Skip to main content

A Mitochondriocentric Pathway to Cardiomyocyte Necrosis: An Upstream Molecular Mechanism in Myocardial Fibrosis

  • Chapter
  • First Online:
Cardiac Remodeling

Abstract

The pathophysiologic origins of heart failure can be attributed to a pathologic remodeling of myocardium, including necrotic loss of cardiomyocytes and consequent reparative fibrosis. Hypertensive heart disease with concentric left ventricular hypertrophy and fibrosis represents a major etiologic factor accounting for diastolic heart failure. Herein, we focus on molecular mechanisms to the precursor of fibrosis, namely, cardiomyocyte necrosis, whose pathogenic origin resides in a mitochondriocentric signal-transducer–effector pathway. Its major components include intracellular Ca2+ overloading of cytosolic and mitochondrial domains, the induction of oxidative stress by these organelles which overwhelms endogenous antioxidant defenses, and the increased opening potential of the mitochondrial permeability transition pore. Novel cardioprotective strategies aimed at preventing the progressive remodeling of the failing heart should target upstream molecular mechanisms that prevent cardiomyocyte necrosis rather than downstream events involving collagen turnover related to fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALDO:

Aldosterone

ALDOST:

Aldosterone/salt treatment

CHF:

Congestive heart failure

CVF:

Collagen volume fraction

DOCST:

Deoxycorticosterone/salt treatment

HHD:

Hypertensive heart disease

mPTP:

Mitochondrial permeability transition pore

MSTE:

Mitochondriocentric signal-transducer–effector

PAC:

Plasma aldosterone concentration

PTH:

Parathyroid hormone

RAAS:

Renin–angiotensin–aldosterone system

ROS:

Reactive oxygen species

SHPT:

Secondary hyperparathyroidism

Spiro:

Spironolactone

References

  1. Beltrami CA, Finato N, Rocco M et al (1994) Structural basis of end-stage failure in ischemic cardiomyopathy in humans. Circulation 89:151–163

    Article  PubMed  CAS  Google Scholar 

  2. de Leeuw N, Ruiter DJ, Balk AH et al (2001) Histopathologic findings in explanted heart tissue from patients with end-stage idiopathic dilated cardiomyopathy. Transpl Int 14:299–306

    Article  PubMed  Google Scholar 

  3. Waller TA, Hiser WL, Capehart JE, Roberts WC (1998) Comparison of clinical and morphologic cardiac findings in patients having cardiac transplantation for ischemic cardiomyopathy, idiopathic dilated cardiomyopathy, and dilated hypertrophic cardiomyopathy. Am J Cardiol 81:884–894

    Article  PubMed  CAS  Google Scholar 

  4. Schaper J, Speiser B (1992) The extracellular matrix in the failing human heart. Basic Res Cardiol 87(Suppl 1):303–309

    PubMed  Google Scholar 

  5. Yoshikane H, Honda M, Goto Y et al (1992) Collagen in dilated cardiomyopathy–scanning electron microscopic and immunohistochemical observations. Jpn Circ J 56:899–910

    Article  PubMed  CAS  Google Scholar 

  6. Marijianowski MM, Teeling P, Mann J, Becker AE (1995) Dilated cardiomyopathy is associated with an increase in the type I/type III collagen ratio: a quantitative assessment. J Am Coll Cardiol 25:1263–1272

    Article  PubMed  CAS  Google Scholar 

  7. Jalil JE, Janicki JS, Pick R, Abrahams C, Weber KT (1989) Fibrosis-induced reduction of endomyocardium in the rat after isoproterenol treatment. Circ Res 65:258–264

    Article  PubMed  CAS  Google Scholar 

  8. Pearlman ES, Weber KT, Janicki JS, Pietra GG, Fishman AP (1982) Muscle fiber orientation and connective tissue content in the hypertrophied human heart. Lab Invest 46:158–164

    PubMed  CAS  Google Scholar 

  9. Huysman JAN, Vliegen HW, Van der Laarse A, Eulderink F (1989) Changes in nonmyocyte tissue composition associated with pressure overload of hypertrophic human hearts. Pathol Res Pract 184:577–581

