM, Handa AK, Buckel S, Hermodson MA, Pfankoch F, Regnier FE, Bressan RA (1987a) Characterization of osmotin. A thaumatin-like protein associated with osmotic adjustment in plant cells. Plant Physiol 85:529–536

    PubMed  CAS  Google Scholar 

  • Singh NK, Bracker CA, Hasegawa PM, Handa AK, Buckel S, Harmodson MA, Pfankoch E, Regnier FE, Bressan RA (1987b) Characterization of Osmotin. Plant Physiol 85:529–536

    PubMed  CAS  Google Scholar 

  • Singh SK, Sharma HC, Goswami AM, Datta SP, Singh SP (2000) In vitro growth and leaf composition of grapevine cultivars as affected by sodium chloride. Biol Plant 43(2):283–286

    CAS  Google Scholar 

  • Smirnoff N (1993) The role of active oxygen in the response of plants to water deficit and dessication. New Phytol 125:27–58

    CAS  Google Scholar 

  • Solmon A, Beer S, Waisel Y, Jones GP, Paleg LG (1994) Effect of NaCl on the carboxylating activity of Rubisco from Tamarrix Jordans in the presence and absence of proline related compatible solutes. Plant Physiol 90:198–204

    Google Scholar 

  • Srivalli B, Chinnusamy V, Khanna-Chopra R (2003) Antioxidant defense in response to abiotic stresses in plants. J Plant Biol 30:121–139

    Google Scholar 

  • Stewart GR, Lee JA (1974) The role of proline accumulation in halophytes. Planta 120:279–289

    CAS  Google Scholar 

  • Stines AP, Naylor DJ, Hoj PB, Heeswijck RV (1999) Proline accumulation in developing grapevine fruit occurs independently of changes in the level of σ 1 –pyrroline-5-carboxylate synthetase mRNA or protein. Plant Physiol 120:923–993

    PubMed  CAS  Google Scholar 

  • Taheri JB, Azimi S, Rafieian N, Zanjani HA (2011) Herbs in dentistry. Int Dent J 61:287–296

    PubMed  Google Scholar 

  • Tal M (1983) Selection for stress tolerance. In: Evans DA, Sharp WR, Ammirato PV, Yamada Y (eds) Handbook of plant cell culture. Macmillan, New York, pp 481–488, vol 1

    Google Scholar 

  • Tal M (1993) In vitro methodology for increasing salt tolerance in crop plants. Acta Hort 336:69–78

    Google Scholar 

  • Tal M, Heikin H, Dehan K (1978) Salt tolerance in wild relatives of the cultivated tomato: responses of callus tissue of L. esculentum, L. peruvianum and S. pennellii to high salinity. Z Pflanzenphysiol 86:231–240

    CAS  Google Scholar 

  • Uma S, Prasad TG, Kumar MU (1995) Genetic variability in recovery growth and synthesis of stress proteins in response to polyethylene glycol and salt stress in finger millet. Ann Bot 76:43–49

    CAS  Google Scholar 

  • Umiel N, Zahavi E, Chen Y (1980) Effect of salinity stresses on tobacco, 2. Short term kinetics of Na+ and K+ uptake by callus cultures grown on media containing NaCl. Z Pflanzenphysiol 100:363–367

    CAS  Google Scholar 

  • Volk GM (2010) Application of functional genomics and proteomics to plant cryopreservation. Curr Genomics 11:24–29

    PubMed  CAS  Google Scholar 

  • Wang JW, Wu JY (2010) Tanshinone biosynthesis in Salvia miltiorrhiza and production in plant tissue cultures. Appl Microbiol Biotechnol 88:437–449

    PubMed  CAS  Google Scholar 

  • Wang XD, Nolan KE, Irwanto RR, Sheahan MB, Rose RJ (2011) Ontogeny of embryogenic callus in Medicago truncatula: the fate of the pluripotent and totipotent stem cells. Ann Bot 107:599–609

