Skip to main content

Regulation of Angiogenesis by Hypoxia-Inducible Factors

  • Chapter
  • First Online:
Biochemical Basis and Therapeutic Implications of Angiogenesis

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 6))

Abstract

In the years since the identification of hypoxia-inducible factors (HIFs), it has been well established that HIFs regulate angiogenic genes, such as vascular endothelial growth factor. HIFs play essential roles in embryonic vascular development. Recent studies have demonstrated that HIFs can influence the adult vascular system, not only in neovascularization but also in angiogenesis in pathological conditions. In this chapter, oxygen-dependent and novel oxygen-­independent regulatory systems of HIF-αs are reviewed. Hypoxia-associated factor regulates HIF-1α and HIF-2α reversely. Int6-silencing stabilizes HIF-2α and functional vessel formation. HIFs can be therapeutic targets in both anti-­angiogenic and angiogenic therapy. The new findings have implications for the development of therapies for ischemic disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harris AL (2002) Hypoxia—a key regulatory factor in tumour growth. Nat Rev Cancer 2:38–47

    Article  PubMed  CAS  Google Scholar 

  2. Brown JM, Giaccia AJ (1998) The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res 58:1408–1416

    PubMed  CAS  Google Scholar 

  3. Makino Y, Cao R, Svensson K et al (2001) Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression. Nature 414:550–554

    Article  PubMed  CAS  Google Scholar 

  4. Jain S, Maltepe E, Lu MM, Simon C, Bradfield CA (1998) Expression of ARNT, ARNT2, HIF1α, HIF2α and Ah receptor mRNAs in the developing mouse. Mech Dev 73:117–123

    Article  PubMed  CAS  Google Scholar 

  5. Tian H, McKnight SL, Russell DW (1997) Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev 11:72–82

    Article  PubMed  CAS  Google Scholar 

  6. Gu YZ, Moran SM, Hogenesch JB, Wartman L, Bradfield CA (1998) Molecular characterization and chromosomal localization of a third α-class hypoxia inducible factor subunit, HIF3α. Gene Expr 7:205–213

    PubMed  CAS  Google Scholar 

  7. Wiesener MS, Jürgensen JS, Rosenberger C et al (2002) Widespread hypoxia-inducible expression of HIF-2α in distinct cell populations of different organs. FASEB J 17:271–273

    PubMed  Google Scholar 

  8. Jewell UR, Kvietikova I, Scheid A, Bauer C, Wenger RH, Gassmann M (2001) Induction of HIF-1α in response to hypoxia is instantaneous. FASEB J 15:1312–1314

    PubMed  CAS  Google Scholar 

  9. Hon WC, Wilson MI, Harlos K et al (2002) Structural basis for the recognition of hydroxyproline in HIF-1α by pVHL. Nature 417:975–978

    Article  PubMed  CAS  Google Scholar 

  10. Kondo K, Kim WY, Lechpammer M, Kaelin WG Jr (2003) Inhibition of HIF2α is sufficient to suppress pVHL-defective tumor growth. PLoS Biol 1:439–444

    Article  CAS  Google Scholar 

  11. Epstein AC, Gleadle JM, McNeill LA et al (2001) C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107:43–54

    Article  PubMed  CAS  Google Scholar 

  12. Bruick RK, McKnight SL (2001) A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294:1337–1340

    Article  PubMed  CAS  Google Scholar 

  13. Appelhoff RJ, Tian YM, Raval RR et al (2004) Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. J Biol Chem 279:38458–38465

    Article  PubMed  CAS  Google Scholar 

  14. Kaelin WG Jr (2002) Molecular basis of the VHL hereditary cancer syndrome. Nat Rev Cancer 2:673–682

    Article  PubMed  CAS  Google Scholar 

  15. Kaelin WG Jr, Ratcliffe PJ (2008) Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell 30:393–402

    Article  PubMed  CAS  Google Scholar 

  16. Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3:721–732

    Article  PubMed  CAS  Google Scholar 

  17. Chen L, Uchida K, Endler A, Shibasaki F (2007) Mammalian tumor suppressor Int6 specifically targets hypoxia inducible factor 2α for degradation by hypoxia- and pVHL-­independent regulation. J Biol Chem 282:12707–12716