    Article  PubMed  CAS  Google Scholar 

  10. Sun Y, Ramires FJA, Weber KT (1997) Fibrosis of atria and great vessels in response to angiotensin II or aldosterone infusion. Cardiovasc Res 35:138–147

    Article  PubMed  CAS  Google Scholar 

  11. Weber KT (2001) Aldosterone in congestive heart failure. N Engl J Med 345:1689–1697

    Article  PubMed  CAS  Google Scholar 

  12. Delafontaine P, Akao M (2006) Angiotensin II as candidate of cardiac cachexia. Curr Opin Clin Nutr Metab Care 9:220–224

    Article  PubMed  CAS  Google Scholar 

  13. Gerling IC, Sun Y, Ahokas RA et al (2003) Aldosteronism: an immunostimulatory state precedes the proinflammatory/fibrogenic cardiac phenotype. Am J Physiol Heart Circ Physiol 285:H813–H821

    PubMed  CAS  Google Scholar 

  14. Ahokas RA, Warrington KJ, Gerling IC et al (2003) Aldosteronism and peripheral blood mononuclear cell activation. A neuroendocrine-immune interface. Circ Res 93:e124–e135

    Article  PubMed  CAS  Google Scholar 

  15. Sun Y, Zhang J, Lu L et al (2002) Aldosterone-induced inflammation in the rat heart. Role of oxidative stress. Am J Pathol 161:1773–1781

    Article  PubMed  CAS  Google Scholar 

  16. Campbell SE, Farb A, Weber KT (1993) Pathologic remodeling of the myocardium in a weightlifter taking anabolic steroids. Blood Press 2:213–216

    Article  PubMed  CAS  Google Scholar 

  17. Brilla CG, Pick R, Tan LB, Janicki JS, Weber KT (1990) Remodeling of the rat right and left ventricle in experimental hypertension. Circ Res 67:1355–1364

    Article  PubMed  CAS  Google Scholar 

  18. Laurent GJ (1987) Dynamic state of collagen: pathways of collagen degradation in vivo and their possible role in regulation of collagen mass. Am J Physiol 252:C1–C9

    PubMed  CAS  Google Scholar 

  19. López B, González A, Díez J (2010) Circulating biomarkers of collagen metabolism in cardiac diseases. Circulation 121:1645–1654

    Article  PubMed  Google Scholar 

  20. Zile MR, Brutsaert DL (2002) New concepts in diastolic dysfunction and diastolic heart failure: Part I: diagnosis, prognosis, and measurements of diastolic function. Circulation 105:1387–1393

    Article  PubMed  Google Scholar 

  21. Zile MR, Brutsaert DL (2002) New concepts in diastolic dysfunction and diastolic heart failure: Part II: causal mechanisms and treatment. Circulation 105:1503–1508

    Article  PubMed  Google Scholar 

  22. Díez J (2009) Towards a new paradigm about hypertensive heart disease. Med Clin North Am 93:637–645

    Article  PubMed  Google Scholar 

  23. Shapiro LM, McKenna WJ (1984) Left ventricular hypertrophy: relation of structure to ­diastolic function in hypertension. Br Heart J 51:637–642

    Article  PubMed  CAS  Google Scholar 

  24. Young M, Fullerton M, Dilley R, Funder J (1994) Mineralocorticoids, hypertension, and ­cardiac fibrosis. J Clin Invest 93:2578–2583

    Article  PubMed  CAS  Google Scholar 

  25. Garnier A, Bendall JK, Fuchs S et al (2004) Cardiac specific increase in aldosterone production induces coronary dysfunction in aldosterone synthase-transgenic mice. Circulation 110:1819–1825

    Article  PubMed  CAS  Google Scholar 

  26. Chhokar VS, Sun Y, Bhattacharya SK et al (2004) Loss of bone minerals and strength in rats with aldosteronism. Am J Physiol Heart Circ Physiol 287:H2023–H2026

