Skip to main content

Taurine and Fish Development: Insights for the Aquaculture Industry

  • Conference paper
  • First Online:
Taurine 8

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 776))

Abstract

Expansion of the aquaculture industry is limited by incomplete knowledge on fish larval nutritional requirements. Nevertheless, it is believed that dietary taurine deficiencies may be particularly critical for fish larvae. The reasons include the high taurine levels found during egg and yolk-sac stages of fish, suggesting that taurine may be of pivotal importance for larval development. Moreover, unlike aquaculture feeds, natural preys of fish larvae contain high taurine levels, and dietary taurine supplementation has been shown to increase larval growth in several fish species. This study aimed to further explore the physiological role of taurine during fish development. Firstly, the effect of dietary taurine supplementation was assessed on growth of gilthead sea bream (Sparus aurata) larvae and growth, metamorphosis success and amino acid metabolism of Senegalese sole (Solea senegalensis) larvae. Secondly, the expression of taurine transporter (TauT) was characterised by qPCR in sole larvae and juveniles. Results showed that dietary taurine supplementation did not increase sea bream growth. However, dietary taurine supplementation significantly increased sole larval growth, metamorphosis success and amino acid retention. Metamorphosis was also shown to be an important developmental trigger to promote taurine transport in sole tissues, while evidence for an enterohepatic recycling pathway for taurine was found in sole at least from juvenile stage. Taken together, our studies showed that the dependence of dietary taurine supplementation differs among fish species and that taurine has a vital role during the ontogenetic development of flatfish, an extremely valuable group targeted for aquaculture production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

TauT:

Taurine transporter

References

  • Carter CG, Houlihan DF (2001) Protein synthesis. In: Wright PA, Anderson AJ (eds) Nitrogen excretion. Academic, San Diego, USA, pp 31–75

    Chapter  Google Scholar 

  • Conceição LEC, Morais S, Rønnestad I (2007) Tracers in fish larvae nutrition: a review of methods and applications. Aquaculture 267:62–75

    Article  Google Scholar 

  • Dinis MT, Ribeiro L, Soares F, Sarasquete C (1999) A review on the cultivation potential of Solea senegalensis in Spain and in Portugal. Aquaculture 176:27–38

    Article  Google Scholar 

  • Fernández-Díaz C, Yúfera M, Cañavate JP, Moyano FJ, Alarcon FJ, Díaz M (2001) Growth and physiological changes during metamorphosis of Senegal sole reared in the laboratory. J Fish Biol 58:1086–1097

    Article  Google Scholar 

  • Huxtable RJ (1992) Physiological actions of taurine. Physiol Rev 72:101–163

    PubMed  CAS  Google Scholar 

  • Kim SK, Matsunari H, Takeuchi T, Yokoyama M, Furuita H, Murata Y, Goto T (2008) Comparison of taurine biosynthesis ability between juveniles of Japanese flounder and common carp. Amino Acids 35:161–168

    Article  PubMed  CAS  Google Scholar 

  • Matsunari H, Takeuchi T, Takahashi M, Mushiake K (2005) Effect of dietary taurine supplementation on growth performance of yellowtail juveniles Seriola quinqueradiata. Fisheries Sci 71:1131–1135

    Article  CAS  Google Scholar 

  • Métayer S, Seiliez I, Collin A, Duchene S, Mercier Y, Geraert PA, Tesseraud S (2008) Mechanisms through which sulfur amino acids control protein metabolism and oxidative status. J Nutr Biochem 19:207–215

    Article  PubMed  Google Scholar 

  • Moretti A, Criado MPF, Cittolin G, Guidastri R (1999) Manual on hatchery production of seabass and gilthead seabream. Food and Agriculture Organization of the United Nations, Rome, Italy, p 194

    Google Scholar 

  • Pinto W, Figueira L, Dinis MT, Aragão C (2009) How does fish metamorphosis affect aromatic amino acid metabolism? Amino Acids 36:177–183

    Article  PubMed  CAS  Google Scholar 

  • Pinto W, Figueira L, Ribeiro L, Yúfera M, Dinis MT, Aragão C (2010) Dietary taurine supplementation enhances metamorphosis and growth potential of Solea senegalensis larvae. Aquaculture 309:159–164

    Article  CAS  Google Scholar 

  • Pinto W, Rønnestad I, Jordal AEO, Gomes AS, Dinis MT, Aragão C (2012) Cloning, tissue and ontogenetic expression of the taurine transporter in the flatfish Senegalese sole (Solea senegalensis). Amino Acids 42:1317–1327

    Article  PubMed  CAS  Google Scholar 

  • Rønnestad I, Morais SJ (2008) Digestion. In: Finn RN, Kapoor BG (eds) Fish larval physiology. Science, Enfield, NH, USA, pp 201–262

    Google Scholar 

  • Solé M, Potrykus J, Fernández-Díaz C, Blasco J (2004) Variations on stress defences and metallothionein levels in the Senegal sole, Solea senegalensis, during early larval stages. Fish Physiol Biochem 30:57–66

    Article  Google Scholar 

  • Takeuchi T, Park GS, Seikai T, Yokoyama M (2001) Taurine content in Japanese flounder Paralichthys olivaceus T. & S. and red sea bream Pagrus major T. & S. during the period of seed production. Aquac Res 32:244–248

    Article  CAS  Google Scholar 

  • van der Meeren T, Olsen RE, Hamre K, Fyhn HJ (2008) Biochemical composition of copepods for evaluation of feed quality in production of juvenile marine fish. Aquaculture 274:375–397

    Article  Google Scholar 

  • Yúfera M, Darias MJ (2007) The onset of exogenous feeding in marine fish larvae. Aquaculture 268:53–63

    Article  Google Scholar 

  • Zar JH (1999) Biostatistical analysis. Prentice Hall, Illinois, USA, p 662

    Google Scholar 

Download references

Acknowledgements

W. Pinto and C. Aragão benefited from grants SFRH/BPD/80121/2011 and SFRH/BPD/37197/2007 (FCT, Portugal), respectively. I. Rønnestad acknowledges grants from European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement n 222719—LIFECYCLE and Research Council of Norway (802948; GutFeeling).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilson Pinto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Pinto, W., Rønnestad, I., Dinis, M.T., Aragão, C. (2013). Taurine and Fish Development: Insights for the Aquaculture Industry. In: El Idrissi, A., L'Amoreaux, W. (eds) Taurine 8. Advances in Experimental Medicine and Biology, vol 776. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6093-0_30

Download citation

Publish with us

Policies and ethics