    Article  PubMed  CAS  Google Scholar 

  18. Marchetti A, Buttitta F, Miyazaki S, Gallahan D, Smith GH, Callahan R (1995) Int-6, a highly conserved, widely expressed gene, is mutated by mouse mammary tumor virus in mammary preneoplasia. J Virol 69:1932–1938

    PubMed  CAS  Google Scholar 

  19. Kim T, Hofmann K, von Arnim AG, Chamovitz DA (2001) PCI complexes: pretty complex interactions in diverse signaling pathways. Trends Plant Sci 6:379–386

    Article  PubMed  CAS  Google Scholar 

  20. von Armin AG, Chamovitz DA (2003) Protein Homeostasis: a degrading role for Int6/eIF3e. Curr Biol 13:R323–R325

    Article  Google Scholar 

  21. Kato H, Tamamizu-Kato S, Shibasaki F (2004) Histone deacetylase 7 associates with hypoxia-­inducible factor 1α and increases transcriptional activity. J Biol Chem 279:41966–41974

    Article  PubMed  CAS  Google Scholar 

  22. Koh MY, Darnay BG, Powis G (2008) Hypoxia-associated factor, a novel E3-ubiquitin ligase, binds and ubiquitinates hypoxia-inducible factor 1α, leading to its oxygen-independent degradation. Mol Cell Biol 28:7081–7095

    Article  PubMed  CAS  Google Scholar 

  23. Koh MY, Lemos R Jr, Liu X, Powis G (2011) The hypoxia-associated factor switches cells from HIF-1α- to HIF-2α-dependent signaling promoting stem cell characteristics, aggressive tumor growth and invasion. Cancer Res 71:4015–4027

    Article  PubMed  CAS  Google Scholar 

  24. Tang N, Wang L, Esko J et al (2004) Loss of HIF-1α in endothelial cells disrupts a hypoxia-­driven VEGF autocrine loop necessary for tumorigenesis. Cancer Cell 6:485–495

    Article  PubMed  CAS  Google Scholar 

  25. Sowter HM, Raval RR, Moore JW et al (2003) Predominant role of hypoxia-inducible transcription factor (Hif)-1α versus Hif-2α in regulation of the transcriptional response to hypoxia. Cancer Res 63:6130–6134

    PubMed  CAS  Google Scholar 

  26. Licht AH, Muller-Holtkamp F, Flamme I, Breier G (2006) Inhibition of hypoxia-inducible factor activity in endothelial cells disrupts embryonic cardiovascular development. Blood 107:584–590

    Article  PubMed  CAS  Google Scholar 

  27. Maltepe E, Schmidt JV, Baunoch D, Bradfield CA, Simon MC (1997) Abnormal angiogenesis and responses to glucose and oxygen deprivation in mice lacking the protein ARNT. Nature 386:403–407

    Article  PubMed  CAS  Google Scholar 

  28. Carmeliet P, Dor Y, Herbert JM et al (1998) Role of HIF-1α in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394:485–490

    Article  PubMed  CAS  Google Scholar 

  29. Iyer NV, Kotch LE, Agani F et al (1998) Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1α. Genes Dev 12:149–162

    Article  PubMed  CAS  Google Scholar 

  30. Ryan HE, Lo J, Johnson RS (1998) HIF-1α is required for solid tumor formation and embryonic vascularization. EMBO J 17:3005–3015

    Article  PubMed  CAS  Google Scholar 

  31. Vincent KA, Shyu KG, Luo Y et al (2000) Angiogenesis is induced in a rabbit model of hindlimb ischemia by naked DNA Encoding an HIF-1α/VP16 hybrid transcription factor. Circulation 102:2255–2261

    Article  PubMed  CAS  Google Scholar 

  32. Duan LJ, Zhang-Benoit Y, Fong GH (2005) Endothelium-intrinsic requirement for Hif-2α during vascular development. Circulation 111:2227–2232