    Article  PubMed  CAS  Google Scholar 

  27. Chhokar VS, Sun Y, Bhattacharya SK et al (2005) Hyperparathyroidism and the calcium paradox of aldosteronism. Circulation 111:871–878

    Article  PubMed  CAS  Google Scholar 

  28. Sheppard K, Funder JW (1987) Mineralocorticoid specificity of renal type I receptors: in vivo binding studies. Am J Physiol 252(2 Pt 1):E224–E229

    PubMed  CAS  Google Scholar 

  29. Suki WN, Schwettmann RS, Rector FC Jr, Seldin DW (1968) Effect of chronic mineralocorticoid administration on calcium excretion in the rat. Am J Physiol 215:71–74

    PubMed  CAS  Google Scholar 

  30. Massry SG, Coburn JW, Chapman LW, Kleeman CR (1968) The effect of long-term desoxycorticosterone acetate administration on the renal excretion of calcium and magnesium. J Lab Clin Med 71:212–219

    CAS  Google Scholar 

  31. Gehr MK, Goldberg M (1986) Hypercalciuria of mineralocorticoid escape: clearance and micropuncture studies in the rat. Am J Physiol 251(5 Pt 2):F879–F888

    PubMed  CAS  Google Scholar 

  32. Cappuccio FP, Markandu ND, MacGregor GA (1988) Renal handling of calcium and phosphate during mineralocorticoid administration in normal subjects. Nephron 48:280–283

    Article  PubMed  CAS  Google Scholar 

  33. Rastegar A, Agus Z, Connor TB, Goldberg M (1972) Renal handling of calcium and phosphate during mineralocorticoid “escape” in man. Kidney Int 2:279–286

    Article  PubMed  CAS  Google Scholar 

  34. Zikos D, Langman C, Gafter U, Delahaye B, Lau K (1986) Chronic DOCA treatment increases Ca absorption: role of hypercalciuria and vitamin D. Am J Physiol 251(3 Pt 1):E279–E284

    PubMed  CAS  Google Scholar 

  35. Rossi E, Perazzoli F, Negro A et al (1998) Acute effects of intravenous sodium chloride load on calcium metabolism and on parathyroid function in patients with primary aldosteronism compared with subjects with essential hypertension. Am J Hypertens 11:8–13

    Article  PubMed  CAS  Google Scholar 

  36. Berthelot A, Pernot F, Gairard A (1983) Influence of the thyroid and parathyroid glands on magnesium metabolism during mineralocorticoid treatment (DOCA  +  NaCl) in the rat. Ann Nutr Metab 27:349–354

    Article  PubMed  CAS  Google Scholar 

  37. Horton R, Biglieri EG (1962) Effect of aldosterone on the metabolism of magnesium. J Clin Endocrinol Metab 22:1187–1192

    Article  PubMed  CAS  Google Scholar 

  38. Rossi E, Sani C, Perazzoli F et al (1995) Alterations of calcium metabolism and of parathyroid function in primary aldosteronism, and their reversal by spironolactone or by surgical removal of aldosterone-producing adenomas. Am J Hypertens 8:884–893

    Article  PubMed  CAS  Google Scholar 

  39. Morrissey JJ, Cohn DV (1978) The effects of calcium and magnesium on the secretion of parathormone and parathyroid secretory protein by isolated porcine parathyroid cells. Endocrinology 103:2081–2090

    Article  PubMed  CAS  Google Scholar 

  40. Mayer GP, Hurst JG (1978) Comparison of the effects of calcium and magnesium on parathyroid hormone secretion rate in calves. Endocrinology 102:1803–1814

    Article  PubMed  CAS  Google Scholar 

  41. Fertig A, Webley M, Lynn JA (1980) Primary hyperparathyroidism in a patient with Conn’s syndrome. Postgrad Med J 56:45–47

    Article  PubMed  CAS  Google Scholar 

  42. Hellman DE, Kartchner M, Komar N, Mayes D, Pitt M (1980) Hyperaldosteronism, hyperparathyroidism, medullary sponge kidneys, and hypertension. JAMA 244:1351–1353