    PubMed  Google Scholar 

  • White PJ, Broadley MR (2001) Chloride in soils and its uptake and movement within the plant: a review. Ann Bot 88:967–988

    CAS  Google Scholar 

  • Wu JY, Ng J, Shi M, Wu SJ (2007) Enhanced secondary metabolite (tanshinone) production of Salvia miltiorrhiza hairy roots in a novel root-bacteria co-culture process. Appl Microbiol Biotechnol 77:543–550

    PubMed  CAS  Google Scholar 

  • Xu D, Duan X, Wang B, Hong B, Ho TD, Wu R (1996) Expression of late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110:249–257

    PubMed  CAS  Google Scholar 

  • Xu G, Magan H, Tarchitzky J, Kafkafi U (2000) Advances in chloride nutrition. Adv Agron 68:96–150

    Google Scholar 

  • Yamada T, Takatsu Y, Manabe T, Kasumi M, Marubashi W (2003) Suppressive effects of trehalose on apoptotic cell death leading to petal senescence in ethylene-insentive flowers of gladiolus. Plant Sci 164:213–221

    CAS  Google Scholar 

  • Yan Q, Wu J, Liu R (2011) Modeling of tanshinone synthesis and phase distribution under the combined effect of elicitation and in situ adsorption in Salvia miltiorrhiza hairy root cultures. Biotechnol Lett 33:813–819

    PubMed  CAS  Google Scholar 

  • Yang WJ, Rich PJ, Axtell JD, Wood KV, Bonham CC, Ejeta G, Mickelbart MV, Rhodes D (2003) Genotypic variation for glycinebetaine in sorghum. Crop Sci 43:162–169

    CAS  Google Scholar 

  • Yang D, Ma P, Liang X, Wei Z, Liang Z, Liu Y, Liu F (2012) PEG and ABA trigger methyl jasmonate accumulation to induce the MEP pathway and increase tanshinone production in Salvia miltiorrhiza hairy roots. Physiol Plant 22:1399–3054

    Google Scholar 

  • Yokoi S, Quintero FJ, Cubero B, Ruiz MT, Bressan RA, Hasegawa PM, Pardo JM (2002) Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response. Plant J 30:529–539

    PubMed  CAS  Google Scholar 

  • Yoshiba Y, Kiyosue T, Katagiri T, Ueda H, Mizoguchi T, Yamaguchi-Shinozaki K, Wada K, Harada Y, Shinozaki K (1995) Correlation between the induction of a gene for σ1-pyrroline-5-carboxylate synthetase and the accumulation of proline in Arabidopsis thaliana under osmotic stress. Plant J 7:751–760

    PubMed  CAS  Google Scholar 

  • Zare K, Khosrowshahli M, Nazemiyeh H, Movafeghi A, Azar AM, Omidi Y (2011) Callus culture of Echium italicum L. towards production of a shikonin derivative. Nat Prod Res 25:1480–1487

    PubMed  CAS  Google Scholar 

  • Zhang F, Wang Y, Yang Y, Wu H, Wang D, Liu J (2007) Involvement of hydrogen peroxide and nitric oxide in salt resistance in the calluses from Populus euphratica. Plant Cell Environ 30:775–785

    PubMed  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    PubMed  CAS  Google Scholar 

  • Zidan I, Aziazeh H, Neumann PM (1990) Does salinity reduce growth in maize root epidermal cells by inhibiting their capacity for cell wall acidification? Plant Physiol 93:7–11

    PubMed  CAS  Google Scholar 

  • Ziska LH, Seemann JR, DeJong TM (1990) Salinity induced limitations on photosynthesis in Prunus salica, a deciduous tree species. Plant Physiol 93:864–870

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parvaiz Ahmad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bhat, M.A. et al. (2013). Plant Tissue Culture: A Useful Measure for the Screening of Salt Tolerance in Plants. In: Ahmad, P., Azooz, M.M., Prasad, M.N.V. (eds) Salt Stress in Plants. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6108-1_18

Download citation

Publish with us

Policies and ethics