    Article  PubMed  CAS  Google Scholar 

  33. Compernolle V, Brusselmans K, Acker T et al (2002) Loss of HIF-2α and inhibition of VEGF impair fetal lung maturation, whereas treatment with VEGF prevents fatal respiratory distress in premature mice. Nat Med 8:702–710

    PubMed  CAS  Google Scholar 

  34. Scortegagna M, Ding K, Oktay Y et al (2003) Multiple organ pathology, metabolic abnormalities and impaired homeostasis of reactive oxygen species in Epas1-/- mice. Nat Genet 35:331–340

    Article  PubMed  CAS  Google Scholar 

  35. Tian H, Hammer RE, Matsumoto AM et al (1998) The hypoxia-responsive transcription factor EPAS1 is essential for catecholamine homeostasis and protection against heart failure during embryonic development. Genes Dev 12:3320–3324

    Article  PubMed  CAS  Google Scholar 

  36. Yamashita T, Ohneda K, Nagano M et al (2008) Hypoxia-inducible transcription factor-2α in endothelial cells regulates tumor neovascularization through activation of ephrin A1. J Biol Chem 283:18926–18936

    Article  PubMed  CAS  Google Scholar 

  37. Kashiwagi S, Tsukada K, Xu L et al (2008) Perivascular nitric oxide gradients normalize tumor vasculature. Nat Med 14:255–257

    Article  PubMed  CAS  Google Scholar 

  38. Coulet F, Nadaud S, Agrapart M, Soubrier F (2003) Identification of hypoxia-response element in the human endothelial nitric-oxide synthase gene promoter. J Biol Chem 278:46230–46240

    Article  PubMed  CAS  Google Scholar 

  39. Le Bras A, Lionneton F, Mattot V, Lelievre E, Caetano B, Spruyt N, Soncin F (2007) HIF-2α specifically activates the VE-cadherin promoter independently of hypoxia and in synergy with Ets-1 through two essential ETS-binding sites. Oncogene 26:7480–7489

    Article  PubMed  Google Scholar 

  40. Hu CJ, Sataur A, Wang L, Chen H, Simon MC (2007) The N-terminal transactivation domain confers target gene specificity of hypoxia-inducible factors HIF-1α and HIF-2α. Mol Biol Cell 18:4528–4542

    Article  PubMed  CAS  Google Scholar 

  41. Hu CJ, Wang LY, Chodosh LA et al (2003) Differential roles of hypoxia-inducible factor 1α (HIF-1α) and HIF-2α in hypoxic gene regulation. Mol Cell Biol 23:9361–9374

    Article  PubMed  CAS  Google Scholar 

  42. Chen L, Endler A, Uchida K et al (2010) Int6/eIF3e silencing promotes functional blood vessel outgrowth and enhances wound healing by upregulating hypoxia-induced factor 2α expression. Circulation 122:910–919

    Article  PubMed  CAS  Google Scholar 

  43. Peng J, Zhang L, Drysdale L, Fong GH (2000) The transcription factor EPAS-1/hypoxia-­inducible factor 2α plays an important role in vascular remodeling. Proc Natl Acad Sci U S A 97:8386–8391

    Article  PubMed  CAS  Google Scholar 

  44. Bosch-Marce M, Okuyama H, Wesley JB et al (2007) Effects of aging and hypoxia-inducible factor-1 activity on angiogenic cell mobilization and recovery of perfusion after limb ischemia. Circ Res 101:1310–1318

    Article  PubMed  CAS  Google Scholar 

  45. Bertout JA, Patel SA, Simon MC (2008) The impact of O2 availability on human cancer. Nat Rev Cancer 8:967–975

    Article  PubMed  CAS  Google Scholar 

  46. Huang X, Ding L, Bennewith KL et al (2009) Hypoxia-inducible mir-210 regulates normoxic gene expression involved in tumor initiation. Mol Cell 35:856–867