    Article  PubMed  CAS  Google Scholar 

  43. Resnick LM, Laragh JH (1985) Calcium metabolism and parathyroid function in primary aldosteronism. Am J Med 78:385–390

    Article  PubMed  CAS  Google Scholar 

  44. Palmieri GM, Hawrylko J (1977) Effects of aldosterone on the urinary excretion of total and non-dialyzable hydroxyproline. Horm Metab Res 9:507–509

    Article  CAS  Google Scholar 

  45. Sellmeyer DE, Schloetter M, Sebastian A (2002) Potassium citrate prevents increased urine calcium excretion and bone resorption induced by a high sodium chloride diet. J Clin Endocrinol Metab 87:2008–2012

    Article  PubMed  CAS  Google Scholar 

  46. Goulding A, Campbell D (1983) Dietary NaCl loads promote calciuria and bone loss in adult oophorectomized rats consuming a low calcium diet. J Nutr 113:1409–1414

    PubMed  CAS  Google Scholar 

  47. Creedon A, Cashman KD (2000) The effect of high salt and high protein intake on calcium metabolism, bone composition and bone resorption in the rat. Br J Nutr 84:49–56

    PubMed  CAS  Google Scholar 

  48. Somers MJ, Mavromatis K, Galis ZS, Harrison DG (2000) Vascular superoxide production and vasomotor function in hypertension induced by deoxycorticosterone acetate-salt. Circulation 101:1722–1728

    Article  PubMed  CAS  Google Scholar 

  49. Pu Q, Neves MF, Virdis A, Touyz RM, Schiffrin EL (2003) Endothelin antagonism on aldosterone-induced oxidative stress and vascular remodeling. Hypertension 42:49–55

    Article  PubMed  CAS  Google Scholar 

  50. Virdis A, Neves MF, Amiri F et al (2002) Spironolactone improves angiotensin-induced vascular changes and oxidative stress. Hypertension 40:504–510

    Article  PubMed  CAS  Google Scholar 

  51. Gandhi MS, Deshmukh PA, Kamalov G et al (2008) Causes and consequences of zinc dyshomeostasis in rats with chronic aldosteronism. J Cardiovasc Pharmacol 52:245–252

    Article  PubMed  CAS  Google Scholar 

  52. Fleckenstein A, Frey M, Fleckenstein-Grun G (1983) Consequences of uncontrolled calcium entry and its prevention with calcium antagonists. Eur Heart J 4(Suppl H):43–50

    Article  PubMed  CAS  Google Scholar 

  53. Ahokas RA, Sun Y, Bhattacharya SK, Gerling IC, Weber KT (2005) Aldosteronism and a proinflammatory vascular phenotype. Role of Mg2+, Ca2+ and H2O2 in peripheral blood mononuclear cells. Circulation 111:51–57

    Article  PubMed  CAS  Google Scholar 

  54. Fujita T, Palmieri GM (2000) Calcium paradox disease: calcium deficiency prompting secondary hyperparathyroidism and cellular calcium overload. J Bone Miner Metab 18:109–125

    Article  PubMed  CAS  Google Scholar 

  55. Smogorzewski M, Zayed M, Zhang YB, Roe J, Massry SG (1993) Parathyroid hormone increases cytosolic calcium concentration in adult rat cardiac myocytes. Am J Physiol 264:H1998–H2006

    PubMed  CAS  Google Scholar 

  56. Perna AF, Smogorzewski M, Massry SG (1989) Effects of verapamil on the abnormalities in fatty acid oxidation of myocardium. Kidney Int 36:453–457

    Article  PubMed  CAS  Google Scholar 

  57. Rampe D, Lacerda AE, Dage RC, Brown AM (1991) Parathyroid hormone: an endogenous modulator of cardiac calcium channels. Am J Physiol 261(6 Pt 2):H1945–H1950

    PubMed  CAS  Google Scholar 

  58. Nordquist RE, Palmieri MA (1974) Intracellular localization of parathyroid hormone in the kidney. Endocrinology 95:229–237

    Article  PubMed  CAS  Google Scholar 

  59. Deluca HF, Engstrom GW, Rasmussen H (1962) The action of vitamin D and parathyroid hormone in vitro on calcium uptake and release by kidney mitochondria. Proc Natl Acad Sci USA 48:1604–1609

    Article  PubMed  CAS  Google Scholar 

  60. Sallis JD, Deluca HF, Rasmussen H (1963) Parathyroid hormone-dependent uptake of inorganic phosphate by mitochondria. J Biol Chem 238:4098–4102

    PubMed  CAS  Google Scholar 

  61. Sallis JD, DeLuca HF (1966) Action of parathyroid hormone on mitochondria. Magnesium- and phosphate-independent respiration. J Biol Chem 241:1122–1127

    PubMed  CAS  Google Scholar 

  62. Kimmich GA, Rasmussen H (1966) The effect of parathyroid hormone on mitochondrial ion transport in the terminal portion of the cytochrome chain. Biochim Biophys Acta 113:457–466

    Article  PubMed  CAS  Google Scholar 

  63. Rasmussen H, Ogata E (1966) Parathyroid hormone and the reactions of mitochondria to cations. Biochemistry 5:733–745

    Article  PubMed  CAS  Google Scholar 

  64. Massry SG, Smogorzewski M (1994) Mechanisms through which parathyroid hormone mediates its deleterious effects on organ function in uremia. Semin Nephrol 14:219–231

    PubMed  CAS  Google Scholar 

  65. Touyz RM (2005) Reactive oxygen species as mediators of calcium signaling by angiotensin II: implications in vascular physiology and pathophysiology. Antioxid Redox Signal 7:1302–1314

    Article  PubMed  CAS  Google Scholar 

  66. Palty R, Silverman WF, Hershfinkel M et al (2010) NCLX is an essential component of mitochondrial Na+/Ca2+ exchange. Proc Natl Acad Sci USA 107:436–441

    Article  PubMed  CAS  Google Scholar 

  67. Kuo TH, Zhu L, Golden K et al (2002) Altered Ca2+ homeostasis and impaired mitochondrial function in cardiomyopathy. Mol Cell Biochem 238:119–127

    Article  PubMed  CAS  Google Scholar 

  68. Kamalov G, Ahokas RA, Zhao W et al (2010) Temporal responses to intrinsically coupled calcium and zinc dyshomeostasis in cardiac myocytes and mitochondria during aldosteronism. Am J Physiol Heart Circ Physiol 298:H385–H394

    Article  PubMed  CAS  Google Scholar 

  69. Goodwin KD, Ahokas RA, Bhattacharya SK et al (2006) Preventing oxidative stress in rats with aldosteronism by calcitriol and dietary calcium and magnesium supplements. Am J Med Sci 332:73–78

    Article  PubMed  Google Scholar 

  70. Vidal A, Sun Y, Bhattacharya SK et al (2006) Calcium paradox of aldosteronism and the role of the parathyroid glands. Am J Physiol Heart Circ Physiol 290:H286–H294

    Article  PubMed  CAS  Google Scholar 

  71. Yang F, Nickerson PA (1988) Effect of parathyroidectomy on arterial hypertrophy, vascular lesions, and aortic calcium content in deoxycorticosterone-induced hypertension. Res Exp Med (Berl) 188:289–297

    Article  CAS  Google Scholar 

  72. Selektor Y, Ahokas RA, Bhattacharya SK et al (2008) Cinacalcet and the prevention of secondary hyperparathyroidism in rats with aldosteronism. Am J Med Sci 335:105–110

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported, in part, by NIH grants R01-HL73043 and R01-HL90867 (KTW). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl T. Weber M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Adeboye, A.A., Newman, K.P., Dishmon, D.A., Alsafwah, S., Bhattacharya, S.K., Weber, K.T. (2013). A Mitochondriocentric Pathway to Cardiomyocyte Necrosis: An Upstream Molecular Mechanism in Myocardial Fibrosis. In: Jugdutt, B., Dhalla, N. (eds) Cardiac Remodeling. Advances in Biochemistry in Health and Disease, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5930-9_7

Download citation

Publish with us

Policies and ethics