    Article  PubMed  CAS  Google Scholar 

  47. Semenza GL (2007) Evaluation of HIF-1 inhibitors as anticancer agents. Drug Discov Today 12:853–859

    Article  PubMed  CAS  Google Scholar 

  48. Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58–62

    Article  PubMed  CAS  Google Scholar 

  49. Du R, Lu KV, Petritsch C et al (2008) HIF1α induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell 13:206–220

    Article  PubMed  CAS  Google Scholar 

  50. Stockmann C, Doedens A, Weidemann A et al (2008) Deletion of vascular endothelial growth factor in myeloid cells accelerates tumorigenesis. Nature 456:814–818

    Article  PubMed  CAS  Google Scholar 

  51. Mazzone M, Dettori D, Leite de Oliveira R et al (2009) Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization. Cell 136:839–851

    Article  PubMed  CAS  Google Scholar 

  52. Vaupel P, Kallinowski F, Okunieff P (1989) Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 49:6449–6465

    PubMed  CAS  Google Scholar 

  53. Brown JM, Wilson WR (2004) Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer 4:437–447

    Article  PubMed  CAS  Google Scholar 

  54. Höckel M, Knoop C, Schlenger K et al (1993) Intratumoral pO2 predicts survival in advanced cancer of the uterine cervix. Radiother Oncol 26:45–50

    Article  PubMed  Google Scholar 

  55. Raleigh JA, Calkins-Adams DP, Rinker LH et al (1998) Hypoxia and vascular endothelial growth factor expression in human squamous cell carcinomas using pimonidazole as a hypoxia marker. Cancer Res 58:3765–3768

    PubMed  CAS  Google Scholar 

  56. Moeller BJ, Cao Y, Li CY, Dewhirst MW (2004) Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer Cell 5:429–441

    Article  PubMed  CAS  Google Scholar 

  57. Gorski DH, Beckett MA, Jaskowiak NT et al (1999) Blockage of the vascular endothelial growth factor stress response increases the antitumor effects of ionizing radiation. Cancer Res 59:3374–3378

    PubMed  CAS  Google Scholar 

  58. Geng L, Donnelly E, McMahon G et al (2001) Inhibition of vascular endothelial growth factor receptor signaling leads to reversal of tumor resistance to radiotherapy. Cancer Res 61:2413–2419

    PubMed  CAS  Google Scholar 

  59. Abdollahi A, Lipson KE, Han X et al (2003) SU5416 and SU6668 attenuate the angiogenic effects of radiation-induced tumor cell growth factor production and amplify the direct anti-endothelial action of radiation in vitro. Cancer Res 63:3755–3763

    PubMed  CAS  Google Scholar 

  60. Harada H, Kizaka-Kondoh S, Li G et al (2007) Significance of HIF-1-active cells in angiogenesis and radioresistance. Oncogene 26:7508–7516

    Article  PubMed  CAS  Google Scholar 

  61. Rey S, Lee K, Wang CJ et al (2009) Synergistic effect of HIF-1α gene therapy and HIF-1-activated bone marrow-derived angiogenic cells in a mouse model of limb ischemia. Proc Natl Acad Sci U S A 106:20399–20404

    Article  PubMed  CAS  Google Scholar 

  62. Sarkar K, Fox-Talbot K, Steenbergen C, Bosch-Marce M, Semenza GL (2009) Adenoviral transfer of HIF-1α enhances vascular responses to critical limb ischemia in diabetic mice. Proc Natl Acad Sci U S A 106:18769–18774

    Article  PubMed  CAS  Google Scholar 

  63. Beckman JA, Creager MA, Libby P (2002) Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. JAMA 287:2570–2581

    Article  PubMed  CAS  Google Scholar 

  64. Okamoto N, Tanaka A, Jung K et al (2011) Silencing of int6 gene restores function of the ischaemic hindlimb in a rat model of peripheral arterial disease. Cardiovasc Res 92:209–217

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Futoshi Shibasaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hayakawa, H., Shibasaki, F. (2013). Regulation of Angiogenesis by Hypoxia-Inducible Factors. In: Mehta, J., Dhalla, N. (eds) Biochemical Basis and Therapeutic Implications of Angiogenesis. Advances in Biochemistry in Health and Disease, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5857-9_6

Download citation

Publish with us

Policies and ethics